
Abstract

Since delamination is a major failure mode of layered composites, predicting its ini-

tiation is essential for the design of composite structures. Evaluating delamination

onset criteria based on stress-strength relations requires an accurate representation of

the through-the-thickness stress distribution, which is delicate for thin shell-like struc-

tures. Therefore, in this paper, a solid-shell finite element is utilized, which allows for

incorporating a fully three-dimensional, anisotropic, micro-mechanically motivated

material model, still being suited for application to thin structures. Moreover, locking

phenomena are cured by using both the EAS and the ANS concept, and numerical

efficiency is ensured through reduced integration.

Keywords: fibre-reinforced composite, layered composite, delamination, solid-shell

concept, enhanced strain formulation, reduced integration.

1 Introduction

Fibre-reinforced composites are gaining more and more importance in technical appli-

cations. Their most beneficial characteristics, the very high Young’s modulus and low

density, are particularly leveraged in shell-like structures of lightweight constructions.

The composites examined in this paper consist of multiple layers, each of which is

composed of a woven fabric, with two families of fibres, embedded in a matrix mate-

rial. Besides this anisotropic structure, the stress-strain behaviour of fibre composite

materials is highly non-linear. Moreover, the response of the materials in tension and

compression can differ significantly.

The majority of models accounting for anisotropic material behaviour at finite

strains were developed in the field of biomechanics. For instance, axisymmetric or-

thotropic blood vessels were investigated in [1], whereas biological soft tissues were
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modeled in [2] on the basis of an incompressible transversely isotropic law for moder-

ate deformations. A description of the transversely isotropic behaviour of rubber was

presented in [3], and orthotropic constitutive equations were provided in [4] for the

simulation of human leg impact problems. More recently, anisotropic material mod-

els were proposed incorporating the micro-mechanical structure of wood, e.g. [5, 6].

In the present paper, however, the model proposed by Reese in [7] for fibre-reinforced

rubber-like composites was adopted, in which the transition from the micro-scale to

the macro-scale is formulated in a general manner. Therefore, this model is not re-

stricted to rubber-like materials but also suitable for the carbon fibre-reinforced plas-

tics (CFRP) considered here.

Structural collapse in fibre composite structures is caused by the evolution of either

matrix transverse cracking, fibre fracture, or delamination. From these different dam-

age modes, the delamination is particularly important, because it drastically reduces

the bending stiffness of the structure and promotes local buckling in case of com-

pressive loads. Including delamination into the computation of composite structures

requires the definition of an appropriate criterion for its onset as well as the prediction

of its growth after an initial crack has evolved.

For the initiation of delamination, different criteria exist, formulated in dependence

of stress-resistance relations, e.g. [8–12]. After onset of delamination, the high stress

gradients appearing at the crack front prohibit employing solely stress-based criteria.

Thus, fracture mechanics approaches are often used for simulating the delamination

propagation, such as the virtual crack closure technique, [13–17]. As an alternative,

delamination growth can be treated within the framework of damage mechanics using

cohesive zone models, which are incorporated into the finite element simulation by

interface elements, e.g. [18–21]. However, in this paper, the onset of delamination is

addressed based on stress-resistance relations.

Since fibre-reinforced composites are mostly applied in thin shell-like structures,

the element formulation demands providing a suitable shape for thin structures while

displaying realistically the three-dimensional stress states. Although shell formu-

lations exist, which take into account the through-the-thickness stretching, see e.g.

[22–24], the implementation of three-dimensional material models is much simpler in

the context of solid elements. On the other hand, the latter typically provide a poor

performance when being applied to thin shell-like structures. In particular, there are

different locking phenomena to be coped with, which cause an overestimation of the

stress state and an underestimation of the deformation. Using solid-shell elements rep-

resents one strategy to overcome this problem by combining the advantages of both

solid elements and shell elements at the same time. Further, applying the enhanced

assumed strain (EAS) concept eliminates the volumetric locking in case of (nearly)

incompressible materials as well as the Poisson thickness locking, which occurs in

bending problems of shell-like structures due to the non-constant distribution of trans-

verse normal strain over the thickness.

