
Abstract

The load bearing capacity of engineering structures subjected to varying thermo-

mechanical loading can be determined most conveniently by shakedown analysis.

Admittedly, if kinematical hardening is considered, shakedown analysis is, as yet,

restricted to either one or two independently varying loads. In consequence, the aim

of this paper is to extend existing formulations for arbitrary numbers of loading, which

is inevitable for most technical applications. For this, limited kinematical hardening

was incorporated into MELAN’s shakedown theorem by means of a two-surface model

covering both alternating plasticity and ratcheting, generalized to n-dimensional load-

ing spaces. As a result, the first three-dimensional shakedown domain accounting for

hardening is presented for a flanged pipe subjected to thermo-mechanical loading.

Keywords: shakedown analysis, n-dimensional loading space, limited kinematical

hardening, interior-point algorithm, convex optimization, nonlinear programming.

1 Introduction

Determining the load bearing capacity is essential for the design of engineering struc-

tures, but poses a challenging task in case of varying thermo-mechanical loading be-

yond the elastic limit. In general, if the loading varies with time, the limit state of the

considered elasto-plastic structure is defined by: instantaneous collapse, alternating

plasticity, or incremental collapse –often referred to as ratcheting in the case of cyclic

loading. However, if none of these failure mechanisms occur, the system is designated

“safe” and the corresponding maximum loading factor is denoted by αSD.

Ascertaining αSD by means of the conventional step-by-step methods, where the

loading path is divided into small time steps entailing a full analysis of stresses and

strains in each step, generally leads to cumbersome computations. Moreover, the
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whole loading history needs to be given deterministically, which is not realistic in

many technical applications. Alternatively, direct methods –comprising limit and

shakedown analysis– are appropriate to avoid these problems, see e.g. [1–3], because

they do not require the exact loading history but only its bounding envelope. There-

fore, in this paper, direct methods are applied to determine the shakedown factor.

In particular, the static approach by MELAN [4, 5] is adopted, which gives a lower

bound to the shakedown factor, and thus leads to conservative solutions in principle.

Originally, MELAN’s theorem has been formulated for elastic-perfectly plastic and for

unlimited kinematical hardening continua. Since incorporating only unlimited kine-

matical hardening does not cover incremental collapse but solely alternating plasticity,

see e.g. [6–8], this is inadequate to realistically reflect the behavior of most engineer-

ing structures. Hence, taking into account limited kinematical hardening is important

for obtaining realistic results.

The first explicit formulation for limited kinematical hardening materials was given

by WEICHERT and GROSS-WEEGE [9,10], who introduced a two-surface model, fol-

lowed by STEIN et al. [11, 12]. Later, HEITZER [13] showed that these formulations

can be transferred one to the other.

Since the lower bound theorem is formulated in statical quantities, it is particu-

larly suited for introducing limited kinematical hardening with the two-surface model,

see e.g. [14–16]. On the other hand, it leads to nonlinear convex optimization prob-

lems, which are typically characterized by large numbers of unknowns and constraints

when considering problems of practical relevance. From the different techniques to

solve such problems, the interior-point method exhibits a high potential especially for

large-scale problems, see e.g. [17,18]. Although several powerful interior-point based

solvers exist –such as IPOPT [19, 20], KNITRO [21, 22], and LOQO [23, 24]– these

are designed to solve a preferably wide variety of problems, accepting less efficient

performance compared to problem-tailored codes. The same holds for the program

MOSEK [25, 26] designed for second order conic problems, which gained importance

in the field of limit and shakedown analysis in recent years, see e.g. [27–30].

However, for efficiency reasons, a number of alternative interior-point algorithms

were presented, e.g. [31–40], which especially adapted the solution strategy to the un-

derlying problem. Among these, the algorithm IPDCA was invented for VON MISES-

type materials, which allowed for application to large-scale engineering problems,

see [35, 36]. More recently, predicated on IPDCA, the new interior-point algorithm

IPSA was developed, being distinguished by a particularly problem-oriented solution

strategy [41, 42]. Whereas both IPDCA and the original formulation of IPSA were

restricted to elastic-perfectly plastic materials, the latter was extended to take into

account limited kinematical hardening [43].

