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Abstract 
 
The dynamic stiffness method is used to investigate the free vibration behaviour of a 
functionally graded beam (FGB). The material properties of the FGB are assumed to 
vary in the thickness direction based on a power-law. The kinetic and potential 
energies of the beam are formulated using the Timoshenko beam theory. The 
governing differential equations of motion in free vibration for the FGB are derived 
using Hamilton’s principle. The analytical expressions for axial force, shear force 
and bending moments at any cross-section of the FGB are obtained as a by-product 
of the Hamiltonian formulation. The differential equations are solved in closed 
analytical form for harmonic oscillation. The dynamic stiffness matrix of the FGB is 
then formulated by relating the amplitudes of forces and displacements at the ends of 
the beam. The Wittrick-Williams algorithm is used as solution technique to yield 
natural frequencies and mode shapes of the FGB. A parametric study is carried out 
by varying significant beam parameters and boundary conditions. The investigation 
required a substantial amount of validation exercise to confirm the predictable 
accuracy of the dynamic stiffness method. The results are discussed and some 
concluding remarks are made.  
 
Keywords: free vibration, functionally graded beams, dynamic stiffness method, 
Wittrick-Williams algorithm, Timoshenko beam theory. 
 
 
 
1 Introduction 
 
Functionally graded materials (FGM), which have continuous transition of material 
properties as a function of position along certain directions, are regarded most 
promising for future application of advanced composites against the backdrop of 
traditional isotropic and homogeneous materials. The gradual variation of material 
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properties can be tailored to suit different purposes in engineering which is a great 
advantage of using FGM. Design of aircraft and space vehicles structures, electronic 
and biomedical installations are some examples where FGM can be exploited to 
advantage. It is thus important to understand the static and dynamic behaviour of 
structural components made from FGM. In this way, the analysis of FGM structures 
has attracted many researchers in recent years. Of particular interest, are beam 
structures which are widely used in aeronautical, civil, mechanical and other 
installations as principal load carrying members. The dynamic behaviour of the 
functionally graded beams (FGB) in particular has become an area of intense 
research activity and the literature is steadfastly growing [1-11]. Some researchers 
have used traditional finite element and other approximate methods. Side by side to 
such developments, Bernoulli-Euler, Timoshenko, and/or higher order shear 
deformation beam theories leading to the development of frequency equations have 
also been reported. Apparently, there has not been any attempt to solve the problem 
using the dynamic stiffness method (DSM). The purpose of this research is to fill 
this gap in the literature by applying the DSM to investigate the free vibration 
behaviour of FGB. The proposed DSM uses exact member theory based on 
frequency dependent shape functions obtained from the exact solution of the 
governing differential equations of motion of the FGB in its free vibration. The 
method provides exact results for all natural frequencies and mode shapes of the 
FGB without making any approximation en route. The DSM is recognizably more 
accurate than the traditional finite element and other approximate methods.  
 
 

The investigation is carried out in following steps. First the material properties of 
the FGB are chosen to vary through the thickness of the beam according to a power 
law. The kinetic and potential energies of the FGB are then formulated by using the 
Timoshenko beam theory which accounts for the effects of shear deformation and 
rotary inertia. Next, the governing differential equations of motion in free vibration 
are derived using Hamilton’s principle and making use of symbolic computation 
[12]. The expressions for axial force, shear force and bending moment at any cross-
section of the FGB are obtained as a by-product of the Hamiltonian formulation. For 
harmonic oscillation, the governing differential equations are solved in closed 
analytical form for axial displacement, bending displacement and bending rotation. 
Expressions for axial force, shear force and bending moment are also obtained in 
explicit analytical form by using the solutions of the governing differential 
equations. The boundary conditions for displacements and forces are imposed in 
algebraic form to derive the dynamic stiffness matrix of the FGB relating the 
amplitudes of the forces to those of the displacements. Once the frequency 
dependent dynamic stiffness matrix of the FGB is developed, the eigenvalue 
problem is solved by applying the well-established algorithm of Wittrick and 
Williams [13] to yield natural frequencies and mode shapes of the FGB. The 
investigation required a substantial amount of validation exercise for which 
computed results from the present theory are compared with the ones available in the 
literature. A parametric study is carried out by varying significant beam parameters, 
such as the length to thickness ratio and the effect of power law distribution. 
Numerical results are discussed and this is followed by some concluding remarks. 
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2 Theory 
 