In literature, one can find several solid-shell formulations incorporating the EAS

concept, see e.g. [25–27], to name only a few. To cure the transverse shear lock-
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ing, which is present in standard eight-node hexahedral elements, the assumed natural

strain (ANS) method is applied. In the context of full integration formulations, the

ANS can be found e.g. in [28–30], and for reduced integration solid-shell formula-

tions e.g. in [31–34]. The formulation presented in this paper is based on the works

of Schwarze and Reese [32–34].

For laminated layered composites, the accurate determination of the through-the-

thickness stress distribution was recently investigated by several authors. For instance,

in [35] an improved shell formulation was used for this, whereas in [36] and [37] the

investigations were based on the solid-shell concept. For a more elaborate literature

overview, the reader is referred to the review papers [38–40] and the references therein.

However, to our knowledge no solid-shell formulations exist, which consider the

orthotropic behaviour of fibre composites with woven fabric accounting for different

fibre directions.

2 Orthotropic material model

The fibre composites examined in this paper consist of stacked layers, each of which is

composed of a woven fabric embedded in a matrix material. The anisotropic material

behaviour of such composites is taken into account by using the micro-mechanically

motivated model proposed in [7]. Describing the matrix by the Neo-Hooke material

model allows for incorporating rubber-like matrix materials with sufficient accuracy,

whereas viscous effects of e.g. epoxy resin cannot be represented. However, in the

following, the basics of the continuum model are summarized. Therein, parameters

are chosen to represent approximately the behaviour of carbon fibres in an epoxy resin

matrix.

2.1 Concept of structural tensors

Introducing the deformation gradient F, the deformation of a continuous body is rep-

resented by the right Cauchy-Green tensor

C = F
T
F (1)

The characterization of a hyperelastic body is then given by the existence of a scalar

potential, which is the stored energy function W = W (C), such that

S = 2
∂W(C)

∂C
(2)

is the second Piola-Kirchhoff stress tensor. In the case of orthotropic material be-

haviour, the energy function W (C) reduces to an isotropic function of C and the

structural tensors M1 and M2, which are defined by

M1 = n1 ⊗ n1 and M2 = n2 ⊗ n2 (3)
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where the vectors n1 and n2 are oriented in parallel direction to the fibres. For a dis-

cussion of the theoretical background, the reader is referred to [41] and the references

therein. Then, the strain energy function W can be represented in dependence of the

following invariants:

I1 = tr C I2 =
1

2

[
(tr C)2 − tr

(
C

2
)]

I3 = det C (4a)

I4 = tr (C · M1) I5 = tr
(
C

2 · M1

)
(4b)

I6 = tr (C · M2) I7 = tr
(
C

2 · M2

)
(4c)

2.2 Strain energy function

In this work, the anisotropic model from Reese [7] is adopted, which assumes that

the fibres do not carry any load in case of compression but only in tension, which is

not realistic for the CFRP considered here. Therefore, this model is slightly modified,

such that the matrix acts as an elastic continuous support for the embedded fibres.

Moreover, the fibre volume fractions 0 ≤ ϕ1 and 0 ≤ ϕ2 for the two families of fibres

are introduced, where ϕ1 + ϕ2 ≤ 1 holds. Except of this, we adopt the mentioned

model and use the following strain energy function:

W = (1 − ϕ1 − ϕ2) WNH(I1, I3) + Wani(ϕ1, ϕ2, I1, I2, I4, I5, I6, I7) (5)

Here, WNH denotes the Neo-Hookean part displaying the isotropic case in the small

strain regime. The strain energy function is given by

WNH(I1, I3) =
µ

2
(I1 − 3) − µ ln

√

I3 +
Λ

4

(

I3 − 1 − 2 ln
√

I3

)

(6)

