
Abstract

A thin-walled beam model that considers higher order effects is presented in this

paper. The beam displacement field is approximated through a linear combination

of products between a set of linear independent functions, which are defined over the

beam cross section, and the associated amplitudes that are only dependent on the beam

axis. The beam model governing equations are then obtained through the integration

over the cross section of the corresponding elasticity equations weighted by the cross

section approximation functions. A set of uncoupled beam deformation modes are

obtained from a non linear eigenvalue problem that stems directly from the general

solution of the differential homogeneous equilibrium equations. The classic defor-

mation modes are naturally obtained, being associated with a null eigenvalue, which

requires an adequate computation of a Jordan chain, whereas the higher order modes

correspond to the non null eigenvalues, which allows the measurement of the mode

decay along the beam axis. A numerical example is presented in order to verify the

model capabilities to simulate the non classic effects associated with thin-walled beam

higher order deformation modes.

Keywords: thin-walled beam model, warping modes.

1 Introduction

The structural analysis of thin-walled prismatic structures through one-dimensional

models requires the consideration of higher order deformation modes in order to accu-

rately represent its three dimensional structural behaviour. In fact, being those models

derived by reducing the three-dimensional elasticity equations to a set of equations

defined along the member axis through an appropriate projection of the displacement

field, the definition of a convenient set of basis functions is essential to capture the 3D
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structural behaviour.

A thin-walled beam model that assumes the cross section in-plane rigid but consid-

ers the out-of-plane warping and the “membrane” shear deformation is presented in

this paper.

The warping of thin-walled structures with open cross sections was defined by [1]

through the definition of a new coordinate, the sectorial coordinate, for the approxi-

mation of the cross section displacement along the beam axis. The cross section was

assumed to be in-plane undeformable and the shear deformation of the middle surface

was neglected. A theory for the non uniform torsion of closed cross section was de-

rived by [2, 3], considering the shear strain of the cross section midline to be given by

the Saint-Venant uniform torsion theory. This assumption is conceptually identical to

the one made when adopting the Euler-Bernoulli theory for the non uniform bending

of beams. A more accurate theory for the non-uniform torsion of closed thin-walled

beams was derived in [4, 5], where the axial displacement field is defined considering

anh additional term representing the cross section warping, which has an amplitude

variable along the beam axis that is not related with the cross section angle of tor-

sion; reference should be made that this approach was also considered in [1] for solid

sections. This theory is established and known as Benscoter theory, [7]. The cross

section “classic” warping are made orthogonal to the flexural modes by considering

an adequate position for measuring the sectorial coordinate that defines the warping

function, in a form similar to the admitting the beam flexure around the principal axes.

A general theory for the analysis of thin-walled beams applied to a cross section

either with an open, closed or branched midline profile was presented in [8, 9, 10]. The

theory relies on the assumption of the Vlassov hypothesis, considering only the shear

strain corresponding to the Saint-Venant torsion theory for the closed cross section,

[3]. The displacement field is approximated in terms of the derivative of its tangential

components along the beam axis, being the axial displacements obtained through the

hypothesis of neglecting the membrane shear strain, corresponding to a procedure

already adopted by [6]. However, an orthogonality criterion similar to the classic

warping was not possible to derived; an uncoupling procedure based on an attempt do

diagonalize the beam governing equations through generalised eigenvalue problems

was adopted instead.

The generalised beam theory (gbt) developed by [11, 12] allows to define the cross

section deformation field taking in account the cross section discretization in terms

of axial displacements by considering the hypothesis of neglecting the shear at the

middle surface. The approach considers the approximation of the axial displacement

field, obtaining the transverse displacement as a consequence of neglecting the shear

strain. This formulation was extended for considering the shear-lag effect by adopting

a set of shear-lag warping modes, [13, 14]. The initial formulation of the gbt has

however some restrictions, being one of them the application to cross sections with a

generic midline profile geometry. However, further developments of the theory were

made, allowing its application to cross sections with an open, closed or branched

geometry, [15, 16, 17, 18]. Regarding the uncoupling between deformation modes,
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the theory considers the diagonalization of the beam governing equations as a criteria,

adopting towards this end a set of justified generalised eigenvalues problems.

