
Abstract

This work presents a topology optimization formulation based on the frequency re-
sponse of a multiphysics problem involving fluid-structure interaction. A mixed for-
mulation (u/p) is used, in which the pressure and displacement are governed by the
Helmholtz equation and the elasticity equation, respectively. The optimization method
used in this paper is the bi-directional evolutionary structural optimization (BESO),
this process consist of a successive elimination and replacement of elements in the
design domain. The feasible space of solution is defined initially and through a sen-
sitivity analysis of the frequency response functions using finite element analysis the
evolutionary algorithm removes or adds solid elements. A sensitive analysis is de-
scribed for the dynamic problems and the sensitive number is evaluated for several
conditions. The formulation implemented in FORTRAN and the ANSYS Parametric
Design Language (APDL) seeks the optimum topology, considering the mean pressure
minimization in specific nodes of the system for a certain range of frequency excita-
tion and subject to volume constraints. A number of final topologies for fluid-structure
problems are shown, as well as their intermediary topologies and evolutionary history.
The results demonstrate that this methodology can be applied to this type of problem
with good efficiency.

Keywords: topology optimization, fluid-structure interaction, finite element analysis,
mixed formulation, frequency response function, ESO/BESO method.

1 Introduction

In order to improve the vibration or pressure characteristics of a system, topology
optimization might be applied [1]. The basic idea is to find an optimal distribution
of material in a structural design domain, considering an objective function. In this
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work, we investigated how the vibration or pressure characteristics of given examples
can be improved on the basis of the structural frequency response function (FRF) with
topology optimization.

Between researches considering dynamic responses, we can cite the work of Diaz
and Kikuchi [2], they applied topology optimization considering the eigenvalues of
a structure for optimal plate reinforcement using the homogenization method. Ma et
al. [3] extended the same method to problems of vibrating structures. The topology
optimization considering dynamic responses was also investigated with the classical
material interpolation method ’SIMP’ (Solid Isotropic Material with Penalization) [1].
Many efforts have been made to develop and optimize dynamic systems. Frequency
optimization is of great importance in many engineering fields and dynamic responses
must be took in account in a wide range of problems. One of these problems is the
class of multiphysics systems. The applications of topology optimization methods
have also been extended to multiphysics problems [4, 5, 6]. Although these pro-
cedures have reached a satisfactory level of maturity, there are still many topology
optimization features open to research or less-than-satisfactorily resolved issues [6].
Commercial FEM packages often contain solvers for multiphysics problems, however,
they do not enable optimization. A particular class of multiphysics problems involves
fluid-structure interaction (FSI)is the main topic of this work.

Among of current optimization methods, the Bi-directional Evolutionary Struc-
tural Optimization (BESO) was chosen in this work for FSI problems analysis, since
the method is almost not explored in this area. The technique, so called Evolutionary
Structural Optimization (ESO), was first introduced in the 90’s by Xie and Steven [7].
Associated with the finite element analysis, the ESO method was initially proposed as
a gradual removal of inefficient material from the design domain until the remaining
structure converges to the optimum topology. Material elimination is carried out after
a sensitivity analysis. However, it is questionable that eliminated elements can never
return to the design domain, since the sensitivity analysis is carried out only for the
solid elements in the structure. Thus, a later development of this method was called
Bi-directional ESO (BESO), in this new methodology elements are also added in void
positions near to the elements with the highest sensitivity numbers [8]. In this case, the
sensitivity number is a local index and represent the sensitivity of each element with
respect to the objective function. Studies with the BESO method have recently been
published presenting convergent and mesh independent solutions for stiffness maxi-
mization [9], for natural frequency maximization [10] among others. Critical analysis
of ESO-based methods are found in [11], while a later review about the ESO/BESO
methods is found in [12, 13]. In multiphysics problems, the ESO/BESO methods lack
of methodologies and publications, especially in fluid-structure coupled systems.

The combination of evolutionary topology optimization techniques and multiphysics
problems involving fluid-structure interaction is proposed. The scope oh this work fo-
cuses is the mean pressure minimization in coupled systems. Frequency response
optimization is of great importance in many engineering fields like acoustics systems
and fluid dynamics. The possibility of removing and adding material systematically
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with the evolutionary method could be a helpful procedure to explicitly define fluid-
structure interfaces. However, only cases with immovable interfaces will be consid-
ered in this paper. The paper is organized as follows: Section 2 presents the governing
equations and the finite element model for the fluid-structure interaction coupled sys-
tem. In Section 3, the topology optimization problem for pressure minimization is
formulated and the sensitivity number is presented. Section 4 shows numerical ex-
amples of the optimization methodology, BESO. Finally, conclusions are shown in
Section 5.

