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Abstract 
 
This paper shows that it is possible to build numerical spectral element matrices of 
two-dimensional waveguides using the dispersion parameters obtained from a thin 
slice of the waveguide modelled with conventional finite elements. The approach, 
called the wave spectral finite element method (WSFEM), was developed for 
applications in mid frequency analyses. In this paper, the mathematical formulation 
for a general structure is presented and particularized for a flat plate. The forced 
response of a thin plate simply-supported and free of constraints obtained by the 
WSFEM is compared with a finite element analyses in order to validate the 
proposed approach.  
 
Keywords: waveguides, mid frequency, spectral element, finite element, higher-
order modes, structural dynamics, propagation modes. 
 
1  Introduction 
 
There is a demand for reliable numerical models of wave propagation in long 
structures of arbitrary cross-section in the mid-frequency range. This is so, in part, to 
take advantage of the periodic characteristic of these structures, but it is also 
motivated by the advances in the oil industry that require increasingly longer risers. 
As analytical solutions do not exist for most of these structures and finite element 
simulation requires a prohibitive computational cost, hybrid methods have been 
proposed since the 1970’s by Dong and Nelson [1], and later by Thompson [2] and 
Gavric [3]. This topic still attracts attention of many researchers, mainly interested 
in overcoming numerical problems that arise as frequency rises. 
 Two different methodologies have emerged from the earlier works of Dong and 
Nelson [1] and Mead [4]. The former one has motivated researchers to treat the 
displacement field of waveguides with one main axis and a constant cross section as 
a product of a spatial function that describes the wave motion of the cross-section 
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plane and a complex exponential function to describe the wave propagation along 
the main axis. Therefore, only a 2-D mesh of the cross-section is required [5]. 
Nevertheless, this approach sometimes referred to semi-analytical finite element 
method (SAFE) [6-8], also known as waveguide finite elements [3] or spectral finite 
elements [9] must need the spectral stiffness matrices to be formulated on a case-by-
case basis [10], which is not an insignificant task.  

Based on the periodic structure theory developed by Mead [4], Thompson [3] has 
obtained the dispersion relations for a rail track by modelling a thin slice of the 
structure using conventional finite elements. Then, applying the periodic conditions 
and satisfying the continuity of displacement and the equilibrium at interface, an 
eigenvalue solution provides the wavenumbers and corresponding wave propagation 
modes. This procedure, usually known as wave and finite element method (WFEM), 
has been a decade later improved by Mace et al. [11]. Mencik [12] and Arruda et al. 
[13] have also proposed alternatives to circumvent numerical difficulties 
encountered when dealing with the problem. Using the wave parameters obtained 
from application of WFEM, different approaches have been derived to compute the 
forced response of a full structure. These approaches can be based on wave 
propagation solutions as proposed by Duhamel [10] or spectral element formulation 
as shown by Arruda and Nascimento [14]. 

This paper uses a straightforward approach based on a hybrid finite/spectral 
element method, also called Wave Spectral Finite Element Method (WSFEM). It 
consists in extracting wavenumbers and wave modes from a thin slice of the 
substructure modelled using conventional finite elements, and, subsequently, writing 
kinematic variables and internal forces in the spectral form using, respectively, the 
wave mode displacement and the wave mode force components. 

In this work, the WSFEM is applied to a two-dimensional structure, namely a 
thin plate. The numerical forced responses are evaluated for low to mid-frequencies 
and are compared to full FE and spectral element analyses for validation. 

In addition, as a way to avoid disparities between expected and predicted 
responses, the sources of numerical errors when solving the wave propagation 
problem are pointed out. The main sources of numerical errors are shown to be the 
eigenvalue problem, which must be solved to produce dispersion relations and the 
wave propagation modes, and the pseudo-inversion, used to obtain the spectral 
element matrix. As an alternative, the eigenvalue problem is solved using a 
companion equation proposed by Ahmida and Arruda [4], which prevents ill-
conditioning of the original transfer matrix eigenvalue problem. This is an 
alternative to Zhong’s formulation [5]. 

Besides the computational efficiency, the approach presented in this paper has the 
advantage of not requiring neither wave propagation solutions nor the use of 
elastodynamic equations.  Furthermore, it has the potential to include the effect of 
higher order wave modes. This makes possible the study of complex cross-section 
shapes, particularly near boundaries or sharp edges [6]. The spectral finite element 
approach allows solving the problem using element-based direct stiffness method, 
which easily integrates wave spectral finite elements and ordinary finite elements 
and allows very arbitrary dynamic loading conditions. The effect of including a 
higher number of modes is discussed for a thin plate waveguide example. 
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2  Wave propagation analysis of periodic structures 
 
Waveguides are structures that guide waves through one or more dimensions. This 
work particularly concerns those structures with one direction of symmetry, taken as 
the x-axis. The type of symmetry can vary; it can be a translational one, as, for 
example, an uniform rod, a plate strip with constant width, laminated composites, 
ducts or pipes, a rotational one, for instance, curved beams and tyres, or a periodic 
material arrangement. 
 

