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Abstract 
 
In this paper a boundary element method (BEM) is developed for the inelastic 
nonuniform torsional problem of simply or multiply connected prismatic bars of 
arbitrarily shaped doubly symmetric cross section, taking into account the effects of 
geometrical nonlinearity and secondary torsional moment deformation. The bar is 
subjected to arbitrarily distributed or concentrated axial and torsional loading along 
its length, while its edges are subjected to the most general axial and torsional 
boundary conditions. Inelastic redistribution is modelled through a distributed 
plasticity model while the transverse displacement components are expressed so as 
to be valid for large twisting rotations. A torsional shear correction factor 
(determined through an energy approach) is employed to model secondary torsional 
moment deformation effects. A modified Powell hybrid algorithm is adopted within 
an incremental formulation to resolve the elastic and plastic parts of stress resultants. 
Three boundary value problems are formulated and solved employing the boundary 
element method. 
 
Keywords: nonuniform torsion, inelastic torsion, nonlinear torsion, Wagner strain, 
warping, secondary torsional moment deformation effect, torsional shear correction 
factor, warping shear stresses, distributed plasticity, boundary element method, bar. 
 
1  Introduction 
 
In engineering practice we often come across the analysis of members of structures 
subjected to twisting moments. Curved bridges, ribbed plates subjected to eccentric 
loading or columns laid out irregularly in the interior of a plate due to functional 
requirements are most common examples. Analyses of these structures based on 
elastic constitutive equations are most likely to lead to extremely conservative 
designs not only due to significant difference between first yield in a cross section 
and full plasticity but also due to the unaccounted for yet significant reserves of 
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strength that are enabled only after inelastic redistribution along members takes 
place. Moreover, inelastic deformations are often associated with significant 
material stiffness degradation, usually resulting in geometrically nonlinear effects in 
structures made of ductile materials. These effects also occur in frequently employed 
members of low torsional stiffness. Thus, both material and geometrical 
nonlinearities are important for investigating the ultimate strength of a bar that 
resists torsional loading, while distributed plasticity models are acknowledged in the 
literature [1] to capture more rigorously material nonlinearities than cross sectional 
stress resultant approaches or lumped plasticity idealizations. 

When an elastic bar is subjected to uniform torque arising from two concentrated 
torsional moments at its ends while the warping of the cross section is not restrained, 
the angle of twist per unit length remains constant along the bar. Under these 
conditions, the bar is leaded to uniform torsion and the well known primary (St. 
Venant) shear stress distribution arises forming the primary torsional moment stress 
resultant. When arbitrary torsional boundary conditions are applied either at the 
edges or at any other interior point of a bar due to construction requirements, this bar 
under the action of general twisting loading is leaded to nonuniform torsion and 
additional normal and secondary (warping) shear stresses arise [2], forming the 
warping moment and secondary torsional moment stress resultants, respectively. In 
order to include warping shear stresses in the global equilibrium of the bar, that is to 
account for the secondary torsional moment deformation effect (STMDE), an 
additional kinematical component (along with the angle of twist) is generally 
required (see for example [3-4]), increasing the difficulty of the problem at hand. 
The problem becomes more complicated when finite twisting rotations are 
considered (geometrical nonlinearity) due to the fact that axial and torsional 
kinematical components and the associated equilibrium equations are coupled [5]. If 
inelastic effects are considered as well, especially through distributed plasticity 
formulations, the nonlinear inelastic nonuniform torsional problem including 
STMDE requires a much more rigorous analysis. 

As early as 1954, Benscoter analyzed bars of multicell cross sections taking into 
account STMDE. The STMDE at the elastic geometrically linear regime has been 
shown in the literature to be significant, especially on closed shaped section bars. In 
order to satisfy local equilibrium considerations, a torsional shear correction factor is 
required at the global level to correct the secondary torsion constant [4] along with a 
suitable warping shear stress distribution at the local level [3-4]. 

During the past years, the nonlinear inelastic nonuniform torsional analysis of 
bars taking into account [6] or ignoring [7] STMDE has received a good amount of 
attention in the literature. The interested reader may study the literature surveys of 
[8-9]. Most of the relevant contributions are restricted to cross sections of special 
geometry while to the authors’ knowledge none research effort includes the torsional 
shear correction factor in the analysis of STMDE. This has been achieved in the 
recent contribution of Tsipiras and Sapountzakis [9] which is however restricted to 
the geometrically linear regime. Moreover, alternative methodologies that may 
rigorously capture several effects including STMDE without the aforementioned 
factor have also been recently presented (see the relevant references cited in [9]), 
however a multitude of local or global warping functions are required. Finally, it is 
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worth here noting that to the authors’ knowledge the BEM has not yet been 
employed to the nonlinear inelastic nonuniform torsional problem of bars. The 
essential features and novel aspects of the present formulation compared with 
previous ones are summarized as follows. 
i. For the first time in the literature, STMDE is taken into account to the problem 

at hand and its influence is quantified. Evaluation of St. Venant and warping 
shear stresses is based on the solution of boundary value problems formulated by 
exploiting local equilibrium considerations at the elastic geometrically linear 
regime. A torsional shear correction factor, determined through an energy 
approach, is also employed to capture STMDE more rigorously. 

ii. Large twisting rotations are taken into account that is the strain-displacement 
relationships contain higher order displacement terms. 