Notably, up to now, IPSA is the only algorithm capable of solving shakedown prob-

lems with multi-dimensional loading spaces, see [44], such that arbitrary numbers of

loadings can be considered. As yet, this is only available for elastic-perfectly plastic

materials. In consequence, an extension is presented in this paper, incorporating both

limited kinematical hardening material behavior and n-dimensional loading spaces.
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The paper is organized as follows: The background of lower bound shakedown

analysis for elastic-perfectly plastic materials is summarized in Section 2, already in-

cluding arbitrary numbers of loadings. In Section 3, the limited kinematical hardening

behavior is incorporated using a two-surface model. Section 4 is dedicated to the so-

lution of the extended optimization problem by means of the interior-point method.

Subsequently, a numerical example is investigated in Section 5, leading to the first

representation of a three-dimensional shakedown domain accounting for kinematical

hardening. After a detailed discussion of the results, the paper closes with concluding

remarks and an outlook.

2 Lower bound shakedown analysis for elastic-perfectly

plastic materials

An elastic-perfectly plastic body K with volume V and surface A is considered,

which is subjected to varying: body forces fV (x, t) in V , surface loads fA(x, t)
on Af ⊆ A, and temperature loads T (x, t) in V . In the following, only time- and

temperature-independent material behavior is accounted for, while material damage

and geometrical nonlinearity are omitted. The existence of a convex yield func-

tion f [σ(x, t), σY (x)] and the validity of the normality rule are assumed.

2.1 MELAN’s statical shakedown theorem

The current formulation is based on the statical shakedown theorem by MELAN [4,5],

which provides a lower bound to the shakedown loading factor αSD. For this, the total

stress σ(x, t) –in a point x ∈ V at time t– is decomposed into an elastic reference

stress σE(x, t) and a residual stress ρ(x, t) induced by the evolution of plastic strains

σ(x, t) = σE(x, t) + ρ(x, t) , (1)

where σE(x, t) denotes the stress state, which would occur in a fictitious purely elastic

reference body KE under the same conditions as the original one. Both the elastic

reference stresses and the residual stresses satisfy the equilibrium constraints as well

as the statical boundary conditions (bc).

equilibrium: ∇ · σE = −fV ∇ · ρ = 0 in V (2)

statical bc: n · σE = fA n · ρ = 0 on Af (3)

Then, MELAN’s shakedown theorem can be formulated as follows:

If there exists a time-independent residual stress field ρ̄(x), such that the yield con-

dition is satisfied for any loading path in the considered loading domain at any time t
and in any point x of the structure, then the system will shake down.

f
[

σE(x, t) + ρ̄(x), σY (x)
]

≤ 0, ∀x ∈ V, ∀t (4)
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In the following, the loading domain is examined in order to deal with the time-

dependence of σE(x, t).

2.2 Description of the loading domain

It is assumed, that the loading histories H(x, t) considered here can be described as

superposition of finite numbers NL of different loading sets Pℓ(x, t). Then, scaling

all loads by the load P0(x), load multipliers µℓ(t) can be introduced for any loading

case ℓ reflecting the time-dependence of the loading.

H(x, t) =
NL
∑

ℓ=1

Pℓ(x, t) =
NL
∑

ℓ=1

µℓ(t) P0(x) (5)

As shown by KÖNIG [8], it is sufficient to only consider the convex hull of the

loading history. For this, the bounding values µ+

ℓ and µ−

ℓ of each multiplier µℓ are

introduced. Thereby, the set U of all possible combinations of loading sets can be

defined through merging all loading multipliers to the vector µ = µℓ eℓ.

U =
{

µ ∈ R
NL

∣

∣

∣
µ−

ℓ ≤ µℓ ≤ µ+

ℓ , ∀ℓ ∈ [1, NL]
}

(6)

Consequently, the loading domain Ω is described as set of all possible loading

histories contained within this convex hull U .

Ω =

{

H(x, t)
∣

∣

∣
H(x, t) =

NL
∑

ℓ=1

µℓ(t) P0(x) , ∀µ ∈ U

}

(7)

As a result, the elastic reference stresses are split in analogy to (5).