The anisotropic behaviour of the fabric is introduced by the part

Wani(ϕ1, ϕ2, I1, I2, I4, I5, I6, I7) =Kiso
1 (I1 − 3)α1 + Kiso

2 (I2 − 3)α2

+ ϕ1

[
Kani 1

1 (I4 − 1)β1 + Kani 1
2 (I5 − 1)β2

]
(7)

+ ϕ2

[
Kani 2

1 (I6 − 1)γ1 + Kani 2
2 (I7 − 1)γ2

]

+ Kcoup ani (I4 − 1)ξ(I6 − 1)ξ

Note that in [7] further coupling terms have been introduced, which have hardly influ-

enced the results, and therefore are dropped here. The exponents αi, βi, γi, (i = 1, 2),
and ξ are chosen to be integers larger than 2.

3 Delamination onset criterion

The onset of delamination can be determined on the basis of stress-strength relations.

In particular, delamination occurs in pure interlaminar tension (mode I), pure interlam-

inar sliding shear (mode II), and pure interlaminar scissoring shear (mode III), if the
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corresponding interlaminar stress component exceeds the respective maximum inter-

facial strength. Here, the interlaminar stress components are denoted by σ33, σ13, and

σ23, respectively, where the 3-direction is normal to the considered interface. Then,

the respective interfacial strengths are Z33, Z13, and Z23.

To account for mixed-mode loading, the formulation of the onset criterion should

incorporate the interaction of these modes. Due to the lack of available experimental

data, failure criteria predicting the initiation of delamination have not been fully vali-

dated, and hence only few formulations exist. In this paper, the approach of Ye [9] is

adopted, in which a quadratic interaction of modes is assumed:

if σ33 > 0 :

(
σ33

Z33

)2

+

(
σ31

Z31

)2

+

(
σ32

Z32

)2

≥ 1 (8a)

if σ33 ≤ 0 :

(
σ31

Z31

)2

+

(
σ32

Z32

)2

≥ 1 (8b)

As the formulation presented in this paper is capable of taking into account finite

strains, it is important to accurately represent the according stress components. First

of all, the stresses calculated by the present solid-shell formulation are expressed by

the second Piola-Kirchhoff stress tensor S, which has to be pushed to the current

configuration

σ =
1

detF
FSF

T (9)

where σ denotes the Cauchy stress tensor. From this, the interlaminar traction σn and

the interlaminar resultant shear τn can be achieved by

σn = nσ n (10)

τn =
√

||nσ||2 − σ2
n (11)

denoting the normal vector of the considered interface by n. For consistency, the

maximum interfacial strength in tension and resultant shear are referred to as Zσ and

Zτ , respectively. Consequently, the condition for delamination onset reads

if σn > 0 :

(
σn

Zσ

)2

+

(
τn

Zτ

)2

≥ 1 (12a)

if σn ≤ 0 :

(
τn

Zτ

)2

≥ 1 (12b)

This condition has to be checked in each loading step and in each interface of the

laminated composite. Thus, the accurate prediction of the stress components in the

interfaces is essential for a reliable prediction of the initiation of debonding. Since the

layers are usually rather thin, solid elements are not suitable to achieve sufficient accu-

racy. To overcome this problem, spline approximations for the through-the-thickness

stresses can be applied, as proposed in [11]. Even so, using solid elements in the thin

shell-like applications should be avoided, and solid-shell elements are preferable.

Further, it should be noticed that this kind of criterion is suitable to predict the

delamination onset, but delamination growth is not covered.
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4 Solid-shell formulation

Using standard solid elements in thin structures would require a very high mesh den-

sity to predict the stress distribution with sufficient accuracy. Hence, the solid-shell

element formulation is used alternatively to avoid inefficient computations. Further-

more, the different locking phenomena are cured by application of the EAS and ANS

concepts. The following is based on the works of Schwarze and Reese [32–34].