2 Fluid-Structure Interaction: Governing Equations
and the Finite Element Model

Herein, the analyzed systems are limited to a flexible structure in contact with an en-
closed acoustic fluid, where the responses of the structure are significantly affected by
the fluid. For this fluid-structure system, the structure can be described by the differ-
ential equation of motion for a continuum body assuming small deformations and the
fluid by the acoustic wave equation. For the standard approach, the governing equa-
tions for the fluid and structural domains as well as the coupling boundary conditions
are defined as follows.

2.1 Helmholtz equation

In this paper, the fluid is considered inviscid, irrotational and only under small trans-
lations conditions. The governing equation for the pressure in a nonhomogeneous
acoustic medium is described by the Helmholtz equation

∇2pf +
ω2

c2
f

∂2pf
∂t2

= 0

(
k =

ω

cf

)
Ωf (1)

where pf is the pressure in the analysis domain Ωf , cf is the local speed of sound,
ω is the angular frequency and k the wave number. The pressure field is obtained by
solving the Helmholtz equation imposing proper boundary conditions. In this paper,
it is considered the following boundary conditions:

pf = p0 (2)

n∇pf = 0 (3)

representing the pressure boundary condition, Equation (2), and the hard wall condi-
tion, Equation (3), where p0 is the pressure input and n is the outward unit normal to
the fluid.
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2.2 Linear elasticity

The linear structural analysis can be described by the elasticity equation

∇̃Tσs + bs = ρs
∂2us

∂t2
Ωs (4)

where σs is the stress tensor, bs are the body forces and us is the displacements field.
Boundary conditions are applied as follows:

nsσ = fSb Sb (5)

us = uSu
s Su (6)

Equation (5) and Equation (6) represent the Neumann and Dirichlet boundary con-
ditions, respectively, where fSb is the surface traction on Sb, uSu

s is the prescribed
displacement on Su and ns is the outward unit normal to the solid medium.

2.3 The coupled fluid-structure system

At the interface ∂Ωsf between the structural and fluid domains, the fluid and the
structure move together in the normal direction of the boundary. The normal vector
n = nf = −ns can be used in order to obtain the displacement boundary condition

usn|∂Ωsf
= ufn|∂Ωsf

(7)

and the continuity in pressure

σs|n = −p (8)

With relations derived from the governing equations and the previous coupling
conditions, the interface forces may be obtained. The force acting on the structure
provided by the fluid pressure is

ff =

∫
Ωsf

NT
s nNfdspf (9)

and the force acting on the fluid domain can be expressed in structural acceleration

fs = −ρf
∫

Ωsf

NT
f nNsdsüs (10)

where ρf is the static density of the fluid and N contains the finite element shape
functions for the interface.

The introduction of a spatial coupling matrix
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Lsf =

∫
Ωsf

NT
s nNfds (11)

allows the coupling force to be written as

ff = Lsfpf (12)

and

fs = −ρfLT
sf üs (13)

Thus, the fluid-structure problem can then be described by an unsymmetrical sys-
tem of equations[

Ms 0
ρfL

T
sf Mf

] [
üs

p̈f

]
+

[
Ks −Lsf

0 Kf

] [
us

pf

]
=

[
fs
ff

]
[Mfs] [üfs] + [Kfs] [ufs] = [ffs]

(14)

where fs and ff are the load vectors for both domains.
In the multiphysics coupling analysis, the fluid analysis provides pressure loads to

the structural analysis, and the structural analysis provides accelerations to the fluid
analysis. These finite element model has been used to calculate responses of acoustic-
structure interaction problems. For details and derivations of the coupling integrals as
well as the governing equations, see [14, 15].

3 Bi-directional Evolutionary Structural Optimization

3.1 Problem Statement

Considering volume constraint, the optimization problem of frequency response min-
imization can be stated as:

Minimize |ufs|

Subject to: Vf −
∑n

i=1 Vixi = 0

xi = xmin or 1

(15)

where ufs is the frequency response, Vi is the volume of an individual element, Vf the
prescribed final structural volume and n is the total number of elements in the system.
The binary design variable xi declares the presence of a completely solid element (1)
or the density of a void element with a small value of xmin (e.g. 10−4).
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3.2 Vibroacoustic sensitivity

The vibroacoustic sensitivity analysis involves the evaluation of the fluid-structure
coupled system response under a structural change. The objective here is to evaluate
the sensitivity of the vibroacoustic response |ufs| with respect to the variables xi.