 
 

Figure 1: Examples of structures with one direction of symmetry (adapted from [10] 
and [11]). 

 
 
2.1 Dynamic stiffness matrix of a waveguide slice 
 
 Symmetric waveguides can be considered as an arrangement of a finite or infinite 
number of cells. For wave propagation analysis purposes, a single cell of the 
structure with small thickness, Δ , usually smaller than 6λ  in order to avoid 
numerical discrepancies (spatial aliasing), is meshed with conventional finite 
elements (FE). In order to guarantee connectivity between substructures, left and 
right sides of the slice must be meshed with equal number and distribution of nodes, 
see Figure 2.  



4 

 
Figure 2: Representation of a waveguide section meshed with equal number of 

nodes on the left and right sides. 
 

 
From the FE model, the mass, stiffness and damping matrices can be extracted 

and used to obtain the dynamic stiffness matrix for the slice at discrete frequencies. 
Thus, the equations of motion in the frequency domain for this substructure can be 
written as: 

 
 ( )ω =D q F               (1) 

 
where ( ) 2iω ω ω= + −D K C M is the dynamic stiffness matrix, K , C  and M  are the 
stiffness, damping and mass matrices, respectively, q is the displacement vector and 
F , the applied force vector. 
 The terms of the dynamic stiffness matrix can be arranged in those related to the 
left degrees-of-freedom (DOFs), right and interior DOFs. Then, if no forces are 
applied at the interior nodes, the equations of motion can be written as: 
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Using the third equation of the system of equations in Equation (2), the equations of 
motion can be written as function of the displacements at the left and right nodes 
only and a condensed dynamic stiffness matrix can be obtained, as expressed in 
Equation (3). 
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where ILIIRIRLRLIRIILILRLRILIILILLLL DDDDD,DDDDD,DDDDD 111 ˆˆˆ −−− −=−=−=  and  
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IRIIRIRRRR DDDDD 1ˆ −−= . 
 
 
2.2 State-vector formulation 
 
The dynamic system can be alternatively represented by a relation between the state 
vectors { }LL fq ;  and { }RR fq ;  , where Lf and Rf are the internal forces at the left and 
right sides of the substructure, respectively. The general idea of this formulation is 
transform the partial differential equation that describes the dynamic system in a 
system of first-order ordinary differential equations whose solution is known. Thus, 
the transfer matrix is responsible for the relation between the state vector at the left 
side with the state vector at the right side of the slice, see Equation (4). 
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The internal and external forces are related by: 

 
LL fF −=              (5.1) 

RR fF =              (5.2) 
 

Thus, the transfer matrix can be written by arranging the terms of the dynamic 
stiffness matrix: 
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The continuity of displacements and the equilibrium at the interface between two 
substructures (k) and (k+1) are satisfied by: 
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Substituting Equations (7.1) and (7.2) in Equation (4) yields: 
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The Bloch-Floquet theorem for periodic structures imposes a periodic condition to 
displacements and forces: 
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 Applying this theorem to Equation (8) yields the following eigenvalue problem: 
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Decomposing T  in its eigenvalues and eigenvectors, the expression below is 
obtained: 
 

1−=T ΦΛΦ            (11) 
 

where ;q F⎡ ⎤= ⎣ ⎦Φ Φ Φ  and ( )( ) ( )nik
ndiag diag e ωλ − Δ= =Λ . 

 From the eigenvalue decomposition, we conclude that the transfer matrix is the 
matrix exponential of the Hamiltonian matrix, which satisfies the symplectic inner 
product. Thus, from the Cayley-Hamilton theorem, the eigenvalues and eigenvectors 
of the transfer matrix satisfies the basic theorems of the symplectic space, which are 
defined below and have been demonstrated by Yao et al. [15].  
 
Theorem 1: If μ is an eigenvalue of the Hamiltonian matrix with multiplicity m, 
then μ− is also an eigenvalue with multiplicity m.   
 
Theorem 2: For 0≠+ ji μμ , there is symplectic orthogonality between the 
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Theorem 3: Let 0≠±μ be a pair of mutually symplectic adjoint eigenvalues of the 
Hamiltonian matrix with multiplicity m, then there exists an adjoint symplectic 
orthonormal vector set  
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As a consequence, the eigenvalues of Equation (10) occur in pairs nλ and nλ1 . 