4.1 Finite element framework and interpolation

The solid-shell concept is predicated on the two-field variational functional

g1(u,Ee) =

∫

B0

S(E) : δEc dV + gext = 0 (13)

g2(u,Ee) =

∫

B0

S(E) : δEe dV = 0 (14)

where gext denotes the virtual work of the external loading. For this formulation, the

total Green-Lagrange strain tensor E is split additively into the compatible part Ec and

the enhanced part Ee coming from the EAS concept:

E = Ec + Ee (15)

The second Piola-Kirchhoff stress tensor S(E) is a function of the total Green-

Lagrange strain tensor E. Note that S depends additionally on a set of internal vari-

ables in the elastoplastic case.

In this work, isoparametric eight-node hexahedral finite elements are considered,

such that both the position vector of the reference configuration X(ξ) = [X1, X2, X3]
T

and the displacement vector U(ξ) = [U1, U2, U3]
T

are approximated within the ele-

ment by

Xi =
8∑

I=1

NI XiI and Ui =
8∑

I=1

NI UiI (i = 1, 2, 3) (16)

using tri-linear shape functions

NI = 1/8(1 + ξIξ)(1 + ηIη)(1 + ζIζ) (I = 1, ..., 8) (17)

The position vector of the current (deformed) configuration reads

x(ξ) = X(ξ) + U(ξ) (18)

Then, introducing D = ∂U/∂ξ, the Jacobian matrices J and J̃ of the reference and

the current configuration, respectively, can be written as follows:

J =
∂X

∂ξ
= [J1,J2,J3] and J̃ =

∂x

∂ξ
= J + D =

[

J̃1, J̃2, J̃3

]

(19)
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The columns of J and J̃ represent the covariant base vectors with respect to the ref-

erence and current configuration, respectively. The polynomial form of the Jacobian

matrices defined in (19) is obtained by means of the polynomials

J = J
0 + ξ J

ξ + η J
η + ζ J

ζ + ξη J
ξη + ηζ J

ηζ + ξζ J
ξζ (20)

D = D
0 + ξ D

ξ + η D
η + ζ D

ζ + ξη D
ξη + ηζ D

ηζ + ξζ D
ξζ (21)

The contravariant base vectors with respect to the initial configuration and the cur-

rent configuration are denoted by

Hi =
∂ξi

∂Xj

ej = jij ej and H̃i =
∂ξi

∂xj

ej = j̃ij ej (22)

These represent the rows of the inverse Jacobian matrices J
−1 and J̃

−1, respec-

tively, the coefficients of which are denoted by jij = (J−1)ij and j̃ij = (J̃−1)ij . With

this definition, the Green-Lagrange strain tensor can be written in terms of its Carte-

sian and covariant components Eij and Ēij = Eξiξj , respectively,

E = Eij ei ⊗ ej = Ēij Hi ⊗ Hj (23)

Denoting the Voigt notation by ˆ(•) and exploiting symmetry as well as Γij = 2 Eij,

the latter can be stored into the 6 × 1 vectors

Ê = {E11, E22, E33, Γ12, Γ23, Γ13}T (24)

ˆ̄
E = {Eξξ, Eηη, Eζζ , Γξη, Γηζ , Γξζ}T (25)

These can be transformed one to the other with the relation Ê = T
ˆ̄
E, where

T =











j211 j221 j231 j11j21 j21j31 j11j31

j212 j222 j232 j12j22 j22j32 j12j32

j213 j223 j233 j13j23 j23j33 j13j33

2 j11j12 2 j21j22 2 j31j32 j12j21+j11j22 j22j31+j21j32 j12j31+j11j32

2 j12j13 2 j22j23 2 j32j33 j13j22+j12j23 j23j32+j22j33 j13j32+j12j33

2 j11j13 2 j21j23 2 j31j33 j13j21+j11j23 j23j31+j21j33 j13j31+j11j33











(26)

4.2 Green-Lagrange strain field

Consequently, the compatible Green-Lagrange strain is written in the form Êc = T
ˆ̄
Ec.