The residual Rfs of the governing equation of the coupled dynamic problem is
given by:

Rfs = (Kfs − ω2Mfs)|ufs| − |ffs|
Rfs = Z|ufs| − |ffs|

(16)

With the analytical derivatives of Equation (16) and analyzing the partial deriva-
tives ofRfs with respect to |ufs| and xi, the sensitivity of the coupled system response
|ufs| is:

d|ufs|
dxi

= −Z−1 ∂Z

∂xi
|ufs| (17)

It was observed that the sensitivity number from Equation (17) is equivalent to the
following expression:

d|ufs|
dxi

= uijZui = αij (18)

where uij is the solution of the dynamic equilibrium equation Zuj = Fj with an unit
load vector Fj at the j-th objective node. ui is the displacement vector containing
the entries of ufs, which is related to the i-th element. This sensitivity number αij

is equivalent to that proposed by [16] for stiffness maximization with displacement
constraints. It indicates the change of the specified displacement or pressure compo-
nent uj due to the removal of the i-th element. This number was initially proposed for
static cases. Here, we combine it with the interpolation scheme proposed by [10] for
the BESO method. In the proposed scheme, material is interpolated and not removed
completely from the domain. It implies that the interpolation depends on xmin and
an exponent penalty factor p , which indicate how soft is the void-condition elements.
Thus, the sensitivity numbers proposed for frequency response minimization are the
following:

αi = 1
p

dufs

dxi
= 1

2ω
uT
j

(
1−xmin

1−xp
min

K1
i − ω2

p
M1

i

)
ui xi = 1

= 1
2ω
uT
j

(
xp−1
min−xp

min

1−xp
min

K1
i − ω2

p
M1

i

)
ui xi = xmin

(19)

or when xmin tends to 0

αi = 1
p

dufs

dxi
= 1

2ω
uT
j

(
K1

i − ω2

p
M1

i

)
ui xi = 1

= −ω
p
uT
j M

1
iui xi = xmin

(20)
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3.3 Evolutionary Procedures for pressure minimization

The BESO method allows material to be removed and added through the initial do-
main covered by a fine finite element mesh until an optimum solution is found. A
sensitivity analysis of the problem is needed for the adopted criterion. For dynamic
problems, considering displacement and/or pressure minimization in cases of fluid-
structure interaction, when a solid element is removed from the structure, the change
on the frequency response is evaluated by the dynamic compliance. This change is
defined as the elemental sensitivity number from Equation (20). In the BESO process,
elements are organized according to their sensitivity number values, from the highest
to the lowest. For pressure minimization is reasonable to remove elements with the
lowest α.

A filter scheme is applied over the mesh in order to smooth the sensitivity numbers
distribution. This filter scheme is similar to the mesh-independency filter used in [17].
This procedure consists, first of all, in averaging the elemental sensitivity number to
the mesh nodes, according to the nodal connectivity, as follows:

αn
j =

∑M
i=1 Viαi∑M
i=1 Vi

(21)

where M is the total number of elements connected to the node j.
The above nodal sensitivity numbers will then be converted into smoothed elemen-

tal sensitivity numbers by projecting a sub-domain Ω with length scale rmin and center
in the ith element. All the nodes inside Ω will have their nodal sensitivity numbers av-
eraged back to the elemental level, now as a smoothed projection. Thus, the sensitivity
numbers of void elements are automatically obtained.

To stabilize the evolutionary process, an average of the sensitivity number with its
historical information is carried out as:

αi =
αk
i + αk−1

i

2
(22)

where k is the current iteration number. Thus, the updated sensitivity number includes
the whole history of the sensitivity information in the previous iterations.