iii. The cross section is an arbitrarily shaped thin- or thick-walled doubly symmetric 
one. The formulation does not stand on the assumptions of a thin-walled 
structure and therefore the cross section’s rigidities are evaluated “exactly” in a 
numerical sense. 

iv. An incremental - iterative solution strategy is adopted to resolve the elastic and 
plastic parts of the stress resultants. The system of discretized global equilibrium 
equations is expressed without explicitly deriving its incremental form which is 
lengthier due to terms associated with geometrical nonlinearity. Integration of 
the inelastic rate equations is performed at each monitoring station with an 
efficient iterative process. 

v. The developed procedure retains most of the advantages of a BEM solution over 
a pure domain discretization method, although it requires domain discretization 
to the longitudinal problem, exhibiting the following features. 
• Shear locking is alleviated by employing the same order of approximation 

for both the total and the primary part of the angle of twist per unit length. 
• Membrane locking is alleviated by exploiting the boundary integral 

representation of the “average” axial displacement per unit length. 
• Cross sectional discretization is employed exclusively for numerical 

integration of domain integrals. 
• Finite differences and differentiation of shape functions are not required. 

 
 

2  Statement of the problem 
 
2.1 Displacements, strains, stresses 
 
Consider a prismatic bar of length l  (Figure 1) with an arbitrarily shaped doubly 
symmetric constant cross section, occupying the two dimensional multiply 
connected region Ω  of the y,z  plane bounded by the ( )j j 1,2,...,KΓ =  boundary 
curves, which are piecewise smooth, i.e. they may have a finite number of corners. 
In Figure 1a Syz  is the coordinate system through the cross section’s shear center. 
The normal stress-strain relationship for the material is assumed to be elastic-plastic-
strain hardening with initial modulus of elasticity E , shear modulus G, post-yield 
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modulus of elasticity tE  and initial yield stress Y0σ . The bar is subjected to the 
combined action of arbitrarily distributed or concentrated axial load ( )n x  and 

twisting ( )t tm m x=  and warping ( )w wm m x=  moments acting in the x  direction 
(Figure 1b). 
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Figure 1: Prismatic bar of an arbitrarily shaped doubly symmetric cross section 
occupying region Ω  (a) subjected to axial and torsional loading (b). 

 
Under the aforementioned loading, the displacement field of the bar taking into 

account secondary torsional moment deformation effects and large twisting rotations 
is assumed to be given as 
 

 ( ) ( ) ( )( ) ( )P P
m x Su x, y,z u x x y,zθ φ′= +  (1a) 

 ( ) ( ) ( )( )x xv x, y,z z sin x y 1 cos xθ θ= − − −  (1b) 

 ( ) ( ) ( )( )x xw x, y,z y sin x z 1 cos xθ θ= − −  (1c) 
 
where u , v , w  are the axial and transverse bar displacement components with 

respect to the Syz  system of axes;  xθ  is the (total) angle of twist; ( )P
xθ
′  is the 

primary angle of twist per unit length [4] which is in general not equal to the angle 
of twist per unit length xθ ′ ; mu  is an “average” axial displacement of the bar’s cross 

section [10]; P
Sφ  is the primary warping function with respect to the shear center S 

[2]. 
Substituting Equations (1) in the nonlinear strain-displacement relations of the 

Green strain tensor and exploiting the assumptions of moderate displacements 
( ) ( )( ) ( )( )( , , )2u x u x u x u y v x u y u x u z w x u z∂ ∂ << ∂ ∂ ∂ ∂ ∂ ∂ << ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂ << ∂ ∂ + ∂ ∂

[11], the nonvanishing compatible (total) strain resultants are obtained as 
 

 ( ) ( )( )2P P 2 2
xx m x S x

1u y z
2

ε θ φ θ′′′ ′= + + +  (2a) 
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 ( )
secondaryprimary

P P
PS S

xy x x xz
y y
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂′′ ′= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
  (2b) 

 ( )
secondaryprimary

P P
PS S

xz x x xy
z z
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂′′ ′= + + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (2c) 

 
where in Equations (2b,c), the first terms correspond to St. Venant shear strains 
( P

xyγ , P
xzγ ) and the last terms to warping ones ( S

xyγ , S
xzγ ), while the nonlinear term in 

the right hand side of Equation (2a) is often characterized as the “Wagner strain” [7]. 
In order to formulate global equilibrium equations at the elastic geometrically linear 
regime that include torsional shear correction factor (see [4, 9]), the above relations 
are proposed to be corrected as 
 

 ( ) ( )( )2P P 2 2
xx m x S x

1u y z
2

ε θ φ θ′′′ ′= + + +  (3a) 

 ( )
secondaryprimary

P P
PS S

xy x x x xz k
y y
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂′′ ′= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (3b) 

 ( )
secondaryprimary

P P
PS S

xz x x x xy k
z z
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂′′ ′= + + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (3c) 

 
where xk  is the torsional shear correction factor [4, 9]. The elastic geometrically 
linear shear stress distribution arising from Equations (3) yields equilibrium 
equations that are corrected at the global level, however it still violates the 
longitudinal local equilibrium equation [9]. Thus a two dimensional secondary 
warping function ( )S

S y,zφ  [9] is introduced as 

 

 ( ) ( )( )2P P 2 2
xx m x S x

1u y z
2

ε θ φ θ′′′ ′= + + +  (4a) 

 ( )
primary secondary

P S S
PS t S

xy x x x
S

Iz
y C y
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂′′ ′= − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4b) 

 ( )
primary secondary

P S S
PS t S

xz x x x
S

Iy
z C z
φ φγ θ θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂′′ ′= + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 (4c) 
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where S
tI  and SC  are the secondary torsion constant and warping constant, 

respectively [4, 9] (see Equations (13d,f)). Both the primary and the secondary 
warping functions are determined by formulating boundary value problems based on 
the exploitation of the longitudinal local equilibrium equation and the associated 
boundary condition [4, 9]. Formulation arising from Equations (2) corresponds to 
the use of constant strain distribution in the nonlinear Timoshenko beam theory 
without employing a shear correction factor, while the ones arising from Equations 
(3) and (4) correspond to the use of constant and parabolic strain distribution in the 
same theory, respectively. 