To get the components of the compatible Green-Lagrange strain tensor ˆ̄
Ec in poly-

nomial form, both the Jacobian matrix J and the displacement gradient D are split

column-wise:

J1 =J
0
1 + η J

η
1 + ζ J

ζ
1 + ηζ J

ηζ
1 D1 =D

0
1 + η D

η
1 + ζ D

ζ
1 + ηζ D

ηζ
1 (27a)

J2 =J
0
2 + ξ J

ξ
2 + ζ J

ζ
2 + ξζ J

ξζ
2 D2 =D

0
2 + ξ D

ξ
2 + ζ D

ζ
2 + ξζ D

ξζ
2 (27b)

J3 =J
0
3 + ξ J

ξ
3 + η J

η
3 + ξη J

ξη
3 D3 =D

0
3 + ξ D

ξ
3 + η D

η
3 + ξη D

ξη
3 (27c)
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Hence, the covariant compatible Green-Lagrange strain components are given by

Ec ξξ =J
T
1 D1 + 1/2D

T
1 D1 Γc ξη =J

T
1 D2 + J

T
2 D1 + D

T
1 D2 (28a)

Ec ηη =J
T
2 D2 + 1/2D

T
2 D2 Γc ηζ =J

T
2 D3 + J

T
3 D2 + D

T
2 D3 (28b)

Ec ζζ =J
T
3 D3 + 1/2D

T
3 D3 Γc ξζ =J

T
1 D3 + J

T
3 D1 + D

T
1 D3 (28c)

To cure curvature thickness locking, the ANS concept is implemented. For this,

the covariant compatible strain terms Ec ζζ |ξK
:= EK

c ζζ are evaluated at the sampling

points K = A, ..., D, see Fig. 1, as proposed in [42].

ξA = (−1,−1, 0)T ξE = (−1, 0,−1)T ξJ = (0,−1,−1)T

ξB = (1,−1, 0)T ξF = (1, 0,−1)T ξK = (0, 1,−1)T

ξC = (1, 1, 0)T ξG = (1, 0, 1)T ξL = (0, 1, 1)T

ξD = (−1, 1, 0)T ξH = (−1, 0, 1)T ξM = (0,−1, 1)T

Figure 1: Sampling points of the ANS concept at reference element

Thereby, the covariant compatible strains can be interpolated within the shell mid

plane of the reference element by means of bilinear ansatz functions

N̄K = 1/4(1 + ξKξ)(1 + ηKη) (29)

to be evaluated in the points K = A, ..., D. In consequence, the assumed transverse

normal strain distribution reads

EANS
c ζζ = N̄AEA

c ζζ + N̄BEB
c ζζ + N̄CEC

c ζζ + N̄DED
c ζζ =

D∑

K=A

N̄KEK
c ζζ (30)

In order to overcome the transverse shear locking, following [31], four sampling

points K = E, ..., H are used for the transverse shear term Γc ηζ |ξK
:= ΓK

c ηζ and

K = J, ..., M for Γc ξζ |ξK
:= ΓK

c ξζ , see again Fig. 1. Using the ansatz functions (29)

for the respective points, the assumed transverse shear terms read

ΓANS
c ηζ =

H∑

K=E

N̄KΓK
c ηζ and ΓANS

c ξζ =
M∑

K=J

N̄KΓK
c ξζ (31)
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The present solid-shell formulation utilizes a reduced integration scheme within the

shell plane (using one integration point), whereas a full integration is used in thickness

direction, which allows for choosing arbitrary numbers of integration points (at least

two), see Fig. 2. Thus, all integration points are located on the normal through the

center of the element defined by ξ⋆ := (0, 0, ζ)T .