The removal/addition of elements is carried out by the target volume of the next
iteration (Vk+1), defined as:

Vk+1 = Vk(1± ER) (23)

where ER is the evolutionary ratio. Once the volume constraint is satisfied, the vol-
ume of the structure will be kept constant for remaining iterations as:

Vk+1 = Vf (24)
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With the target volume evaluated, the threshold sensitivity numbers (αath
del and αath

add)
are determined. For solid element (1), it will be removed (switched to 0) if:

αi ≤ αath
del (25)

For void elements (0), it will be added (switched to 0) if:

αi ≤ αath
add (26)

An admission volume ratio (AR) is introduced to ensure that not too many ele-
ments are added in a single iteration. AR is defined as the number of added elements
divided by the total number of elements in the design domain. If AR is bigger than a
prescribed value ARmax, then αath

del and αath
add need to be recalculated. More details are

found in [9].
Besides the volume constraint, a convergence criterion is introduced. The cycle of

finite element analysis and element removal and addition continues until the objective
volume (Vf ) is reached and the following convergence criterion defined in the variation
of the objective function is satisfied:

error =
|
∑N

i=1 uk−i+1 −
∑N

i=1 uk−N−i+1|∑N
i=1 uk−i+1

≤ τ (27)

where k is the current iteration number, τ is an allowable convergence error and N is
an integral number, herewith selected as 5, which means a stable compliance at least
in successive 2×N iterations, i.e., 10 iterations in this case.

In short, the evolutionary iteration procedure of the present BESO method is given
as follow:

1. Discretize the design domain using a fine finite element mesh and declare the
initial values of the elements (0 or 1) to construct an initial design.

2. Carry out the finite element analysis and calculate the elemental sensitivity num-
bers, according to Equation (20). Save the sensitivity number for the next itera-
tion.

3. Determine the target volume of the next iteration, according to Equation (23).

4. Add and remove elements according to the procedure described previously.

5. Repeat steps 2 to 5 until the volume constraint (Vf ) is reached and the conver-
gence criterion, Equation (27), is satisfied.

As a consequence of the removing material the natural frequencies of the system
are changed. Natural frequencies closer to the excitation frequency point in the FRF
curve can increase or decrease depending on which side they are relatively to the
excitation frequency point. This occurs as a consequence of the minimization process
which tends to make the point of optimization to go down in the FRF curve.
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4 Numerical Results

In this section, two examples considering FSI are solved using the BESO method.
The meshes were generated in ANSYS, the optimization code was implemented in
FORTRAN and the topologies were plotted in MATLAB. All the steps were automat-
ically aggregated. In the first example, the intermediary topologies are presented to
show the objective function and pressure distribution in several steps of the optimiza-
tion. The second example presents the optimization process for six different excitation
frequencies.

4.1 Example 1

This first example shows the FSI problem, where two fluid cavities are separated by
a structure partition, Figure 1. The objective is to minimize the mean pressure in
the two output points for a specific excitation frequency. Hard-wall condition and a
prescribed pressure were imposed to the fluid domain and the structure domain has
clamped ends. The incoming wave amplitude of the excitation is pin = 1 Pa, in the
left fluid domain. The excitation frequency for optimization is 5 Hz. The structure
domain has length of 1 mm, height 10 mm and represents the design domain. For the
optimization procedure the design domain is divided using a regular mesh of 64×320
four-node quadrilateral elements, totaling 20480 elements.
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Figure 1: Model considered for optimization.

The parameters for the mesh in the finite elements analysis and the materials prop-
erties for fluid and structure domain are presented in Table 1. All constants related to
the optimization process (BESO) are also listed in Table 1.

Figure 2 shows the FRF for the initial full design domain and the FRF after the
optimization procedure for the mean pressure in the output point in the second fluid
domain.
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Variable Description Value
Mesh

nnos Number of nodes 60465
nele Number of elements 60160

Structure
E Young’s Modulus 100 GPa
ν Poisson coefficient 0.3
ρs Density 100 kg/m3

Fluid
ρf Density 1.2 kg/m3

c Sound velocity 343 m/s
BESO

Vi Initial volume fraction 1.0
Vf Final volume fraction 0.9
ER Evolutionary ratio 0.02

ARmax Maximum admission ratio 0.02
rmin Filter radius 0.02 mm
τ Convergence tolerance 0.001
N Integral number 5
p Penalty number 1.5

Table 1: Parameters for the numerical modelling.

Excitation frequency

Figure 2: Frequency response for example 1.

The history of the mean pressure in the output points are shown in Figure 3. This
figure shows that the optimization process starts from a full design domain (Structural
Domain) and regularly removes material in a rate of 0.2% until it reaches the final
volume. After 50 iterations the final volume is reached and the process is finalized
when the convergence criterion is obtained, in this case in the 58th iteration. The total
pressure reduction after the optimization process can be found in Table 2.