Physically, the eigenvalues are related to the wavenumbers and the eigenvectors to 
the wave mode amplitudes expressed in coordinates of displacements and forces.  
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2.3 Alternative eigenvalue problem 
 
The eigenvalue problem as stated in Equation (10) presents numerical ill-
conditioning. These numerical problems are due in part to strong magnitude 
differences between transfer matrix terms, which are related to distinct dimensions 
of displacements and forces and, also, to the inversion of LRD̂ , required to write the 
transfer matrix in terms of the dynamic stiffness matrix given from the FE model. In 
order to avoid numerical problems, in this work a companion eigenvalue problem is 
used, as proposed by Arruda and Ahmida [13].   

Re-writing the system of equations defined in Equation (3) using the periodic 
condition established in Equation (7.1), gives: 

 
LLLRLLLLRLRLLL FqDqDFqDqD =+∴=+ λˆˆˆˆ       (12.1) 

LLRRLRLRRRRLRL FqDqDFqDqD λλ −=+∴=+ ˆˆˆˆ      (12.2) 
 
Now, substituting Equation (12.2) into (12.1) yields: 
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Thus, the associated eigenvalue problem is given by: 
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Only the eigenvectors related to the displacement DOFs are directly obtained by 

solving the eigenvalue problem of Equation (14). The eigenvectors related to the 
force DOFs are obtained using the first equation in the system of equations in 
Equation (3). 
 

FqLRqLLFnqnnLRqnLL ΦΛΦDΦDΦΦDΦD =+∴=+ ˆˆˆˆ λ     (15) 

 
2.3.1   Frequency tracking of wave modes  
 
The dispersion relations for the modelled structure can be obtained for discrete 
frequencies by solving the eigenvalue problem proposed in the previous section. 
Nevertheless, in order to plot the dispersion curves, the frequency tracking of the 
wave modes is an important task, as for each frequency the numerical eigenvalue 
solver usually sorts the wavenumbers by their magnitude. However, within a 
frequency range there are wavenumbers that cross over, and this is not accounted for 
in the ordinary sorting process.  

There are at least two common procedures used for tracking wave modes: the 
modal assurance criteria (MAC) and a procedure based on the symplectic 
orthogonality between wave modes [12]. In this work, the latter procedure is 
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adopted, as it seems to be more robust and it does not necessary need high frequency 
resolution as the MAC does. 

Given two eigenvectors jΦ and lΦ evaluated at angular frequencies 1−iω  and iω , 
respectively, lj kk −=  if: 
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It is important to note that, for a given mode, eigenvectors evaluated above the 

cut-on frequency are not symplectic orthogonal to those evaluated below this 
frequency [15]. 
 
 
 
3  Wave spectral finite element method 
 
The WSFEM is based on the Spectral Element Method (SEM), as developed by 
Doyle [16], to write the displacement field. The SEM exactly describes the wave 
propagation dynamics within a structural element without discontinuities because 
the solution for the displacement field is written in the frequency domain (exact 
within the assumptions of the elastodynamic theory used in the formulation). Thus, 
as frequency rises, mesh refinement is not necessary. The WSFEM consists in 
obtaining the spectral matrix for an element of arbitrary length by using the wave 
parameters derived from the eigenvalue problem solved for a structure slice. 

In the frequency domain, the general displacement for a structure can be written 
as: 
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nn AA ~,~  are amplitude terms dependent on the boundary conditions. In matrix 
form, Equation (18) can be written as: 
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For an element of length L, the displacements at the left and right sides are given by: 
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 Analogously, the forces can be written in the spectral form: 
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In matrix form, 
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At the left and right sides of an element of length L, 
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Manipulating Equation (20) in order to isolate the vector of amplitudes { }A~ , gives: 
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Then, substituting Equation (24) into (23), yields: 
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Therefore, the numerical spectral matrix is given by: 
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 The forced response of the structure is then easily obtained in a similar way 
harmonic responses are evaluated in FE analysis. Firstly, the global stiffness matrix 
is built by assembling the element matrices using the direct stiffness method. Then, 
applying the boundary conditions to this global numerical stiffness matrix, the 
displacement field is recovered simply by: 
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3.1 Wave spectral analysis of plates 
 
A plate is a two-dimensional structure with one dimension significantly smaller than 
the other two. This modifies the behaviour of this structural element under wave 
propagation. Differently from the rod case, waves are not confined to follow a one-
dimensional guide [16]. Nevertheless, in this work the two-dimensional problem 
will be reduced to a one-dimensional one by applying 1-D periodic conditions to a 
plate strip modelled with conventional FEs. This study, in the present form, is 
restricted to out-of-plane loads applied to thin plates. The response of the plate under 
different boundary conditions, sometimes a difficult task using analytical methods, 
is investigated. For instance, a spectral plate element is widely employed for a 
simply-supported plate in only one direction (two parallel sides simply supported). 
For other conditions, solutions are not possible or very cumbersome.  
 