65

7

3

21

8

4

ξ

ζ η

Figure 2: Solid-shell element with integration points at ξ = ξ⋆ := (0, 0, ζ)T

To cure volumetric locking as well as Poisson thickness locking, the EAS concept is

adopted. These locking effects are treated on the level of the integration points, which

can be expressed by Êe = Ê
⋆
e, indicating values to be evaluated in the integration

points by ⋆. Since in (30) the assumed transverse normal strain EANS
e ζζ has been defined

independently of ζ, the according value Ee ζζ is constructed as being linear in ζ in

order to overcome the locking effects, which reads

Êe = Ê
⋆
e = T

0
B̄

⋆
e We (32)

in which the interpolation matrix B̄
⋆
e = [0, 0, ζ, 0, 0, 0]T requires only one EAS degree-

of-freedom We. Here, T0 is the transformation matrix (26) evaluated in the center of

the element.

In order to achieve a polynomial decoupling of the compatible Green-Lagrange

strain tensor, Êc = T
ˆ̄
Ec, a Taylor expansion of the inverse Jacobian matrix is carried

out with respect to the center of the element

J
−1 ≈ J

−1
∣
∣
∣
ξ=0

+
3∑

i=1

J
−1
,ξi

∣
∣
ξ=0

ξi = J
−1
∣
∣
∣
ξ=0

+
3∑

i=1

(J0)−1
J

ξi(J0)−1 ξi (33)

up to the linear terms. The goal is reached by exploiting the Taylor expansion of

JJ
−1 ≈ (JJ

−1)
∣
∣
ξ=0

+
3∑

i=1

(JJ
−1),ξi

∣
∣
ξ=0

ξi (34)

as well as JJ
−1 = I, which must hold for arbitrary ξ = (ξ, η, ζ)T = (ξ1, ξ2, ξ3)

T.

Introducing the coefficients of (33) into (26), the transformation matrix is given by

T ≈ T
0 + ξ T

ξ + η T
η + ζ T

ζ (35)
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in polynomial form, where terms of higher order have been dropped, as has been

shown to be sufficient in [32]. Nevertheless, using the approximation (26), the Carte-

sian compatible strain still represents a polynomial of high order. For this reason, a

Taylor expansion of the Cartesian compatible Green-Lagrange strain

Êc = T
ˆ̄
Ec ≈ Êc

∣
∣
∣
ξ=0

+
3∑

i=1

Êc,ξi

∣
∣
∣
ξ=0

ξi + 1/2
3∑

i=1

3∑

j 6=i=1

Êc,ξiξj

∣
∣
∣
ξ=0

ξiξj (36)

:= Ê
0
c + ζÊζ

c
︸ ︷︷ ︸

Ê
⋆
c

+ ξÊξ
c + ηÊη

c + ξηÊξη
c + ηζÊηζ

c + ξζÊξζ
c

︸ ︷︷ ︸

Ê
hg
c

(37)

is also carried out with respect to the center of the element. The hourglass strain term

Ê
hg
c represents an excellent basis for the construction of the hourglass stabilization.

However, Ê⋆
c is no longer quadratic in ζ. Thus, the according quadratic term is added:

Ê
⋆
c := Ê

0
c + ζÊζ

c + ζ2
Ê

ζζ
c (38)

4.3 2nd Piola-Kirchhoff stress tensor

In this section, an efficient stress state Ŝ := Ŝ
⋆ + Ŝ

hg is derived for the reduced in-

tegration, which is represented by the second Piola-Kirchhoff stress tensor. Here, Ŝ
⋆

is computed at the integration points placed at ξ = ξ⋆ and must be able to take into

account the highly nonlinear stress distributions in thickness direction. The hourglass

stress part Ŝ
hg has to guarantee that the element is free of hourglass instabilities. Fol-

lowing [27], a Taylor expansion of the stress field is carried out with respect to ξ = ξ⋆.