σE(x, t) =
NL
∑

ℓ=1

µℓ(t) σE
ℓ (x) (8)

2.3 Discretization

Using the finite element method (FEM), the stresses are approximately represented by

their values in the Gaussian points, which will be referred to by the index r ∈ [1, NG],
where NG is the total number of Gaussian points in the system. Then, the fictitious

elastic stresses σE
r,ℓ can be computed for any loading case ℓ by purely elastic analysis.

σE
r (t) =

NL
∑

ℓ=1

µℓ(t) σE
r,ℓ (9)

Since the loading domain Ω, which is spanned by the NL given loads, is polyhedral

with NC = 2NL corners, it is sufficient to examine these corners only to ensure shake-

down for all possible loading paths contained within Ω. Thus, the time-dependence
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of σE
r (t) can be expressed through the stress states σE,j

r in the corners j of the load-

ing domain. This is done by introducing the matrix UNL ∈ RNC×NL with entries Ujℓ

where j ∈ [1, NC] and ℓ ∈ [1, NL]. For details, the reader is referred to [44].

σE,j
r =

NL
∑

ℓ=1

Ujℓσ
E
r,ℓ (10)

From (2) follows that the elastic reference stress field σE is in equilibrium with the

external loading, whereas the residual stress field ρ̄ is self-equilibrated. This can be

expressed using the principle of virtual work
∫

V

δε : ρ̄ dV = 0 , (11)

where δε denotes any virtual strain field which satisfies the kinematical boundary

conditions. Approximating the displacements u by appropriate shape functions and

their nodal values uK , and introducing the differentiation matrix B(x), the strain

field ε can be expressed as ε = B(x) · uK . Then, the principle of virtual work (11)

reads
∫

V

δε : ρ̄ dV = δuK ·

∫

V

B(x) : ρ̄ dV = 0 −→

∫

V

B(x) : ρ̄ dV = 0 (12)

This integration is carried out numerically, accounting for the necessary transition

from the element-level to the system-level. Thereby, (11) is approximated by a system

of linear equations for the residual stresses ρ̄r in the Gaussian points.

∫

V

B(x) : ρ̄ dV =:
NG
∑

r=1

Cr · ρ̄r = 0 (13)

The equilibrium matrices Cr ∈ Rm∗

E
×6 depend only on the geometry of the system

and the applied element type, and take into account the kinematical boundary con-

ditions. Their dimension is m∗

E = 3 NK − NBC, where NK is the total number of

nodes and NBC the number of kinematical boundary conditions.

2.4 Resulting nonlinear optimization problem

Employing (10) and (13) and introducing the loading factor α > 1, the statical shake-

down theorem (4) can be formulated as optimization problem:

(PMelan) αSD = max α
NG
∑

r=1

Cr · ρ̄r = 0 (14a)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :

f
(

α σE,j
r + ρ̄r, σY,r

)

≤ 0 (14b)
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3 Considering limited kinematical hardening

3.1 The two-surface model

In order to account for limited kinematical hardening, the two-surface model proposed

by WEICHERT and GROSS-WEEGE [9] is used. Hence, kinematical hardening is con-

sidered as a translational movement of the yield surface without change of orientation,

form or size. This movement is described in stress space by the six-dimensional vector

of back-stresses π, which represents the translation of the yield surface’s center, see

Fig. 1. The limitation of hardening is captured by introducing a second surfaces cor-

responding to the ultimate stress σH , which bounds the movement of the yield surface.

actual yield surface

initial yield surface
bounding surface

σij

π

σ

υ

fH(σ, σH) = 0
f 0

Y (υ, σY ) = 0

fY (υ, σY ) = 0

Figure 1: Kinematic hardening: Moving yield surface in stress space

Thereby, the total stresses are decomposed into the back-stresses π and the reduced

stresses υ, which are responsible for the occurrence of plastic strains.

σ(x, t) = π(x, t) + υ(x, t) (15)

As before, the total stresses are divided as follows:

σj
r = α σE,j

r + ρ̄r (16)

The reduced stresses υj
r can be expressed analogously, keeping in mind that the

back-stresses are time-independent, and thus independent of the considered corner j
of the loading domain, because the bounding surface is fixed in stress space.