2.1 Derivation of the governing differential equations 
 
Figure 1 shows a uniform FGB with a rectangular cross section in a right-handed 
Cartesian coordinate system. The beam has a length L, width b, and thickness h. The 
mechanical properties of the beam are Young’s modulus E, Poisson’s ratioν , shear 
modulus G, and mass density ρ . It is assumed that the material properties of the 
beam vary continuously in the thickness direction (Z) according to a power law 
distribution as follows [1]: 
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where tP  and bP  are respectively the material properties at the top and bottom 
surfaces of the FGB, k is a non-negative parameter which dictates the material 
variation profile through the thickness of the beam. Three special cases can be 
observed from the above equation. Clearly 1=k  indicates the linear variation of the 
composition of the top and bottom surfaces of the FGB,  0=k  represents the FGB 
made of full material of the top surface whereas ∞=k  represents the FGB made of 
full material of the bottom surface. 
 
 
 

 
 
 
 
 
 
 

Figure 1: The co-ordinate system and notation for a FGB 

 
Displacements 1v  and 1w  along the Y and Z directions of a point on the cross-

section are given by  
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where v  and w  are the corresponding displacements of the point on the neutral axis 
which may or may not be the middle surface. )(zϕ  in Equation (2) is a function 
which characterises the distribution of the transverse shear stress through the 
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thickness of the beam and can be ascertained using different beam theories. In the 
current investigation, the first-order shear deformation beam theory is used which 
assumes constant shear stress and shear strain in the cross-section and therefore, 

zz =)(ϕ  in Equation (2). Thus the transverse shear strain )(zψ  at any point on the 
neutral axis can be expressed as 
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where φ  is the total bending rotation of the cross-sections at any point on the neutral 
axis which is taken to be an unknown function. Equation (2) with the help of 
Equation (4) becomes 
 
 ),(),(),,(1 tyztyvtzyv φ−=   (5) 
 

The normal and shear strains in the usual notation are: 
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Assuming that the material of FGB obeys Hooke’s law, the stresses in the beam 

can be expressed as: 
 

 yyyy zE εσ )(= , yzyz zG γτ )(=  (7) 

 
The potential and kinetic energies of the FGB using Timoshenko beam theory are 

in the usual notation given by  
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where a prime and an over dot represent differentiation with respect to space y and 
time t respectively.  
 
Property parameters )3,2,1,0( =iAi  and )2,1,0( =iI i  appearing in Equations (8) 
and (9) are defined as: 
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Hamilton’s principle states  
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where t1 and t2 are the time intervals in the dynamic trajectory, and δ  is the usual 
variational operator.  
 

Substituting T and U from Equations (8) and (9) into Equation (11), using the δ 
operator, integrating each term by parts, and then collecting terms yield the 
governing differential equations and natural boundary conditions in free vibration of 
the FGB. The entire procedure has been processed through the application of 
symbolic computation [12].  The following governing differential equations are 
eventually obtained as, 
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As a by-product of the Hamiltonian formulation, the natural boundary conditions 

are also obtained analytically to give the expressions for axial force, shear force and 
bending moment as, 
 

 φ′+′−= 10 AvAF                  (13) 

 φ33 AwAS +′−=  (14) 

 φ′−′= 21 AvAM  (15) 
 

Assuming harmonic oscillation so that 
 

tieyVtyv ω)(),( = , tieyWtyw ω)(),( = , tieyty ωφ )(),( Φ=   (16) 
 
where )(yV , )(yW and )(yΦ  are amplitudes of v , w  and φ , and ω  is angular or 
circular frequency. Introducing the differential operator ξddD /=  and the non-
dimensional length ξ  as: 
 