Ŝ ≈ Ŝ

∣
∣
∣
∣
∣
ξ=ξ⋆

+
∂Ŝ

∂ξ

∣
∣
∣
∣
∣
ξ=ξ⋆

(ξ − 0) +
∂Ŝ

∂η

∣
∣
∣
∣
∣
ξ=ξ⋆

(η − 0) (39)

= Ŝ(Ê⋆) +
∂Ŝ(Ê)

∂Ê

∣
∣
∣
∣
∣
ξ=ξ⋆

︸ ︷︷ ︸

Ĉ
⋆




∂Ê

∂ξ

∣
∣
∣
∣
∣
ξ=ξ⋆

ξ +
∂Ê

∂η

∣
∣
∣
∣
∣
ξ=ξ⋆

η



 (40)

= Ŝ
⋆ + Ĉ

⋆(ξÊξ
c + ηÊη

c + ηζÊηζ
c + ξζÊξζ

c )
︸ ︷︷ ︸

:= Ŝ
hg

(41)

The tangent Ĉ
⋆ is nonlinear in the thickness direction ζ but independent of ξ and η.

In order to enable an analytical integration of the hourglass stabilization terms, Ĉ
⋆

is replaced by the deviatoric part of the linear-elastic material tangent Ĉ
hg, which in
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Voigt notation reads

Ĉ
hg = µhg











4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











(42)

and which only depends on the artificial hourglass shear modulus µhg. In elastic prob-

lems µhg is equal to the elastic shear modulus µ = E/(2(1 + ν)), whereas in elasto-

plasticity it reads as follows:

µhg =
1

2

√

S⋆ dev : S⋆ dev

E⋆ dev : E⋆ dev
(43)

Here, the superscript “dev” indicates the deviatoric part of the considered term. Sum-

ming up over the number of integration points (i = 1, ..., nip) leads to the following

effective hourglass shear modulus

µhg
eff =

nip∑

i=1

µhg
i ωi =

1

2

nip∑

i=1

(√

S⋆ dev : S⋆ dev

E⋆ dev : E⋆ dev

)∣
∣
∣
∣
∣
i

ωi (44)

where the weighting factors ωi are scaled, such that
∑nip

i=1 ωi = 1 holds.

4.4 Discretized weak form

Introducing the virtual form of the Cartesian enhanced Green-Lagrange strain δÊe

together with (41), Eq. (14) reads

ge
2 ≈

∫

Ωe

δÊT
e Ŝ J0 dΩe =

∫

Ωe

δÊ⋆ T
e Ŝ

⋆ J0 dΩe = δWe R⋆
w = 0 (45)

Note that the infinitesimal volume element dVe = J dΩe has been approximated by

means of dVe ≈ J0 dΩe. Thereby, the integral
∫

Ωe δÊ⋆ T
e Ŝ

⋆ J0 dΩe vanishes, because

(32) is only linear in ζ. Further, the virtual forms of (37) and (38) together with (41)

are incorporated into (13), which –on the element level– can be written as

ge
1 − ge

ext ≈
∫

Ωe

δET
c Ŝ J0 dΩe (46)

=

∫

Ωe

δE⋆ T
c Ŝ

⋆ J0 dΩe +

∫

Ωe

δEhg T
c Ŝ

hg J0 dΩe (47)

= δUT
e R

⋆
u + δUT

e R
hg
u (48)
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Again, all terms being linear in the natural coordinates drop out. This leads to the

desired decoupling of the parts corresponding to the integration point and the hour-

glass stabilization. Since the hourglass stress has deviatoric character (see Eqs. (41)

and (42)), the hourglass residual vector R
hg
u simplifies to

R
hg
u =

∫ 1

−1

∫ 1

−1

∫ 1

−1

B
hg dev T
c Ŝ

hg J0 dξ dη dζ

=
8

3
J0

B
ξ dev T
c Ĉ

hg
Ê

ξ dev
c

︸ ︷︷ ︸

:= R
ξ hg
u

+
8

3
J0

B
η dev T
c Ĉ

hg
Ê

η dev
c

︸ ︷︷ ︸

:= R
η hg
u

+
8

9
J0

B
ηζ dev T
c Ĉ

hg
Ê

ηζ dev
c

︸ ︷︷ ︸

:= R
ηζ hg
u

+
8

9
J0

B
ξζ dev T
c Ĉ

hg
Ê

ξζ dev
c

︸ ︷︷ ︸

:= R
ξζ hg
u

(49)

in which the integration over the element domain is performed analytically. Further,

terms being bilinear in ξη drop out, because Ŝ
hg does not include any summand de-

pending on that.