υj
r = σj

r − π̄r = α σE,j
r + ρ̄r − π̄r (17)
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Thereby, limited kinematical hardening is incorporated into the optimization problem:

(PH
Melan) αSD = max α

NG
∑

r=1

Cr · ρ̄r = 0 (18a)

∀j ∈ [1, NC], ∀r ∈ [1, NG] :

fY

(

α σE,j
r + ρ̄r − π̄r, σY,r

)

≤ 0 (18b)

fH

(

α σE,j
r + ρ̄r, σH,r

)

≤ 0 (18c)

3.2 Tailoring to von Mises criterion

Both the yield surface fY (υ, σY ) as well as the bounding surface fH(σ, σH) are de-

scribed by the VON MISES criterion, which can be written as follows, using δ and σ
as placeholders.

f (δ, σ) = (δ1 − δ2)
2+(δ2 − δ3)

2+(δ3 − δ1)
2+6

[

(δ4)
2 + (δ5)

2 + (δ6)
2
]

−2 σ2 (19)

This criterion is reformulated, as proposed by AKOA et al. [36], where L ∈ R5×5

and T̄ ∈ R5×6 are constant transformation matrices.

f (d, σ) = ‖d‖2

2
− 2 σ2 where: d = LT · T̄−1 · δ (20)

It should be noticed that this mathematical transformation from the six-dimensional

vector δ to the five-dimensional one d is also justified from physical point of view: the

extracted component v represents the hydrostatic pressure, and thus has no influence

on the VON MISES criterion. Accordingly, the yield and the bounding condition are

achieved by substituting σj
r and υj

r for the placeholder δ, respectively.

f
(

uj
r, σH

)

=
∥

∥uj
r

∥

∥

2

2
− 2 σ2

H where: uj
r = LT · T̄−1 · σj

r (21)

f
(

νj
r , σY

)

=
∥

∥νj
r

∥

∥

2

2
− 2 σ2

Y where: νj
r = LT · T̄−1 · υj

r (22)

Likewise, the condition for the residual stresses (13) has to be transformed, which

requires to express it in terms of σj
r and σE,j

r :

NG
∑

r=1

Cr · ρ̄r =
NG
∑

r=1

Cr ·
(

σj
r − ασE,j

r

)

= 0 (23)

Thereby, the information gets lost that the residual stresses are time-independent,

implicating that ρ̄ does not depend on the considered corner j of the loading domain.

ρ̄r = σj
r − ασE,j

r = const(j) (24)

Hence, this information has to be reintroduced to the problem as an additional

constraint. Since (24) holds for all j ∈ [1, NC], it can be used to link the stresses of
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different corners of the loading domain with each other. In particular, considering the

corners j and j + 1, the following relation can be derived:

σj+1

r − ασE,j+1

r = ρ̄r = σj
r − ασE,j

r (25a)

−→ σj+1

r = σj
r − α

(

σE,j
r − σE,j+1

r

)

(25b)

Recalling (21), this leads to the following additional constraint for uj
r:

uj+1

r = uj
r − α γj

r where: γj
r = LT · T̄−1 ·

(

σE,j
r − σE,j+1

r

)

(26)

In the same manner, an additional constraint for the variables νj
r is formulated,

representing the fact that the back-stresses π̄r are time-independent.

νj+1

r = νj
r − α γj

r (27)

In summary, the equality constraints (18a) –forcing the residual stresses to be self-

equilibrated– are transformed to (23) together with the additional constraints

uj+1

r = uj
r − α γj

r (28a)

νj+1

r = νj
r − α γj

r , (28b)

while the inequality constraints (18b) and (18c) –representing the yield and the bound-

ing surface– are expressed by

f
(

uj
r, σH

)

=
∥

∥uj
r

∥

∥

2

2
− 2 σ2

H,r ≤ 0 (28c)

f
(

νj
r , σY

)

=
∥

∥νj
r

∥

∥

2

2
− 2 σ2

Y,r ≤ 0 . (28d)

4 Solving the problem by the interior-point method

For the purpose of a clear presentation, the problem is rewritten more concisely:

(PH
IP ) min f(x) = −α

AH · x = 0 (29a)

cH(x) = 2 σ2

H,r −
∥

∥uj
r

∥

∥

2

2
≥ 0 (29b)

cY (x) = 2 σ2

Y,r −
∥

∥νj
r

∥

∥

2

2
≥ 0 (29c)

x ∈ R
n , (29d)

Here, the variables of the problem are merged to the solution vector

x =
[

u1

1,u
1

2, . . . ,u
j
r, . . . ,u

NC
NG,ν1

1 ,ν
1

2 , . . . ,ν
j
r , . . . ,ν

NC
NG ,v, α

]T
∈ R

n (30)

of dimension n. This problem (PH
IP ) consists of mE equality constraints, represented

by the affine linear system of equations (29a), and 2 mI nonlinear concave inequality
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constraints (29b) and (29c), where

n = 10 NC · NG + NG + 1 (31)

mE = m∗

E + 10NG · (NC − 1) (32)

mI = NC · NG . (33)

The inequality constraints are converted into equality constraints by introducing

slack variables wH ∈ RmI and wY ∈ RmI . Moreover, split variables y ∈ Rn

and z ∈ Rn are used to avoid numerical instabilities due to the unboundedness of

the solution vector (29d). Finally –as a key idea of the interior-point method– the ob-

jective function is perturbed by logarithmic barrier terms, which penalize directions

leading outside of the feasible region. Thereby, the barrier parameter µ is introduced,

which is a sequence tending to zero during the iteration.

fµ(x,y,z,wH ,wY ) = f(x)

− µ

[

n
∑

i=1

log(yi) +
n

∑

i=1

log(zi) +

mI
∑

j=1

log(wH,j) +

mI
∑

j=1

log(wY,j)

]

(34)

The resulting optimization problem can be expressed as follows:

(PH
µ ) min fµ(x,y,z,wH ,wY )

AH · x = 0 (35a)

cH(x) − wH = 0 (35b)

cY (x) − wY = 0 (35c)

x − y + z = 0 (35d)

wH > 0, wY > 0, y > 0, z > 0 (35e)

As already mentioned, this optimization problem is convex and regular. For such

problems, the Karush-Kuhn-Tucker condition is both necessary and sufficient, which

states that the solution is optimal if the Lagrangian of the problem possesses a saddle

point. Considering (PH
µ ), the Lagrangian LH is expressed by

LH = fµ(x,y,z,wH ,wY ) − λH · (cH(x) − wH) − λY · (cY (x) − wY )

− λE · (AH · x) − s · (x − y + z) , (36)

where λE ∈ RmE , λH ∈ R
mI

+ , λY ∈ R
mI

+ and s ∈ Rn
+ are appropriate Lagrange

multipliers. Then, the saddle point condition can be evaluated as

∇ΠLH(Π) = 0 (37)

Here, Π = [x,y,z,wH ,wY ,λE,λH ,λY , s]T denotes the vector of all variables in-

cluded in this problem.
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Equation (37) constitutes a system of nonlinear equations, which is solved approx-

imately by use of the Newton’s method. The variables Πk+1 of the subsequent itera-

tion step k + 1 are computed from the variables Πk of the previous one k and the step

values ∆Πk.

Πk+1 = Πk + Υk ∆Πk , (38)

Noteworthy, the diagonal matrix Υk of damping factors is introduced to guarantee

convergence of the iterative procedure. In consequence, the step values ∆Πk are

determined from the following linearized system of equations.

J(Πk) · ∆Πk = −∇ΠLH(Πk) (39)

where: J(Πk) = ∇ΠLH(Π) ∇Π

∣

∣

∣

∣

∣

Π=Πk

In each iteration step, the Jacobian J(Πk) is build and the linearized system of

equations (39) is solved for the step values ∆Πk. Then, an inner loop is applied to

ensure that this solution is sufficiently accurate for the original nonlinear system. In

case of negative components in the slack variables, the split variables, or the Lagrange

multipliers of the inequality constraints, the computed step is damped to satisfy the

non-negativity conditions. Notably, further damping may be necessary, which is per-

formed by means of a linesearch procedure using the ℓ2-merit function. Once the

damped step values are computed, the new variables can be easily determined from

(38). Subsequently, the break condition is checked based on appropriate convergence

criteria. If the solution is not yet converged, the barrier parameter µ is decreased and

the next iteration step is entered. For further descriptions of the numerical procedure,

the reader is referred to [41].