Several other beam formulations accounting for the warping of thin-walled struc-

tures have been developed. Although, some of them were developed towards the ap-

plication to specific structural behaviours, it is worth to mention some of the respective

concepts.

A thin-walled beam formulation for anisotropic materials considering the out of

plane warping of beam cross section but assuming its in-plane rigidity was presented

by [19]. A set of orthogonal functions for the shear dependent warping of thin-walled

beams was derived. These warping functions were derived from considering the axial

displacement defined by the product of two unknown functions, one defined on the

beam axis and the other the interpolation over the beam cross section. The derivative

of the transverse displacements, two translational and one torsion rotation, is assumed

to be obtained from the unknown function associated with the axial displacement,

being however associated with a basis function that corresponds to a parameter yet

undetermined, independent of the cross section plane coordinates. Under these condi-

tions, a weak form of the equilibrium equation is derived, which leads to a generalised

eigenvalue problem, allowing to obtain a set of orthogonal warping functions, defin-

ing the so called eigenwarpings. An “improved Bernoulli model” and an “improved

Saint-Venant model” have been defined by respectively adding to the Bernoulli model

(linear axial displacement) and to the Saint-Venant model (linear axial stress distribu-

tion), a series expansion of these eigenwarpings.

The warping of thin-walled beams was also taken in account in [20] by consider-

ing an approximation of the thin-walled axial displacement field through a translation

of the origin, a rotation of the average plane of bending and a linear combination of

basis functions only dependent of the cross section coordinate. The basis functions

are assumed to be orthogonal to the constant and linear functions associated with the

origin translation and the average plane rotation, respectively. Comparatively to the

model of [19], the formulation of [20] derives the system of governing equations from

the assumptions made on the complete description of the displacement field, whereas

in [19] the solution of warping is obtained separately, for a specific displacement in-

terpolation.

A thin walled beam model applicable to cross section with both open and closed

midline profile was presented in [21]. The model assumes the cross section in-plane

rigid but considers the membrane shear deformation. A shear flexible element con-

sidering warping was presented by [22], the model is applicable to thin-walled beams

with an open profile of arbitrary geometry. In terms ok kinematics the formulation

considers the axial displacements of the cross section to be defined through the linear

combination of the axial displacement of the centroid, the cross section rotations due

to t flexure and the warping function defined through the sectorial coordinate. A finite

element is derived considering the approximation of the displacement, rotation and

warping through linear, quadratic and cubic functions.

A formulation for the analysis of thin-walled rectangular cross section submitted to
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torsion is developed in [23] in the sequel of a previous work, [24]. A set of orthogonal

basis functions is adopted for the axial displacement of the cross section webs, being

the displacement of the flanges obtained according to compatibility requirements. An

equilibrium equation governing the warping of the walls is established in terms of

the basis functions coordinates, being a torsional and a generalised warping stiffness

matrix derived. This equation is proven to be independent of the twist angle. On the

other hand, an equation similar to the non uniform torsion theory is derived, being the

angle of twist coupled with the warping functions parameters.

A beam model aiming to establish a procedure for obtaining warping functions was

presented in [25, 26, 27, 28, 29]. This model considers a division of the cross section

into rectilinear elements, having the displacements a linear variation along each wall

element. The axial displacements are obtained adding to the Bernoulli displacements

a linear combination of these additional warpings. Hence, a redundancy can exist

since it is possible to derive a combination of additional warping that correspond to

the classic displacements, being the same argument applicable to the warping defined

through the sectorial coordinate introduced by Vlassov.

A development of thin-walled beam models to the analysis of bridge structures

was presented in [33] and [34, 35] considering some of the formulations reported in

[31, 32].

The thin-walled beam model presented in this papers allows to obtain a set of de-

formation modes representing the cross section warping in a systematic procedure

through the homogeneous solution of the beam differential equilibrium equations.

These modes are uncoupled, allowing to separate the thin-wall structural behaviour.