Considering strains to be small, employing the second Piola – Kirchhoff stress 
tensor [12], assuming an isotropic and homogeneous material without exhibiting any 
damage during its plastification and neglecting the yyS , zzS , yzS  components, the 
stress rates are defined in terms of the strain ones as 

 

 el
xx xxdS Edε=       el

xy xydS Gdγ=       el
xz xzdS Gdγ=  (5a,b,c) 

 
where ( )d ⋅  denotes infinitesimal incremental quantities over time (rates) and the 
superscript el  denotes the elastic part of the strain components. 

As long as the material remains elastic or elastic unloading occurs, that is 
 

 { } { }TT el el el
xx xy xz xx xy xzd d d d d dε γ γ ε γ γ=  (6) 

 
the stress rates are given with respect to the total strain ones by combining Equations 
(5), (6). If plastic flow occurs then 
 

 { } { } { }T TT el el el pl pl pl
xx xy xz xx xy xz xx xy xzd d d d d d d d dε γ γ ε γ γ ε γ γ= +  (7) 

 
where the superscript pl  denotes the plastic part of the strain components. The 
stress rates are given with respect to the total and plastic strain ones through 
Equations (5), (7) as 
 

pl
xx xx xxdS Ed Edε ε= −    pl

xy xy xydS Gd Gdγ γ= −    pl
xz xz xzdS Gd Gdγ γ= −  (8a,b,c) 

 
A Von Mises yield criterion, an associated flow rule and an isotropic hardening rule 
for the material are considered [12], permitting the determination of the plastic strain 
components. The yield condition is described with the expression 
 

 ( ) ( )2 2 2 pl
xx xy xz Y eqf S 3 S S 0σ ε= + + − =  (9) 

 

where Yσ  is the yield stress of the material and pl
eqε  is the equivalent plastic strain, 

the rate of which is defined in [12]. 
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2.2 Equations of global equilibrium 
 
To establish global equilibrium equations, the principle of virtual work under a Total 
Lagrangian formulation neglecting body forces is employed 
 
 ( ) ( )xx xx xy xy xz xz x y z

V F
S S S dV t u t v t w dFδε δγ δγ δ δ δ+ + = + +∫ ∫  (10) 

 
where ( )δ ⋅  denotes virtual quantities, V , F  are the volume and the surface of the 
bar, respectively, at the initial configuration and xt , yt , zt  are the components of the 
traction vector with respect to the undeformed surface of the bar. In this framework, 
the stress resultants are naturally defined as 
 
 xxSN S d

Ω
Ω= ∫        ( )N 2 2

t xxSM S y z d
Ω

Ω= +∫  (11a,b) 

 ( )P
w xx SSM S d

Ω
φ Ω= ∫     d

P P
P S S
t xy xzSM S z S y

y zΩ

φ φ Ω
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (11c,d) 

 d
S S S

S t S S
t xy xz

S

ISM S S
C y zΩ

φ φ
Ω

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫  (11e) 

 
where SN , wSM , P

tSM  and S
tSM  correspond to axial stress resultant, warping 

moment, primary and secondary twisting moments, respectively, while N
tSM  is a 

higher order stress resultant. It is worth here noting that these stress resultants refer 
to the directions of the infinitesimal elements of the cross section at its deformed 
configuration, since they have been defined with respect to the second Piola-
Kirchhoff stress tensor [12]. Employing Equations (4) and the integrated version of 
Equations (8), the above stress resultants are expressed as 
 

 ( )2 pl
m P x

1SN EAu EI SN
2

θ′ ′= + +  (12a) 

 ( )2N N pl
t P m PP x t

1SM EI u EI SM
2

θ′ ′= + +  (12b) 

 ( )P pl
w S x wSM EC SMθ ′′= +       P P P pl

t t x tSM GI SMθ ′= +  (12c,d) 

 ( )S S P S pl
t t x x tSM GI SMθ θ

⎛ ⎞′ ′= − − +⎜ ⎟
⎝ ⎠

 (12e) 

 
where A , PI , PPI , SC  P

tI , S
tI  are the area, polar moment of inertia, fourth 

moment of inertia, warping constant, primary (St. Venant) and secondary torsion 
constants of the cross section, respectively, given as [9-10] 
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 dA
Ω

Ω= ∫     ( )2 2 dPI y z
Ω

Ω= +∫     ( )22 2
PPI y z d

Ω
Ω= +∫  (13a,b,c) 

 ( )2P
S SC d

Ω
φ Ω= ∫      

P P
P 2 2 S S
tI y z y z d

z yΩ

φ φ
Ω

⎛ ⎞∂ ∂
= + + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫  (13d,e) 

 
2 2P P

S S S
t xI k d

y zΩ

φ φ
Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (13f) 

 
while plSN , N pl

tSM , pl
wSM , P pl

tSM , S pl
tSM  are the plastic parts of the 

corresponding stress resultants defined as 
 
 pl pl

xxSN E d
Ω
ε Ω= − ∫    ( )N pl pl 2 2

t xxSM E y z d
Ω
ε Ω= − +∫  (14a,b) 

 ( )pl pl P
w xx SSM E d

Ω
ε φ Ω= − ∫   (14c) 

 d
P P

P pl pl plS S
t xy xzSM G z y

y zΩ

φ φγ γ Ω
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= − − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (14d) 

 d
S S S

S pl pl plt S S
t xy xz

S

ISM G
C y zΩ

φ φ
γ γ Ω
⎛ ⎞∂ ∂

= − +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫  (14e) 

 
After substituting Equations (11) into Equation (10) and conducting some 

algebraic manipulations, the global equilibrium equations of the bar are obtained as 
 

 ( )dSN n x
dx

= −  (15a) 

 
N P S

Nt t t
x t x t

dSM dSM dSMSM m
dx dx dx

θ θ′ ′′+ + + = −      Sw
t w

dSM SM m
dx

+ =  (15b,c) 

 
along with their corresponding boundary conditions 
 

 1 2 m 3SN uα α α+ =     tot
1 t 2 x 3SMβ β θ β+ =     ( )P

1 w 2 x 3SMβ β θ β′+ =  (16a,b,c) 

 
where tot N P S

t t x t tSM SM SM SMθ ′= + +  is the total twisting moment at the bar ends, 
while iα , iβ   ( i 1,2,3 )=  are functions specified at the bar ends. The boundary 
conditions (16) are the most general ones for the problem at hand, including also the 
elastic support. It is apparent that all types of the conventional boundary conditions 
(clamped, simply supported, free or guided edge) may be derived from Equations 
(16) by specifying appropriately the functions iα , iβ  and iβ  (e.g. for a clamped 
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edge it is 2 2 2a 1β β= = = , 1 3 1 3 1 3a a 0β β β β= = = = = = ). Moreover, the 
expressions of the externally applied loading ( n , tm , wm ) with respect to the 
components of the traction vector are resolved by virtue of Equation (10) and are 
presented in [10]. 

Employing Equations (12) and a one dimensional independent warping parameter 
xη  which is set equal to the primary angle of twist per unit length, the governing 

differential equations of the bar (Equations (15)) are expressed as 
 

 ( )
pl

m P x x
dSNEAu EI n x

dx
θ θ′′ ′ ′′+ + = −  (17a) 

 
( ) ( )

( )

2P S S
t t x t x PP x x P m x P m x

N pl P pl S pl
N plt t t

x t x t

3G I I GI EI EI u EI u
2

dSM dSM dSMSM m x
dx dx dx

θ η θ θ θ θ

θ θ

′′ ′ ′ ′′ ′ ′′ ′′ ′+ − + + +

′ ′′+ + + + = −
 (17b) 

 ( ) ( )
pl

S S plw
S x t x x t w

dSMEC GI SM m x
dx

η η θ′′ ′− − + + =  (17c) 

 
while Equation (16c) is also modified accordingly. Dropping the plastic quantities of 
the above equations, the boundary value problem of the examined problem under 
elastic conditions is formulated. 
 

 
3  Numerical solution 
 
3.1 Integral representations for the “average” axial displacement 

mu , the angle of twist xθ  and the warping parameter xη  
 
According to the precedent analysis, the nonlinear inelastic nonuniform torsional 
problem of bars taking into account STMDE reduces to establishing the 
displacement components ( )mu x , ( )x xθ , ( )x xη  having continuous derivatives up 
to the second order with respect to x  and satisfying the boundary value problem 
described by the coupled governing differential equations (17) along the bar and the 
boundary conditions (16) at the bar ends x 0,l= . This boundary value problem is 
solved employing the BEM [13], as this is developed in [9] for the solution of a 
system of two coupled second order differential equations, after modifying it as 
follows. The motivation to use this particular technique is justified from the 
intention to retain the advantages of a BEM solution over a domain approach, while 
using simple fundamental solutions and avoiding finite differences to the solution of 
the problem. 

According to this method, let ( ) ( )1 mu x u x= , ( ) ( )2 xu x xθ= , ( ) ( )3 xu x xη=  be 
the sought solution of the problem. The solution of the second order differential 
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equations 2 2
1 md u / dx u′′= , 2 2

2 xd u / dx θ ′′= , 2 2
3 xd u / dx η′′=  are given in integral 

form as [9] 
 

 ( )
l2 *l

* *n n
n n2

0 0

d u du uu u dx u u
dx xdx

ξ
⎡ ⎤∂

= − −⎢ ⎥
∂⎢ ⎥⎣ ⎦

∫     ( n 1,2,3= ) (18a,b,c) 

 
where *u  is the fundamental solution given as ( )*u 1 2 r=  [9], with r x ξ= − , x,ξ  

points of the bar. Since EA , ( )P S
t tG I I+  and SEC  are independent of x , Equations 

(18) can be written as 
 

 ( )
l2l

1 1
1 2 2 1 12

00

d u duEAu EA dx EA u
dxdx

ξ Λ Λ Λ⎡ ⎤= − −⎢ ⎥⎣ ⎦
∫  (19a) 

 