5 Numerical example

The proposed method was applied to a flanged pipe with three different outer radii, see

Fig. 2(a), already considered by MOUHTAMID [45] and WEICHERT et al. [46]. Both

the dimensions as well as the material data were adopted from [45], see Tab. 1 and

Tab. 2. The FEM-analysis was carried out with the software package ANSYS using the

isoparametric hexahedral solid element solid45. Taking advantage of the system’s ro-

tational symmetry –as shown in Fig. 2(b)– the applied mesh consisted of 265 elements

and 678 nodes, where one element across the thickness was used.

5.1 Two-dimensional loading space

To validate the method, the system was first investigated in a two-dimensional loading

space. In particular, the pipe was subjected to an internal pressure p and an axial

force Q, which varied independently in the ranges p ∈ [0; pmax] and Q ∈ [0; Qmax],
respectively.
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Q
Q

p

(a) System and loading (b)

Model

(c) Equivalent elastic

stresses due to pressure

(d) Equivalent elastic

stresses due to axial force

Figure 2: System, model and equivalent elastic stresses for the flanged pipe

Length L 386.9

Inner radius Ri 60.0

Outer radius Ra,1 68.1

Outer radius Ra,2 77.8

Outer radius Ra,3 90.5

Table 1: Dimensions in mm

Young’s modulus [MPa] 2.0 × 105

Yield stress [MPa] 200

Poisson’s ratio 0.3

Density [kg/m3] 7.9 × 103

Thermal conductivity [W/(m·K)] 15

Specific heat capacity [J/(kg·K)] 500

Coefficient of thermal expansion [1/K] 1.6 × 10−5

Table 2: Thermal and mechanical characteristics

In order to compute the elastic stresses presented in Fig. 2(c) and Fig. 2(d), the

arbitrary values p = 10 MPa and Q = 113.097 kN were applied, respectively.

As a result of the shakedown analysis, Fig. 3 presents: the elastic domain and

twice the elastic domain (dotted lines); the shakedown domains without considera-

tion of hardening for the yield stress σY = 200 MPa (solid line), and for multiples of

the yield stress σ∗

Y,1 = 1.25 σY and σ∗

Y,2 = 1.5 σY (dash-dot lines); the shakedown do-

mains including hardening with different values of ultimate stresses σH,1 = 1.25 σY

and σH,2 = 1.5 σY (solid lines); the shakedown domain with unlimited kinematical

hardening (solid line). Both axes are scaled to the according value p0 and Q0, respec-

tively, for perfectly plastic material behavior.

In all cases –both the perfectly plastic and the hardening one– the two mechanisms

of alternating plasticity and incremental collapse can be clearly distinguished:

In case of predominating axial force, all shakedown curves coincide with the one for

unlimited hardening, indicating that alternating plasticity is decisive here. Hence, no

influence of hardening can be observed.
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Figure 3: Results of shakedown analysis of the flanged pipe

By contrast, failure is due to incremental collapse in the regime of predominating

internal pressure, where the limited kinematical hardening leads to an increase of the

according shakedown domains in direct proportion with the ratio σH/σY . Thus, the

hardening curves (solid lines) coincide with the corresponding none-hardening ones

with premultiplied yield stress (dash-dot lines) in this range.

In all cases, the two curves pass into each other seamlessly.

It should be noticed, that the unlimited hardening curve does only accord partly

with double the elastic domain. Even so, it is frequently stated in the literature, that

these curves have to accord in the whole domain, which simply is wrong. In fact, they

have to coincide only at the axis intercepts. In the remaining domain, they may –but

do not must– be the same.

For validation, in Fig. 4 the results obtained by the new method are compared

to those reported in [45], which have been computed on the basis of the augmented

Lagrangian method using the program LANCELOT [47]. In general, matching of the

results is satisfying, especially for limited kinematical hardening with σH = 1.5 σY .