5 Numerical Example

The proposed method was applied to a mechanically fastened joint in a composite

sheet consisting of 8 layers in a symmetric assembly (0◦, 90◦, +45◦,−45◦)s, each of

which was made of unidirectional CFRP (Hexel T300/914). The sheet’s dimensions

were: length 200 mm, height 2 mm, and width 36 mm. It contained two circular

wholes of diameter 6 mm, which were located at a distance of 36 mm from the end of

the sheet, measured from the whole’s center. In each of the wholes, a very stiff bolt

was placed tight-fitting and then moved displacement-driven in longitudinal outward

direction of the sheet, applying 0.01 mm per time step.

Due to symmetry of the system, only one eighth of the sheet was considered in the

computation (see Fig. 3), applying symmetric boundary conditions. In addition, the

elements at the upper surface surrounding the whole were fixed in thickness direction

to simulate a finger-tight washer. In order to incorporate delamination, interface ele-

ments were located between all layers, which were furnished with material properties

of the matrix alone. The latter were assumed to be ten times thinner than the layers.

Whereas the described solid-shell element was used for both layers and interfaces –

leading to a total number of 5800 solid-shell elements with 7164 nodes– the bolt was

discretized by 375 hexahedral solids with 624 (see Fig. 4).

The according material parameters for the carbon fibres –taken from the Torayca

T300 data sheet– and the epoxy matrix –taken from the HexPly 914 product data– are

given in Table 1. From these, the non-zero parameters for the described model can be

calculated, taking into account the fibre volume fraction ϕ1 = 60◦.

Λ = 6300 MPa µ = 1383 MPa Kani 1
1 = 1.15 × 105 MPa β1 = 2 (50)

12



Figure 3: Geometry and mesh

Tensile modulus fibre [GPa] 230

Tensile modulus matrix [GPa] 3.9

Calc. shear modulus matrix [GPa] 1.4

Poisson’s ratio matrix 0.41

Table 1: Material properties

For the interfacial strengths, the values reported in [11] are adopted

Z33 = 76 MPa Z13 = 79 MPa Z23 = 79 MPa (51)

giving the following parameters for the delamination onset criterion (12):

Zσ = 76 MPa Zτ = 79
√

2 MPa (52)

In fact, to enforce the delamination at an earlier stage of the computation, both the

stresses and the interfacial strengths were divided by 10.

The location of delamination initiation is shown in Fig. 5, which corresponds to

the time step, in which the delamination onset condition is met first. As one can see,

delamination occurs at first close to the boundary of the whole in the lower surface of

the model, which is the middle surface of the sheet. The location of delamination is

reasonable in agreement with the results presented in [11]. Furthermore, experimental

13



Figure 4: Detailed view on bolt and whole

data for this problem can be found in [43]. Therein, the cross head displacement

corresponding to delamination onset is approximately given by 1.15 mm, whereas in

the current calculation, the delamination initiates between 1.2 mm and 1.3 mm.

6 Conclusion

For many technical applications of fibre-reinforced composites, predicting the onset of

delamination is essential for appropriately designing the considered structure. For this,

a delamination onset criterion based on stress-strength relations has been suggested

in this paper, which requires an accurate representation of the through-the-thickness

stress distribution. The proposed solid-shell element is particularly suitable to achieve

the required accuracy especially in the thin shell-like applications considered here.

The formulation allows for including woven fabrics with two different families of

fibres, incorporating a fully three-dimensional, anisotropic, micro-mechanically mo-

tivated material model. Concluding, the proposed method is capable of predicting

the initiation of delamination of fibre-reinforced composites in shell-like structures

accounting for the anisotropic material behaviour.

14



Figure 5: Resulting zone of delamination onset
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