 ( ) ( ) ( ) ( )
l2l

P S P S P S2 2
t t 2 t t 2 t t 2 1 22

00

d u duG I I u G I I dx G I I u
dxdx

ξ Λ Λ Λ⎡ ⎤+ = + − + −⎢ ⎥⎣ ⎦
∫  (19b) 

 

 ( )
l2l

3 3
S 3 S 2 S 2 1 32

00

d u duEC u EC dx EC u
dxdx

ξ Λ Λ Λ⎡ ⎤= − −⎢ ⎥⎣ ⎦
∫  (19c) 

 
where the kernels ( ) ( )j jr x,Λ Λ ξ=  ( j 1,2= ) are given as ( ) ( )sgn1 r 1 2 rΛ = , 

( ) ( )2 r 1 2 rΛ = . Solving Equation (17a) with respect to mEAu′′  and substituting the 

result in Equation (19a), Equation (17b) with respect to ( )P S
t t xG I I θ ′′+  and 

substituting the result in Equation (19b) and Equation (17c) with respect to S xEC η′′  
and substituting the result in Equation (19c), the following integral representations 
are obtained 
 

 ( ) ( )
l2pll

2 2 1
1 P 2 2 1 12

00

du d u dudSNEAu n x EI dx EA u
dx dx dxdx

ξ Λ Λ Λ
⎛ ⎞ ⎡ ⎤= − − − − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
∫  (20a) 

 

 

( ) ( )

( )

               

                

2 2 2l
P S S 3 2 2 1 2
t t 2 t PP P2 2

0

N pl P pl2 2
N plt t1 2 2 2

P t t2 2

S pl
P St 2

2 t t 2 1 2

du du d u du d u3G I I u GI EI EI
dx 2 dx dxdx dx

dSM dSMd u du du d uEI m SM
dx dx dx dxdx dx

dSM dudx G I I u
dx dx

ξ

Λ Λ Λ

⎛ ⎛ ⎞⎜+ = − −⎜ ⎟⎜ ⎝ ⎠⎝

− − − − −

⎞ ⎡− − + −⎟⎟ ⎣⎠

∫

l

0

⎤
⎢ ⎥⎦

 (20b) 
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( )

                   

pll
S S plw2

S 3 t 3 w t 2
0

l
3

S 2 1 3
0

dSMduEC u GI u m SM dx
dx dx

duEC u
dx

ξ Λ

Λ Λ

⎛ ⎞⎛ ⎞= − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤− −⎢ ⎥⎣ ⎦

∫
 (20c) 

 
After carrying out several integrations by parts, Equations (20) yield 
 

 

( ) ( )

     

2l l l
pl2

1 2 P 1 1
0 0 0

l2 l
pl 2 1

P 2 2 1 1
00

du1EAu n x dx EI dx SN dx
2 dx

du du1SN EI EA u
2 dx dx

ξ Λ Λ Λ

Λ Λ Λ

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟− + − −⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

∫ ∫ ∫
 (21a) 

 

( ) ( )

 

   

3l l
P S S 2 1 2
t t 2 t 2 t 3 PP P 1

0 0

l3 l
S N pl2 1 2 2
t 3 PP P 2 t 1

00
l

N pl P p2
t 2 t

0

du du du1G I I u m dx GI u EI EI dx
2 dx dx dx

du du du du1GI u EI EI SM dx
2 dx dx dx dx

duSM SM
dx

ξ Λ Λ

Λ Λ

Λ

⎛ ⎞⎛ ⎞⎜ ⎟+ = − − − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟+ − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

∫

( ) ( )

( )

 

 

   

l ll S pl P pl S pl
t 1 t t 2

00
l

P S 2
t t 2 1 2

0

SM dx SM SM

duG I I u
dx

Λ Λ

Λ Λ

⎡ ⎤+ − +
⎣ ⎦

⎡ ⎤− + −⎢ ⎥⎣ ⎦

∫   

  (21b) 

 
( )

    

l l
S 2

S 3 w 2 t 3 2
0 0

ll llpl pl S pl 3
w 1 w 2 t 2 S 2 1 30 00 0

duEC u m dx GI u dx
dx

duSM dx SM SM dx EC u
dx

ξ Λ Λ

Λ Λ Λ Λ Λ

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎡ ⎤⎡ ⎤+ − − − −⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫

 (21c) 

 
The boundary terms in the above equations are more conveniently assembled as 
 

 
( ) ( )

[ ]                 

2l l l
pl2

1 2 P 1 1
0 0 0

l
2 1 1 0

du1EAu n x dx EI dx SN dx
2 dx

SN EAu

ξ Λ Λ Λ

Λ Λ

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

− −

∫ ∫ ∫
 (22a) 
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( ) ( )

( )

   

   

l
P S
t t 2 t 2

0
3l

S 2 1 2
t 3 PP P 1

0

l lN pl P pl S pl tot P S2
t t t 1 2 t 1 t t 2

00

G I I u m dx

du du du1GI u EI EI dx
2 dx dx dx

duSM SM SM dx SM G I I u
dx

ξ Λ

Λ

Λ Λ Λ

+ = −

⎛ ⎞⎛ ⎞⎜ ⎟− − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎡ ⎤+ + + − − +⎜ ⎟ ⎣ ⎦⎝ ⎠

∫

∫

∫

 (22b) 

 

 
( )

                    

l l
S 2

S 3 w 2 t 3 2
0 0

l l lpl S pl
w 1 t 2 2 w S 1 3 00 0

duEC u m dx GI u dx
dx

SM dx SM dx SM EC u

ξ Λ Λ

Λ Λ Λ Λ

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎡ ⎤+ − − −⎣ ⎦

∫ ∫

∫ ∫
 (22c) 

 
after taking into account the expressions of Equations (12). 