The intermediaries and final topologies are shown in Figure 4. The pressure distri-
bution in both cavities and the shape of vibration of the structure domain can also be
seen in Figure 4. The displacement of the structure is plotted 100× bigger for a better
visualization of the shape of vibration for this excitation frequency.
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Figure 3: Mean pressure history for example 1.

Excitation Frequencies (Hz) 5.0
Initial pressure (Pa) 2.237E-01
Final pressure (Pa) 0.278E-01

Reduction 87.58%

Table 2: Mean pressure reduction at output points.

The Figure 5 shows the sensitivity numbers distribution in the design domain dur-
ing the material removal material process. The sensitivity numbers are calculated tak-
ing in account the two output points, located in the right fluid domain, and indicates
the area where material should be removed for the frequency response minimization.

It must be pointed out that there are no similar examples made for FSI problems
with BESO method and the obtained result shows that this methodology can be effec-
tively applied to this kind of problem, once the pattern topology found is very similar
to that presented by Xie and Steven [18] for a cantilever beam, in which the boundary
conditions are similar to this case. This confirms the physical meaning of the obtained
topology.

4.2 Example 2

The system of the second example is shown in Figure 6. The materials properties
are the same used in the first example. All the parameters for the BESO method are
the same for the first example except the final volume which is different for each
excitation frequency. The mesh in the design domain is divided in 32×320 four-node
quadrilateral elements.

This example seeks to minimize the pressure in one output point located in the right
fluid domain for six excitation frequencies in the left fluid domain. The incoming wave
amplitude of the excitation on the input point is 1 Pa.

Based on the frequency response for this system six excitation frequencies were
chosen. The first three frequencies are close of the first three natural frequencies of
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a) b)

c) d)

e) f)

g)

Figure 4: Evolutionary topologies for Example 1 with material volume of: a) 100%
- Design Domain; b) 98% ; c) 96% ; d) 94% ; e) 92% ; f) 90% ; g) 90% after the
convergence criteria - Final Topology.

the system, in the left side of the natural frequencies in the FRF curves, Figure 7. The
second group of excitation frequencies is chosen to be in the right side of the natural
frequencies, Figure 8. This division was done based on the different consequences of
the optimization process for the FRF curves of each group, as explained in Section 3.
In the first group the excitation frequencies are on the left side of the natural frequen-
cies and in the second group they are on the right side of the natural frequencies.

Initial and final frequency responses for pressure in the six cases are shown in Fig-
ures 7 and 8. It can be observed in Figure 7 that in order to promote the minimization
of the pressure, the optimization process results in an increase of the natural frequen-
cies that are closer of the excitation frequencies, for this first group. However, Figure
8 shows the decrease of the natural frequencies near of the excitation frequencies, for
these specific cases. It can be concluded that the optimization process can increase
or decrease the natural frequencies of the system for the mean pressure minimization.
It will depend of the relative position between the excitation frequency and natural
frequencies in the FRF curve. The optimization process will always try to make the
response to go down in the FRF curve.
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a) b)

c) d)

e) f)

g)

Figure 5: Objective Function for Example 1 with material volume of: a) 100% -
Design Domain; b) 98% ; c) 96% ; d) 94% ; e) 92% ; f) 90% ; g) 90% after the
convergence criteria - Final Topology.
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Figure 6: Model considered for optimization.

Figures 9-a, 9-c and 9-e presents the pressure distribution for the initial conditions
and the shape of vibration for the three different frequencies and Figures Figures 9-b,
9-d and 9-f present the final topology obtained for each case and the final pressure
distribution after the optimization process for the first group of frequencies.

For the second group of frequencies the Figures Figures 9-a, 9-c and 9-e show the
pressure distribution in the initial conditions for the three different frequencies and
Figures Figures 9-b, 9-d and 9-f show the final topology obtained for each case and
the final pressure distribution after the optimization process.

In each group of frequencies it can be noted that for lower frequencies, it is nec-
essary to remove a greater volume of material than for higher frequencies in order to
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Excitation frequency for optimization Excitation frequency for optimization

a) b)

Excitation frequency for optimization

c)

Figure 7: FRF for first group of excitation frequencies.