 Lx /=ξ   (17) 
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The differential equations of motion of Equation (12) can now be transformed 
into following forms: 
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The above three equations can be combined into one sixth order ordinary 

differential equation, which satisfies each of )(ξV , )(ξW and )(ξΦ  as follows, 
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where 
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and  
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Equation (19) can be reduced to a cubic equation and solved analytically to 

obtain the three roots of the cubic and hence the six roots jr )6,,2,1( …=j  of the 
auxiliary equation. Therefore, the solution of the differential equation (19) can be 
obtained as: 
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where jP , jQ  and jR  )6,,2,1( …=j  are three different sets of six constants. The 
constants jP , jQ  and jR  are not all independent and can be related to each other. 
The choice of relating two sets of the six constants in terms of the third one is 
arbitrary. Here, jR  is chosen to be the basic set of constants to which jP  and jQ  are 
related. When Equations (22) are substituted into Equations (18) we obtain, 
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Similarly the expressions for the amplitudes of the axial, shear forces and 

bending moment are also obtained in terms of the constant jR as, 
 

 ξα jr

j
jjj

j
j eRrArA

L
VAA

L
F ∑∑

==

−=′−Φ′=
6

1

6

1
0101 )(1)(1  (24) 

 ξβ jr

j
jjj eRrL

L
A

LW
L
A

S ∑
=

−=Φ+′−=
6

1

33 )()(  (25) 

 ξα jr

j
jj

j
jj eRrArA

L
AVA

L
M ∑∑

==

−=Φ′−′=
6

1

6

1
2121 )(1)(1  (26) 

 
 

2.2 Dynamic stiffness formulation 
 
The dynamic stiffness matrix of the FGB can now be derived by applying boundary 
conditions for displacements and forces at the ends of the beam. Figure 2 shows the 
sign convention for axial force, shear force and bending moment used in this paper 
when applying for the boundary conditions.  
 

           
Figure 2: Sign convention for positive axial force, shear force and bending moment. 
 

 
The boundary conditions for the displacements at the ends of the FGB are,  
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The boundary conditions for the forces at the both ends of the FGB are,  
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The matrix relationship between the displacement vector and the six constants 

jR  can be obtained by substituting Equations (27) into Equations (22) to give 
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or, 

 
 RBδ =  (30) 
 

Similarly the relationship between the force vector and the six constants jR  can 
be obtained by substituting Equations (28) into Equations (24) – (26) to give 

 
 RAP =  (31) 
 
where  
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with T denoting a transpose. The elements of the A matrix in Equation (31) are 
given by,   
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The 6×6 frequency dependent dynamic stiffness matrix can now be derived by 

eliminating the constant vector R from Equations (30) and (31) to give 
 

 δKF =  (34) 
where 
 1−= BAK  (35) 
 
is the required dynamic stiffness matrix.  
 

The dynamic stiffness matrix obtained in Equation (35) is used to compute 
natural frequencies and mode shapes of either an individual FGB or an assembly of 
FGBs with various boundary conditions.  
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2.3 Application of the Wittrick-Williams algorithm 
 
A reliable and accurate method of computing the natural frequencies using the DSM 
is to apply the well-established Wittrick-Williams algorithm [13] which is ideally 
suited to solve transcendental eigenvalue problems such as the one in this paper. The 
algorithm uses the Sturm sequence property of the dynamic stiffness matrix and has 
featured in literally hundreds of papers. It ensures that no natural frequencies of the 
structure being analysed are missed. Clearly, this is not possible in the conventional 
finite element or other approximate methods. For a detailed insight of the algorithm, 
interested readers are referred to the original work of Wittrick and Williams [13]. 
 
 
 
 
3 Numerical results and discussions 
 
Results are obtained for a wide range of the FGB with various boundary conditions. 
In order to make the results universal, the natural frequencies are non-
dimensionalised as follows: 
 

 
b

bi
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where iω  is the ith angular natural frequency, bρ  and bE  are the density and 
Young’s modulus of the bottom surface material.  