If secondary torsional moment deformation effects are negligible, then 3 2u u′≈ . 
In such cases, shear locking effects could occur [12] if proper care is not undertaken. 
In the present numerical technique, these effects are alleviated by employing the 
same order of approximation for 3u  and 2u′ . In order to achieve explicit appearance 
of 2u′  in Equation (22b), this integral representation is differentiated with respect to 
ξ , yielding 
 

( ) ( ) ( ) ( ) ( ) ( )

( )  

l 3P S S
t t 2 t 1 t 3 PP 2 P 1 2

0
lN pl P pl S pl tot

t 2 t t 1 t 0

1G I I u m dx GI u EI u EI u u
2

SM u SM SM SM

ξ Λ ξ ξ ξ ξ

ξ Λ

′ ′ ′ ′⎡ ⎤+ = + − −⎣ ⎦

⎡ ⎤′− − − + ⎣ ⎦

∫
 (23) 

 
Moreover, observing Equations (4) it is deduced that 1u′ , 3u′  must also be computed 
in order to resolve the strain components (as well as the plastic parts of stress 
resultants), thus the integral representations (22a,c) are differentiated with respect to 
ξ , yielding 
 

 ( ) ( ) ( ) ( ) [ ]
l 2 lpl

1 1 P 2 1 0
0

1EAu n x dx EI u SN SN
2

ξ Λ ξ ξ Λ′ ′⎡ ⎤= − − +⎣ ⎦∫  (24a) 

 

 
( ) ( )

                     

l l
S pl2

S 3 w 1 t 3 1 w
0 0
l lS pl

t 1 1 w 00

duEC u m dx GI u dx SM
dx

SM dx SM

ξ Λ Λ ξ

Λ Λ

⎛ ⎞′ = − − − −⎜ ⎟
⎝ ⎠

⎡ ⎤+ + ⎣ ⎦

∫ ∫

∫
 (24b) 
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In order to alleviate potential membrane locking effects [12], the integral 
representation (22b) is reformulated exploiting Equation (24a) as  
 

( ) ( )

( ) ( ) ( ) ( ) ( )( )     

                                

3l l
P S S 2
t t 2 t 2 t 3 n 1

0 0

l l l
P 2 P 2

1 1 1
0 0 0

N pl pl P pl SP 2
t t t

du1G I I u m dx GI u EI dx
2 dx

I du I dun t t ,x dt x, dx SN 0 SN l dx
A dx 2A dx

I duSM SN SM SM
A dx

ξ Λ Λ

Λ Λ ξ Λ

⎛ ⎞⎛ ⎞⎜ ⎟+ = − − − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞

+ + +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫ ∫

( )                                

l
pl

1
0

ltot P S
2 t 1 t t 2

0

dx

SM G I I u

Λ

Λ Λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤− − +
⎣ ⎦

∫

 (25) 

 
where nI  is a geometric constant defined as ( )2n PP PI I I A= − . 

Noting that the plastic parts of the stress resultants depend on 1u′ , 2u′ , 3u , 3u′ , it 
is deduced that Equations (22c), (23-24) have been brought into a convenient form 
to establish a numerical solution of the problem at hand. Thus, the interval ( )0,l  is 
divided into L  elements, on each of which 3u , 2u′  and the plastic parts of the stress 
resultants (Equations (14)) are assumed to vary according to a certain law (constant, 
linear, parabolic etc). The linear element assumption is employed here (Figure 2) as 
the numerical implementation is simple and the obtained results very good. This 
technique avoids differentiation of shape functions and does not require any finite 
differences. Employing a collocation technique, a set of 4L 4+  algebraic equations 
is obtained with respect to 4L 10+  unknowns, namely the values of ( )1 iu′ , ( )2 iu′ , 

( )3 iu , ( )3 iu′  ( i 2,3,...,L= ) at the L 1−  internal nodal points and the boundary 

values of ( )1 ju′ , ( )2 ju′ , ( )3 ju , ( )3 ju′ , ( ) jSN , ( )tot
t j

SM , ( )w jSM  ( j 1,L 1= + ) at 

the bar ends 1 0ξ = , L 1 lξ + =  (Figure 2)). Four additional algebraic equations are 
obtained by applying the integral representations (22a), (25) at the bar ends 0,lξ =  
along with four additional unknowns, namely the boundary values of ( )1 ju , ( )2 ju  

( j 1,L 1= + ). These 4L 8+  equations along with the six boundary conditions 
(Equations (16)) yield a system of 4L 14+  simultaneous nonlinear algebraic 
equations 
 
 { }( ) { } { } { }( ){ }ext plK d d b b d⎡ ⎤ = +⎣ ⎦  (26) 

 
where [ ]K  is a generalized elastic (geometrically) nonlinear stiffness matrix, { }d  is 
a generalized unknown vector given as 
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{ } ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) }

 

              

              

              

T
1 1 1 2 2 22 3 L 2 3 L

3 3 3 3 3 32 3 L 2 3 L

1 1 1 1 2 2 2 21 L 1 1 L 1 1 L 1 1 L 1

3 3 3 3 2 21 L 1 1 L 1 1 L 1

tot tot
t t w w1 L 11 L 1

d u u ... u u u ... u

u u ... u u u ... u

u u u u u u u u

u u u u u u

SM SM SM SMΔ Δ Δ Δ

+ + + +

+ + +

++

′ ′ ′ ′ ′ ′=

′ ′ ′

′ ′ ′ ′

′ ′

 (27) 

 
while { }extb , { }plb  are vectors representing all the terms related to the externally 

applied loading and the plastic parts of the stress resultants, respectively. Finally, 
after solving the system of Equations (26) the kinematical components 

( ) ( )1 mu x u x= , ( ) ( )2 xu x xθ=  at any interior point of the bar may be computed by 
employing Equations (22a) and (25), respectively. 
 