The classic equations are retrieved side by side with a set of governing equations rep-

resenting higher order deformations. The shear deformation of the middle surface

is included given the flexibility considered for the approximation of the displacement

field; the displacement components are approximated independently, which allows the

model to be applied to generic cross section shape.

2 Model formulation

A one dimensional model for the analysis of thin-walled beams in order to consider

the corresponding out-of-plane warping is developed. The formulation assumes the

cross section to be in-plane rigid and considers the respective shear deformation. The

formulation considers the cross section to be divided into laminar elements, being the

corresponding behaviour refrenced to the wall middle surface. Hence, the displace-

ment field is approximated along the thin-walled middle surface.

2.1 Displacement field

The displacement field is defined admitting the beam cross section to be divided into

n laminar elements without any geometric restriction, i.e., it is possible to deal with
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more than two walls converging in a node as well as to consider two consecutive

aligned walls. The displacement components are defined through a set of interpola-

tion functions independently of the corresponding direction. A local reference frame

O(x, s, n) is considered, being the beam longitudinal axis represented by x , whereas

n represents the perpendicular direction relatively to the wall and s the running coor-

dinate along the cross section midline profile. The middle surface is therefore defined

by the cartesian pair (x, s).

The structural behaviour of the thin-walled beam is reduced to the cross section

midline profile considering only the corresponding membrane behaviour inasmuch

the cross section in-plane deformation is disregarded and hence the plate behaviour of

the wall is neglected, having no need to consider the approximation of displacements

along the perpendicular direction to the wall.

The displacement field is defined as follows:

ux(x, s, n) = ũx(x, s) = Φ ux and us(x, s, n) = ũs(x, s) = Ψ us (1)

where Φ and Ψ represent the arrays grouping the corresponding interpolation func-

tions, being ũx e ũs the respective amplitudes. Considering a set of p and m linear

independent function for the interpolation functions:

Φ = [φ1, · · · , φp] and Ψ = [ψ1, · · · , φm] (2)

being the respective amplitudes given by:

ux = [ux1, · · · , uxp]
t

and us = [us1, · · · , usm]t (3)

2.2 Deformation field

The deformation field represents the thin-wall membrane structural behaviour, being

obtained by assuming the small displacement hypothesis through the following:

ǫx(x, s, n) =
∂ũx

∂x
(4)

ǫs(x, s, n) =
∂ũs

∂s
(5)

γxs(x, s, n) =
∂ũx

∂s
+
∂ũs

∂x
(6)

By substituting the approximations defined in 1 the deformation field can be rewritten

in a more compact form as follows,

ǫ = Ee (7)

being E and e defined as follows,

E = [E1,E0] , e =
[

u
′

,u
]t

(8)
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with

u = [ux,us] E0 =





· ·

· Ψ,s

Φ,s ·



 E1 =





Φ ·

· ·

· Ψ



 (9)

where: i) the matrix E groups the cross section deformation modes, ii) the vector e

represents the corresponding parameters and iii) the vector u correspond to the ampli-

tudes of the displacement field approximations over the cross section.

The compatibility conditions are written as follows,

e = D
∗ u (10)

being D
∗ a compatibility differential operator defined by

D
∗ =

[

∂x

I

]

(11)

2.3 Constitutive relations

A linear, elastic and isotropic behaviour is admitted for each thin-walled element,

being considered the following constitutive relation

σ = C ε with C =





E∗ E∗ ν ·

E∗ ν E∗ ·

· · G



 (12)

where G represents the distortion moduli and E∗ represents the elastic moduli for a

plane state of stress, being given through

G =
E

2(1 + ν)
and E∗ =

E

1 − ν2
(13)

It is convenient for the model formulation to have a “discrete” measure associated

with the continuum variable that represents the stress field, σ. This is the dual variable

in relation to the deformation parameters e defined in (8). Hence, a vector of gener-

alised internal forces is defined by weighting the stress field through the deformation

modes as follows,

s =

∫

A

Et
σ dA (14)

The vector s represents a set of generalised forces, including the classic internal forces

from the classic beam theories and internal forces (self-equilibrated) of higher order.