 The displacement field of a thin plate under bending is described by the 
displacement in the z-direction, or transverse displacement, w , and rotations about 
the x- axis and the y-axis, xθ and yθ , respectively. The corresponding forces that can 
be applied to the structure are xxz MF , and yyM . Thus, displacement and forces are 
written as: 
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 Manipulating Equation (32) and Equation (33), the displacements and forces at 
both sides of an element are given by: 
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 The numerical dynamic stiffness matrix is, thus, written as: 
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where the symbol + signifies that the pseudo-inversion is required.   
 
 
 
 
 
 
4 Forced Response of a homogeneous plate from a 2D 

FEM model 
 
 
Initially, the forced response of a homogeneous plate simply-supported along its 
edges by WSFEM is shown to agree well with results from SEM and conventional 
FEM. After, a free plate subjected to a harmonic excitation is analysed by WSFEM 
and the results compared to FE simulations. 
 
4.1  Analysis of simply-supported plate along all edges 
 
As discussed in section 3.2, a plate strip is modelled with SHELL63 finite elements, 
from the commercial software ANSYS®, with bending capability only. Based on 
previous work of Waki [17], it’s known that dispersion relations are correctly 
extracted from a FE model of plate if the element size in x and y directions are 
approximately equal. For a first analysis, a steel plate 
( 3.0,210,³7800 === νρ GPaEmKg ) with mLx 301= , mLy 1= , mh 001.0= , 

2=xN and 60=yN , where N is the number of finite elements in a given direction, is 
modelled with FEs. Figure 3 shows this plate strip meshed. 
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Figure 3: (a) Detail of SHELL63 element from ANSYS® used to mesh plate strips. 

(b) Plate Strip with Lx = 1/30 m, Ly = 1 m , h = 0.001 m, meshed with 60 elements in 
the y direction and 2 elements in the x direction. 

 
 
 
 The stiffness and mass matrices for the plate model including all DOFs are 
extracted from the FE model and the dynamic stiffness matrix built for discrete 
frequencies. Then, in order to obtain the dispersion curve for an infinite plate 
simply-supported along the x direction, rows and columns corresponding to 
transverse displacement and rotation about the y-direction along these edges are 
suppressed. Based on this new dynamic matrix, the alternative eigenvalue problem 
proposed in section 2.3 is solved and the dispersion curves, obtained, see Figure 4. 
In Figure 5, only those modes predicted by analytical solution of a plate simply-
supported along two edges are plotted against the ones theoretically predicted. It is 
clear that those wavenumbers are very well predicted numerically. 
 The forced response of a plate with )11( mm × simply-supported at all edges and 
subjected to a harmonic excitation )100( N  in the transverse direction at 

)5.0,5.0( mymx == is obtained by WSFEM using the procedure that has been 
discussed in section 3.2. In this analysis, two elements with m5.0 of length each 
were used, and the numerical dynamic matrices for such elements were assembled to 
build the global dynamic matrix for the whole plate. Then, the forced response in the 
frequency range Hz2001−  was calculated by inversion of the global matrix subjected 
to the appropriated boundary conditions. In Figure 6(a), a scheme of the analysed 
plate is shown and in Figure 6(b) the forced response obtained by WSFEM, with all 
modes included, evaluated at the excited node is compared to responses obtained 
analytically (SEM) and numerically by FE analysis.  

(a)             (b) 
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(a)                                                     (b) 

Figure 4: Dispersion Curve of a steel plate with 1 m of width numerically obtained: 
(a) evanescent part (real) of wavenumbers within 1)200,200( −− m  are plotted,                     

(b) propagating (imaginary) part of wavenumbers within 1)50,50( −− m  are plotted. 
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Figure 5: Dispersion curve including only bending modes of a steel plate with 1 m 
of width. Numerical and analytical solutions are plotted. In this plot, the following 
convention is adopted: positive values correspond to the real part of wavenumbers 

and negative values to the imaginary part of wavenumbers. 
 