 
The theory developed here is now applied to an individual FGB for a number of 

classical boundary conditions. Based on the material property variation shown in 
Equation (1), numerical results were obtained for a range of FGB. The theory is 
sufficiently general and can be used for any constituent materials of the FGB. 
However, the example using aluminium (Al) and alumina (Al2O3) for the bottom 
and top surface materials respectively is illustrated here just for convenience. The 
material properties of the FGB are:  
Al (bottom surface): E = 70 GPa,  ρ = 2700 kg/m3,  ν = 0.23 
Al2O3 (top surface): E = 380 GPa,  ρ = 3800 kg/m3,  ν = 0.23  
 

Although Poisson’s ratio is kept constant, the theory developed can be used 
without this restriction. Numerical results for the natural frequencies and mode 
shapes are obtained for the FGB for three different boundary conditions, namely, 
simply-supported, clamped-clamped and cantilever. In order to check the validity 
and accuracy of the investigation, the results obtained from the analysis are 
compared with published ones. First, the special case of the FGB made of pure Al 
when k = ∞ is investigated. Table 1 shows the non-dimensional fundamental natural 
frequency of the FGB for three different length to thickness ratio L/h for simply-
supported, clamped-clamped and cantilever boundary conditions. As expected, the 
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fundamental natural frequency increases with the increase of the ratio L/h for all 
three boundary conditions. The results for the simply-supported boundary condition 
for which comparative results are available, agree very well with the ones reported 
in Ref [10],  see results in parentheses.  

 
 
 

L/h 
Non-dimensional fundamental natural frequency ( 1λ ) 
Simply-supported Clamped-clamped Cantilever 

10 2.8024  (2.797) 6.0544 1.0070 
30 2.8439  (2.843) 6.4096 1.0144 
100 2.8496  (2.848) 6.4564 1.0153 

 
Table 1: Non-dimensional fundamental natural frequency of a pure Al beam 

 
 
 

The next set of results was obtained to show the effect of the length to thickness 
ratio L/h and the power-law distribution parameter k on the fundamental natural 
frequency of the FGB for various boundary conditions. Tables 2, 3 and 4 show the 
non-dimensional fundamental natural frequencies with respect to power-law 
distribution k and the ratio L/h for the simply-supported, clamped-clamped and 
cantilever boundary conditions, respectively. It can be seen that the fundamental 
natural frequency decreases with the increase of k for all three boundary conditions. 
This is to be expected because the material properties tend towards those of 
aluminium as k increases for which E/ρ is much smaller than alumina. Naturally, the 
highest fundamental natural frequencies are obtained for the case when 0=k  for 
which the FGB is made of full ceramic (Al2O3) whereas the lowest ones are obtained 
for the case ∞=k  when the FGB is made of full metal (Al). For a constant value of 
k, the fundamental natural frequencies increase when the ratio L/h increases as 
expected. It can be seen that there is no significant change on the fundamental 
natural frequency when the ratio L/h assumes higher values, for which Bernoulli-
Euler theory will be adequate.   
 
 
 

L/h 

Non-dimensional fundamental natural frequency ( 1λ ) 
Al2O3 

(k = 0) 

k Al 
(k = ∞)k =0.2 k =0.5 k = 1 k = 5 k = 10 k = 20 

10 5.5071 5.1547 4.8383 4.5789 4.0647 3.7454 3.4211 2.8024 
20 5.5707 5.2144 4.8940 4.6335 4.1244 3.8013 3.4699 2.8372 
30 5.5905 5.2325 4.9109 4.6499 4.1412 3.8169 3.4838 2.8439 
100 5.5996 5.2408 4.9187 4.6575 4.1496 3.8248 3.4907 2.8496 

 
Table 2: Non-dimensional fundamental frequency of a simply-supported FGB 
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L/h 

Non-dimensional fundamental natural frequency ( 1λ ) 
Al2O3 
(k = 0) 

k Al 
(k = ∞)k =0.2 k =0.5 k = 1 k = 5 k = 10 k = 20 

10 11.926 11.177 10.485 9.8894 8.6612 7.9850 7.3225 6.0544 
20 12.476 11.680 10.952 10.346 9.1654 8.4605 7.7396 6.3095 
30 12.604 11.796 11.061 10.452 9.2813 8.5698 7.8354 6.4096 
100 12.687 11.872 11.131 10.520 9.3595 8.6437 7.8998 6.4564 

 
Table 3: Non-dimensional fundamental frequency of a clamped-clamped FGB  

 
 