However, slight differences exist resulting from different elastic solutions. These can

be explained by the use of different meshes. In particular, the maximum equiva-

lent stress under axial force is 106.465 MPa in [45], whereas the current calculation

yields 100.143 MPa.
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Figure 4: Comparison with results from MOUHTAMID [45]

5.2 Three-dimensional loading space

To illustrate the influence of hardening in a three-dimensional loading space, a tem-

perature load ∆T ∈ [0; ∆Tmax] was applied additionally. The according FEM-analysis

was carried out in two steps: (1) using the hexahedral thermal element solid70, the

body temperature distribution was computed resulting from prescribed temperature

bounding conditions of Ti = 100 K and To = 20 K at the inner and the outer surface

of the pipe, respectively, see Fig. 5(a); (2) based on the body temperature distribu-

tion, nodal temperature loadings were defined for the structural analysis with element

solid45, leading to the equivalent elastic stress distribution shown in Fig. 5(b).

Noteworthy, in the whole calculation, all material parameters were assumed to be

temperature-independent. Furthermore, only steady-state processes were considered.

Applying the proposed algorithm, the three-dimensional shakedown domain was

computed for elastic-perfectly plastic material, see Fig. 6. Further, the influence of

limited kinematical hardening was investigated by calculations with different ultimate

stresses: σH = 1.1 σY (Fig. 7 and blue dash-dot line), σH = 1.25 σY (Fig. 8 and blue

dashed line), and σH = 1.5 σY (Fig. 9 and black dash-dot line). Subsequently, the

domain was determined for unlimited hardening (Fig. 10 and black solid line).
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Figure 7: Three-dimensional shakedown domain with hardening σH = 1.1 σY
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Figure 8: Three-dimensional shakedown domain with hardening σH = 1.25 σY
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Figure 9: Three-dimensional shakedown domain with hardening σH = 1.5 σY
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Figure 10: Three-dimensional shakedown domain with unlimited hardening
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As in the two-dimensional case, the two mechanisms alternating plasticity and in-

cremental collapse can be clearly distinguished. To highlight this, all computed points

leading to alternating plasticity are marked by red circles.

In the regime of predominating temperature, all shakedown domains coincide,

which implicates alternating plasticity to be decisive. Here, hardening does not af-

fect the solution. By contrast, an influence of hardening can be observed in the

regime of predominating axial force. While incremental collapse leads to failure in

the elastic-perfectly plastic case as well as when considering limited hardening with

σH = 1.1 σY , further increasing the ultimate stress has no impact, because alternating

plasticity occurs starting from σH = 1.2 σY . Finally, when the internal pressure is

superior, hardening enlarges the shakedown domain in direct proportion with the ratio

σH/σY in all calculations with limited hardening. Only for unlimited hardening, its

effect its restricted and alternating plasticity appears.

Closing, the characteristic numerical details are reported in Tab. 3. As one can see,

the number of iterations is not as much affected as the running time. Moreover, in the

considered example, the number of loadings has a larger impact than the hardening,

even though the numbers of variables and constraints are comparable.

2 independent loads 3 independent loads

Perfectly plastic Hardening Perfectly plastic Hardening

n 44 521 86 921 86 921 171 721

mE 33 834 65 634 76 234 150 434

mI 8 480 16 960 16 960 33 920

∅ Iterations 400 481 2 318 3 017

∅ CPU-time [s] ∗ 48 57 295 837

∗ Dell Precision T7500 with Xeon E5620-processor with 2400 MHz and 12 GB RAM

Table 3: Influence of hardening on numerical details

6 Conclusions

Evaluating the limit states of elasto-plastic engineering structures is essential for their

design. To realistically predict the according shakedown loading domains, incorpo-

rating limited kinematical hardening is inevitable. On the other hand, complex load-

ing situations arise in most technical applications, which cannot be reflected by only

two-dimensional loading spaces. Thus, shakedown analysis can only be applied expe-

diently to realistic engineering problems of practical relevance, if both limited kine-

matical hardening and complex loadings can be dealt with at the same time. Since, as

yet, no tools with this capability have been available, the method has been restricted

to special cases only, confining its operational area to academic problems mainly. The
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new approach presented in this paper eradicates these restrictions and thus exhibits the

potential to overcome the gap between academic research and practical application.
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