Excitation frequency for optimization Excitation frequency for optimization

a) b)

Excitation frequency for optimization

c)

Figure 8: FRF for second group of excitation frequencies.
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a) b)

c) d)

e) f)

Figure 9: First set of topologies for different excitation frequencies: a) 2.6 Hz - 100%;
b) 2.6 Hz - 90%; c) 13.8 Hz - 100%; d) 13.8 Hz - 96%; e) 29.3 Hz - 100%; f) 29.3 Hz
- 98%;

obtain the same reduction of the pressure in the output point. The total reductions of
the mean pressure in the output point for these six cases are shown in Table 3.

1st case 2nd case
Excitation 2.6 13.8 29.3 2.9 14 29.6Frequencies (Hz)

Initial pressure (Pa) 5.49E-02 1.64E-01 1.70E-01 2.19E-01 1.08E-01 7.15E-02
Final pressure (Pa) 2.89E-02 3.18E-03 5.49E-03 4.86E-02 2.92E-02 8.57E-03

Reduction 47.34% 98.06% 96.76% 77.79% 72.91% 88.01%

Table 3: Pressure reduction for different frequencies.

4.3 Example 3

This example presents a minimization of the pressure in an output point in a system
with three fluid cavities and two structures partition, Figure 11. All the parameters for
the BESO process are the same used for the first example. A total of 28,480 elements
were used on the finite element mesh. The feasible design domain is represented by
the two structural domains. The output point is located in the middle of the third
fluid cavity. In this example it is explored the minimization in two different excitation
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a) b)

c) d)

e) f)

Figure 10: Second set of topologies for different excitation frequencies: a) 2.9 Hz -
100%; b) 2.9 Hz - 96%; c) 14.0 Hz - 100%; d) 14.0 Hz - 98%; e) 29.6 Hz - 100%; f)
29.6 Hz - 99%;

frequencies, the first one is close to the first natural frequency and the second one close
to the second natural frequency of the system.
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Figure 11: Model considered for optimization

For the excitation frequency of 5 Hz, both structural domains are moving in the
same direction, Figure 12. Figure 12 also show the topology history for the optimiza-
tion process starting from 100% of the design domain and removing material in a rate
of 0.2%. The process stops when the prescribed volume of 80% is reached and the
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error criterion is satisfied.

a) b)

c) d)

Figure 12: Evolutionary topologies for Example 3 with material volume of: a) 100%
- Design Domain; b) 95%; c) 90%; d) 86% after the convergence criteria - Final
Topology.

The final topology shows that the optimization process for this case results in struc-
tures with some symmetry. Figure 13 shows the FRF for the initial and final topology.
The optimized topology produces a reduction of 85.4% in the mean pressure in the
output location.

Excitation frequency

a) b)

Figure 13: Response of the system for excitation frequency of 5 Hz: a) Evolution
histories of mean pressure and volume fraction b) FRF for mean pressure.

The second excitation frequency is 14 Hz, which is closer to the second natural
frequency of the system. For this frequency the structural domain vibrate in opposite
directions, Figure 14. The optimization process starts in 100% of the design domain
and removes material until the volume of 94% and finish when the error criterion
is satisfied. Figure 14 also indicate that the final topologies of the first and second
structural domain are quite different from each other, the optimization process has
removed more material from the structural domain closer to the input source.

After the optimization process the total reduction of the mean pressure in the output
point is 91.8%, this reduction can be seen in the Figure 15. In order to promote this
minimization, the second natural frequency has been increased in 7.04%.
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a) b)

c) d)

Figure 14: Evolutionary topologies for Example 3 with material volume of: a) 100%
- Design Domain; b) 98% ; c) 96% ; d) 94% after the convergence criteria - Final
Topology.

Excitation frequency

a) b)

Figure 15: Response of the system for excitation frequency of 14 Hz: a) Evolution
histories of mean pressure and volume fraction b) FRF for mean pressure.

5 Conclusions

In this paper we have extended the use of the BESO method to a class of fluid-structure
systems under imposed pressure excitation. For this kind of problem, sensitivity num-
bers were presented. The objective function was the minimization of pressure in cer-
tain points of the fluid domain. For a number of excitation frequencies the method-
ology presented here was capable to minimize the pressure and to converge to opti-
mized topologies. The efficiency of the method is demonstrated for a good range of
frequencies. In particular for higher frequencies a great minimization of the pressure
is achieved with a small percentage of material removed. For future works, movable
interfaces between the fluid and structure domain will be considered as well as the
extensions to three dimensions models.
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