L/h 

Non-dimensional fundamental natural frequency ( 1λ ) 
Al2O3 

 (k = 0) 
k Al 

(k = ∞) k =0.2 k =0.5 k = 1 k = 5 k = 10 k = 20 
10 1.9783 1.8513 1.7378 1.6455 1.4638 1.3486 1.2311 1.0070 
20 1.9836 1.8615 1.7473 1.6548 1.4740 1.3583 1.2395 1.0112 
30 1.9935 1.8659 1.7514 1.6587 1.4779 1.3618 1.2427 1.0144 
100 1.9936 1.8673 1.7527 1.6600 1.4793 1.3632 1.2438 1.0153 

 
Table 4: Non-dimensional fundamental natural frequency of a cantilever FGB  

 
 

Table 5 shows the first three non-dimensional natural frequencies of a cantilever 
FGB for different power distribution parameter k when the ratio L/h is fixed at 10. It 
can be seen that the non-dimensional natural frequencies decreases with increasing 
k, as expected. The dimensionless natural frequencies of the FGB are larger when 
the beam is made of ceramic Al2O3. The natural frequencies are almost doubled.  
 
 

No. 

Non-dimensional fundamental natural frequency ( iλ ) 
Al2O3 
(k = 0) k =0.2 k =0.5 k = 1 k = 5 k = 10 

Al 
(k = ∞) 

1 1.9783 1.8513 1.7378 1.6455 1.4638 1.3486 1.0070 
2 11.877 11.126 10.440 9.8597 8.6809 8.0017 6.0277 
3 30.849 29.364 27.538 25.667 20.037 18.266 15.688 

 
Table 5: Non-dimensional natural frequencies of a cantilever FGB for L/h=10 

 
 

In order to establish trends, the effect of the L/h ratio on the fundamental natural 
frequency is shown graphically in Figure 3 for a set of k values when the FGB is 
simply-supported at the both ends. It can be seen that the fundamental natural 
frequency changes significantly when 10/ ≤hL . When 10/ >hL , the fundamental 
natural frequency is virtually unaltered.  
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Figure 3: The effect of the ratio L/h on the fundamental natural frequency of a 

simply supported FGB. 
 
To illustrate the effect of k on the fundamental natural frequency, Figure 4 shows 

the fundamental natural frequency of the simply-supported FGB for two different 
values of the L/h ratio. The power exponent k starts from zero when the construction 
of the FGB is made from pure alumina and tends towards aluminium when k 
assumes large values. The fundamental natural frequency is reduced as the value of 
k is increased. The same pattern for other L/h ratio was observed. 

 

 
Figure 4: The effect of k on the fundamental natural frequency of a simply supported 

FGB 
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The final set of results was obtained to demonstrate the mode shapes of the FGB. 
Figure 5 shows the first three normalised mode shapes of the FGB for cantilever end 
conditions for two different L/h ratios when k = 0.5. The first two modes are 
dominated by bending displacements for both L/h = 10 and 20. The third mode is 
essentially an axial mode when L/h=10 whereas by contrast it becomes a bending 
mode when L/h =20. This is very interesting and can be useful in solving frequency 
attenuation problems.  

 

 
(a) The first mode shape 

 

 
 

(b) The 2nd mode shape  
 

 
(c) The 3rd mode shape  

 

Figure 5: Normalised mode shape for a cantilever FGB 

λ1= 1.7278 (L/h=10) 
λ1= 1.7473 (L/h=20) 

λ2= 10.440 (L/h=10) 
λ2= 10.823 (L/h=20) 

λ3= 27.538 (L/h=10) 
λ3= 29.759 (L/h=20) 
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4 Conclusion 
 
Starting from the derivation of the governing differential equations of motion in free 
vibration, the dynamic stiffness matrix of a functionally graded beam using 
Timoshenko beam theory has been developed and applied with particular reference 
to the Wittrick-Williams algorithm to investigate its free vibration characteristics. 
Natural frequencies and mode shapes of some illustrative examples computed using 
the developed theory are discussed and compared with published ones. The 
investigation has revealed that by choosing the material distribution law and the 
length to thickness ratio in an appropriate way, it is possible to alter the natural 
frequencies and mode shapes in a significant way. This is particularly useful to solve 
frequency attenuation problems. The proposed method is computationally efficient 
and numerically accurate. The method gives exact results and can be used as an aid 
to validate finite element and other approximate methods.  
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