For the sake of consistency with the developed formulation these generalised forces

are rewritten as follows,

s = [s1, s0 ]t (15)

The relation between the generalised forces s and the corresponding deformation pa-

rameters is obtained by setting the deformation energy of these discrte measures to
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equal the deformation energy of the corresponding continuum variables, namely the

stress and deformation field. The following constitutive relation at a cross section level

is then obtained

s = K e (16)

being the siffness matrix K defined as follows,

K =

[

K11 K10

K01 K00

]

and Kij =
∫

A
Et

i CEj dA for i, j = 0, 1, 2. (17)

2.4 Equilibrium equations

The equilibrium equations are obtained assuming valid the small displacements hy-

pothesis through the dual relation of the compatibility conditions written in (10), being

written as follows,

D s + p = 0 em que D =
[

D̃,− I
]

(18)

where i) D̃ represents the equilibrium differential operator, which is adjoint of the

compatibility operator D̃
∗ and ii) p represents the load vector.

The equilibrium equations can be written in terms of the amplitudes of the basis

function that approximate the displacement field over the cross section by substituting

in (18) the constitutive relations (16) and the compatibility conditions (10) obtaining

the following equation,

D K D
∗ ũ(x) + p = 0 (19)

After performing the operations corresponding to the differential operators, the

governing equation can be rewritten in the following format,

K2 ũ
′′

(x) + K1 ũ
′

(x) + K0 ũ(x) = 0 (20)

where (
′

) = d
dx

and the coefficient matrices are obtained as follows,

K2 = K11 =

∫

A

Et
1 CE1 dA (21)

K1 = K10 − Kt
01 =

∫

A

(

Et
1 CE0 − Et

0 CE1

)

dA (22)

K0 = K00 =

∫

A

Et
0 CE0 dA (23)

Since the approximation functions are linear independent the matrix K2 is verified

to be non-singular. The matrix K1 has a skew-symmetric structure, the matrix K0

symmetric and singular.
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The coefficient matrices, (21), (22) and (23) considering the approximations of the

displacement field defined in (1) can be written by diagonal blocks as follows,

K2 =

[

K2,a ·

· K2,t

]

, K1 =

[

· K1

−Kt
1 ·

]

and K0 =

[

K0,a ·

· K0,t

]

being the corresponding submatrices defined as follows,

K2,a = E∗ t

∫

A

Φ ⊗ Φ dA K2,t = Gt

∫

A

Ψ ⊗ Ψ dA

K0,a = Gt

∫

A

Φ,s ⊗ Φ,s dA K0,t = Gt

∫

A

Ψ,s ⊗ Ψ,s dA

K1 = Gt

∫

A

Φ,s ⊗ Ψ dA

3 Uncoupling procedure

3.1 General concept

The successful application of a beam model to the analysis of the three-dimensional

behaviour of thin-walled beams depends on the refinement considered for the dis-

placement field projection, which can be obtained through an enrichment of the ap-

proximation functions or by a refinement of the corresponding mesh, (cross section

discretization). However, if the resulting governing equations are not properly uncou-

pled, the result is a tangled set of equations that although the fact of being representing

the elasticity formulation of the problem, taking in account the respective reduction to

a 1D model, do not allow a clear physical interpretation of the structural phenomena.

Hence, the procedure of uncoupling the beam governing equations after a proper

projection of the displacement field is mandatory. In this paper, a new concept of un-

coupling is put forward by taking in account the eigenvalue statement associated with

the beam equations homogeneous solution and also the particular case that neglects

the cross in-plane deformability, which allows to simplify the problem and define a

systematic and simple procedure to obtain warping functions.

The conceptual idea of uncoupling within the framework of this beam model is to

derive the corresponding set of displacement modes from a set of orthogonal solutions.