3.2 Integral representations for the primary P

Sφ  and secondary S
Sφ  

warping functions and geometric constants 
P S

P PP S t t xA,I ,I ,C ,I ,I ,k  
 
The evaluation of the primary warping function P

Sφ  and of its derivatives with 
respect to y  and z  at any interior point is accomplished using BEM as this is 

outlined in [2]. The evaluation of the secondary warping function S
Sφ  (and of its 

derivatives with respect to y  and z ) is accomplished using BEM [2]. The 

evaluation of A , PI , PPI  and of SC , P
tI , S

tI  (once P
Sφ  is established) is performed 

through line integrals along the boundary of the cross section [2, 14, 9]. Finally, 
once S

Sφ  is established, the evaluation of xk  is performed through a domain integral 
along the cross section [9].  
 
3.3 Incremental - iterative solution algorithm 
 
In the present study, external loading is considered at a number of stations which are 
chosen according to load history and convergence requirements. Load control over 
the incremental steps is employed. At each load station, the system of nonlinear 
equations (26) is numerically solved employing an iterative solution strategy which 
is a modification of Powell’s hybrid algorithm [15]. This algorithm is a variation of 
Newton’s method [15] requiring the following quantities. 
i. A Jacobian matrix of the system of nonlinear equations which corresponds to a 

generalized stiffness matrix to the problem at hand. In this study, this matrix is 
approximated with finite differences [15] avoiding in this manner its explicit 
derivation. 
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ii. An initial guess of the solution { }initd  (at each load station). The resolved vector 

{ }d  of the previously converged load station is employed in this study 

({ } { }d 0=  is used at the first load station). 
iii. A tolerance parameter gltol  to perform the stopping criterion of the algorithm. 

Values 5 7
gltol 10 10− −= ÷  have been used in this study. 

 
 
 

 
Figure 2: Discretization of the bar interval into linear elements, distribution of the 

nodal points and approximation of several quantities. 
 
 
 

A number of monitoring cross sections is defined coinciding with the L 1+  nodal 
points of the bar interval (Figure 2). These sections are divided into a number of 
triangular or quadrilateral cells and standard two-dimensional Gauss quadrature 
rules are employed in each cell to resolve the plastic parts of the stress resultants 
(Equations (14)). Thus, the monitoring stations of each cross section coincide with 
the Gauss points of its cells, while exact patch between adjacent cells is not required 
[9]. 

At each load station, the system of nonlinear equations (26) is expressed without 
explicitly deriving its incremental form which is lengthier due to terms associated 
with geometrical nonlinearity. This is achieved by exploiting values of xxS , xyS , 

xzS , mu′ , xθ ′ , xη , xη′ , pl
eqε , pl

xxε , pl
xyγ , pl

xzγ  of the previously converged load station 
at the monitoring stations of the bar and adhering to the following steps (subscript 
cur  denotes the current value of a quantity that is iteratively updated through the 
algorithm and subscript conv  denotes the converged value of a quantity at a 
previous load station). 
i. At each monitoring station of the bar, evaluate the trial stress components as 

L 1ξ +  

l  
x

1ξ  2ξ  
nodal points 

shape functions:  1 2

j 1 j 1
1 2

j j 1 j j 1

j 1 j

N , N
x x

N 1 ,N

x

ξ ξ
ξ ξ ξ ξ

ξ ξ

− −

− −

−

− −
= − =

− −

≤ ≤

( )
( ) ( ) ( )

( )

: linear element assumption
Approximation of   within element  :

1 2j j 1

pl N pl P pl S pl pl
x x t t t w

f x j

f x N f N f

f , ,SN ,SM SM ,SM ,SMθ η

+= +

′=

element j
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( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )           

Tr P
xx xx m m x x Sconv cur conv cur conv

2 22 2
x xcur conv

S S E u u E

1E y z
2

η η φ

θ θ

′ ′ ′ ′= + − + −

′ ′+ + −
 (28a) 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )          

P
Tr Tr S
xy xy x xcur convconv

S S
t S

x x x xcur cur conv conv
S

S S G z
y

IG
C y

φθ θ

φ
η θ η θ

⎛ ⎞∂′ ′= + − −⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞∂⎡ ⎤′ ′− − − − ⎜ ⎟⎜ ⎟⎣ ⎦ ∂⎝ ⎠

 (28b) 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )         

P
Tr Tr S
xz xz x xcur convconv

S S
t S

x x x xcur cur conv conv
S

S S G y
z

IG
C z

φ
θ θ

φη θ η θ

⎛ ⎞∂′ ′= + − +⎜ ⎟⎜ ⎟∂⎝ ⎠
⎛ ⎞∂⎡ ⎤′ ′− − − − ⎜ ⎟⎜ ⎟⎣ ⎦ ∂⎝ ⎠

 (28c) 

 
ii. At each monitoring station of the bar, perform the yield criterion employing 

Equation (9). 