 
 

(a)                                                    (b) 
 

Figure 6: (a) Scheme of the steel plate analysed, (b) forced response of the plate 
measured at the excited node. 
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 From Figure 6(b), a good agreement between the analytical (SEM) and numerical 
(FEM and WSFEM) results is noticed within the frequency range considered. This 
validates the proposed approach for the simply-supported case. 
 
4.2 Analysis of a free plate  
 
In the previous section, the steel plate was analysed when simply supported at all 
edges. Now, the validity of WSFEM with arbitrary boundary conditions is verified, 
for instance, when free edges. Analysis in higher frequencies is also performed as an 
attempt to validate the numerical method when the number of modes increases. 
Since SEM does not provide analytical solutions for the free boundary condition, the 
numerical results by WSFEM are compared only to FE analysis results. 
 At low frequencies, in the Hz2001−  range, the same plate strip of the previous 
section, mLx 301= , mLy 1= , mh 001.0= , 2=xN and 60=yN , was used to obtain the 
numerical results. This time, boundary conditions are not applied to the dynamic 
stiffness matrix for the slice built from mass and stiffness matrices extracted from 
FE model. The dispersion curve obtained in the free condition after solving the 
alternative eigenvalue problem is shown in Figure 7. 
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Figure 7: Dispersion Curve of a steel plate with 1 m of width numerically obtained: 
(a) evanescent part of wavenumbers within 1)200,200( −− m are plotted, (b) 

propagating part of wavenumbers within 1)40,40( −− m  are plotted.  

 
Then, the WSFEM is applied to obtain the forced response of the structure in free 

condition when subjected to a harmonic load in the transverse direction (z) at 
)5.0,5.0( mymx == . Only two elements are used in this numerical solution and all 

modes within this frequency range are included. The transverse displacement 
response at the point of excitation is obtained and compared to FE analysis of the 
plate meshed with 3600 elements, see Figure 8. The result shows that the 
methodology used is suitable for wave propagation analysis of free plates.  

(a)                                                   (b)
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Figure 8: (a) Scheme of the steel plate analysed. (b) Forced response of the plate 
measured at the excited node. 

 
 Now, the proposed approach will be validated for higher frequency ranges. At 
high frequencies, in the Hz1050950−  range, the steel plate is also analysed. In this 
frequency range, a refined mesh of the plate strip is required in order to obtain 
accurate results. For this purpose, a plate strip with mLx 431= , mLy 1= , mh 001.0= , 

2=xN and 86=yN  was modelled using SHELL63 finite elements in ANSYS®. The 
dispersion curve in free condition for this structure slice is shown in Figure 9. 
Comparing this dispersion curve with the one plotted in Figure 7, a higher wave 
modal density is observed for high evanescent wavenumbers and also propagating 
wavenumbers. 
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Figure 9: Dispersion curve of a steel plate with 1 m of width numerically obtained: 
(a) evanescent part of wavenumbers within 1)300,300( −− m  are plotted,                       
(b) propagating part of wavenumbers within 1)80,80( −− m  are plotted. 

 (a)                                                    (b)

   (a)                                                  (b)
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 The forced response of the free plate with )11( mm × , harmonically excited in the 
Hz1050950 −  range at )5.0,5.0( mymx == ,  is also obtained by the WSFEM. The 

result is shown in Figure 10 plotted against the one obtained using conventional FE 
analysis. We see that both results are superposed, except at one frequency line. 
Except for the numerical divergence seen at this frequency around 1000 Hz, Figure 
10 confirms the potential of WSFEM for wave propagation analysis from mid to 
high frequency ranges, where refined meshes are required and analytical solutions 
are not available. 

 
Figure 10: Forced response of a steel plate in free boundary condition measured at 

the excited node. 
 
 
 
 
5  Conclusions 
 
This paper has extensively described the mathematical formulation necessary for the 
application of the wave spectral finite element method to general, and particularly to 
two-dimensional structures. In this work, the thin plate in bending was the 
application investigated under different boundary conditions: simply supported at all 
edges and free at all edges. The type of problem treated has allowed the validation of 
the proposed approach when a large number of wave modes are included in the 
formulation, thus, confirming the potential of such approach in predicting higher 
order behaviour. It was also possible to verify that regardless of the frequency range 
considered or the wave modal density, the WSFEM seems to be a reliable method 
for studying wave propagation problems. When the computational cost is 
considered, the WSFEM is shown to be advantageous when compared with the 
conventional FEM because mesh refinement is only required in the modelling of the 
structure slice. When the numerical dynamic stiffness matrix for the whole structure 
is recovered, mesh refinement is no longer necessary as the displacement and force 
fields are written in the frequency domain.  
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