• If ( ) ( ) ( ) ( )( )2 2 2Tr Tr Tr Tr pl
xx xy xz Y eq conv

f S 3 S S 0σ ε⎛ ⎞= + + − ≤⎜ ⎟
⎝ ⎠

 then the trial 

state is the final state, the incremental plastic strain components are zero and 
the total plastic strain components along with the equivalent plastic strain get 
the corresponding values of the previously converged load station. 

• If rf 0Τ >  then plastic flow occurs and return must be made to yield surface 
(plastic correction step). A local Newton – Raphson method is initiated to 
integrate the inelastic constitutive equations by employing the generalized 
cutting-plane algorithm [16]. The incremental plastic strain components 
along with the equivalent plastic strain are updated according to this 
algorithm by using a prescribed tolerance 5tol 10−=  in its convergence 
criterion and subsequently the total plastic strain components are resolved by 
adding the corresponding incremental quantities to the ones of the previously 
converged load station. 

 
iii. At each monitoring cross section of the bar, evaluate numerically the plastic 

parts of the stress resultants (Equations (14)). 
 
iv. Employ the obtained plastic parts of the stress resultants to evaluate the vector 

{ }pl cur
b  of Equation (26). Apart from elementary computations, this step 

requires the computation of line integrals along the bar interval which is 
performed employing a semi-analytical scheme [9]. It is worth noting here that 
the line integrals arising in the term [ ] { }cur curK d  of Equation (26) (including 
the ones associated with geometrical nonlinearity) are also computed semi-
analytically without any special difficulty. 
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Finally, it is worth noting that the monitoring displacement components xθ , xη  
at any interior point of the bar are updated after convergence in each increment by 
employing Equations (22a), (25), respectively. 
 

 
4  Numerical examples 
 
4.1 Example 1 
 
In the first example, for comparison reasons, an elastic bar of narrow rectangular 
cross section 10 200mm×  ( 8 2E 2.0 10 kN / m= × , 7 2G 8.0 10 kN / m= × ) of length 
l 1.0m= , subjected to a uniformly distributed torque per unit length tm  has been 
studied, employing 50 longitudinal elements, 300 boundary elements, 64 
quadrilateral cells and a 2 2×  Gauss integration scheme for each cell (cross sectional 
discretization). The bar’s ends are simply supported according to its torsional 
boundary conditions, while the left end is immovable and the right end is free to 
move according to its axial boundary conditions. In Figure 3 the variation of the 
angle of twist xθ  at the midspan with respect to the applied external torque per unit 
length tm  is presented as compared with the values obtained from a BEM-based 
[17] and a FEM solution [18] which both ignore the STMDE. Excellent agreement is 
achieved with the existing studies, verifying the proposed numerical procedure at the 
elastic geometrically nonlinear regime. It is also concluded that geometrical 
nonlinearity increases the torsional rigidity of the bar, while the STMDE influences 
negligibly nonlinear elastic torsional analysis of open thin-walled cross section bars. 
 
4.2 Example 2 
 
In the second example, for comparison reasons an open thin-walled I-shaped (total 
height h 0.1524m= , total width b 0.1509m= , flange width ft 0.0122m= , web 

width wt 0.0080m= ) cross section bar ( 2E 213400MN / m= , 2G 80000MN / m= , 
2

Y0 285MN / mσ = , 2
tE 0MN / m= ) of length l 1.93m=  subjected to a 

monotonically increasing concentrated twisting moment at its midpoint and 
restrained against twisting at both ends (free warping boundary conditions) has been 
studied, employing 36 longitudinal elements, 500 boundary elements, 64 
quadrilateral cells and a 3 3×  Gauss integration scheme for each cell (cross sectional 
discretization). Two cases of axial boundary conditions have been studied, namely 
case A in which both ends are axially immovable and case B in which the left end is 
immovable and the right end is free to move. In Figure 4, the corresponding torque - 
angle of twist curves at the midpoint of the bar are presented as compared with a 
FEM solution [7] that ignores the STMDE and experimental results [19]. From this 
figure, very good agreement between the results of the proposed method and those 
of the existing studies is observed. It is also concluded that large twisting rotations 
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affect significantly the behavior of the bar since it is not leaded to plastic collapse, 
while the STMDE influences negligibly nonlinear inelastic torsional analysis of 
open thin-walled cross section bars. Finally, it is remarked that axial restraints at the 
bar ends increase further the torsional rigidity of the bar, especially at larger twisting 
rotations.  
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Figure 3: Torque - angle of twist curves at x l 2=  of the bar of example 1. 
 
 
5  Concluding remarks 
 
The main conclusions that can be drawn from this investigation are: 
a. Large twisting rotations increase the torsional rigidity of bars. This effect is more 

pronounced in presence of axial restraints at the bar ends.  
b. STMD effect is negligible in nonlinear torsional analysis of open thin-walled 

cross section bars. 
c. Explicit derivation of the incremental form of the discretized global equilibrium 

equations is not required in the developed methodology. 
d. Finite differences and differentiation of shape functions are not required in the 

discretization of the global equilibrium equations. 
e. The procedure developed retains most of the advantages of a BEM solution over 

a domain approach. 
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Figure 4: Torque - angle of twist curves at x l 2=  of the bar of example 2. 
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