The beam differential equation is intimately associated with the quadratic eigen-

value problem, qep. In fact, the general solution for equation (20) can be written in

an exponential form as follows,

ũ(x) = ũ0 e
(λ x) (24)

The substitution of the solution (24) into the beam model equations (20) yields the

following set of equations

Q(λ) ũ0 e
λ x = 0 with Q(λ) = K2 λ

2 + K1 λ + K0 (25)
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which, since eλ x > 0, corresponds to the following set of algebraic equations,

Q(λ) ũ0 = 0 (26)

The equations (26) represent a quadratic eigenvalue problem, being λ and ũ0 the

eigenvalue and the corresponding eigenvector, respectively. The solution (24) was al-

ready considered by [36, 37, 39] for plane elasticity problems and by [40] for beams

with a solid cross section with a three-dimentional behaviour in order to provide a

quantification for the Saint-Venant principle, being the exponent parameter λ identi-

fied as the inverse of a decay length associated with the solution.

The solution of the qep regarding the obtention of the corresponding eigenvectors

and eigenvalues and a transformation of coordinates that guarantee the same spectrum

(set of eigenvalues) is not as simple and straight foward as in the case of a the standard

eigenvalue problem. A major difference in relation to the more usual eigenvalue prob-

lems, namely the standard and the generalized eigenvalue problems, is the fact that in

the quadratic eigenvalue problem the number of eigenvalues to obtain is twice of the

problem dimension, i.e., (2 × n), and therefore the associated eigenvectors cannot

form a linearly independent set of vectors. Hence, the definition of the eigenvectors

for a new base of the equations is not possible.

Essentially two approaches exist regarding the qep solution: a) one that consid-

ers the problem in its original form and seeks for a solvent of the corresponding set

of algebraic equations and b) other that linearizes the problem in order to obtain a

solution through a generalized eigenvalue problem. The use of a linearization is the

usual procedure since it has a simple numerical implementation. However, careful

must be taken in order to preserve the initial symmetric/skew-symetric structure of the

problem.

The structure of the eigenvalue problem, i.e. the symmetry of K2 and K0 and the

skew symmetry of K1, implies a spectrum symmetric not only in relation to the real

axis but also symmetric in relation to the imaginary axis, [41]. Therefore, if λ is an

eigenvalue of the problem so are the eigenvalues −λ, λ̄ and − λ̄. The linear form of

the beam qep should therefore reproduce such spectrum location. However, one of

the most common linearizations in differential equations corresponds to consider the

following system of equation,

A w̃
′

− B w̃ = 0 with w̃ =
[

ũ
′

(x) ũ(x)
]t

(27)

and being the coefficient matrices A and B square matrices of dimension 2n (dou-

bling the problem dimension) given through,

A =

[

K2 ·

· I

]

and B =

[

K1 K0

I ·

]

(28)

However, both matrices presented in (27) are neither Hamiltonian nor skew-Hamiltonian

and hence the spectrum symmetry will not be preserved. In fact,

(AJ)t
6= AJ with J =

[

· I

−I ·

]

(29)
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Therefore, in order to preserve the symmetric structure of the problem, the symmet-

ric linearization of the beam differential equation adopted for this formulation yields

the following associated genralised eigenvalue problem,

(

B̄ − λ Ā
)

w̃0 = 0

Ā =

[

· −K0

K2 ·

]

B̄ =

[

K2 K1

· K2

] (30)

In fact, these matrices are respectively Hamiltonian, Ā and skew-Hamiltonian B̄,

which imply that the solution of the generalized eigenvalue problem permits to ob-

tain a spectrum both symmetric to the real and imaginary axis.

The set of eigenvalues obtained from (26) occur in pairs of symmetric real non-null

values and a null eigenvalue representing a twelve fold root, i.e. with an algebraic

multiplicity of 12. The symmetric values correspond to solutions decaying along both

directions along the beam longitudinal axis, whereas the null eigenvalue correspond

to a polynomial solution with no decaying pattern.

3.2 Classic modes

The null eigenvalue is a twelve fold solution of equation (30), which corresponds

to non-decaying solutions: six body rigid body motions and the Saint Venant clas-

sic solutions of extension, flexure and uniform torsion. Hence, the 12 corresponding

eigenvectors that would represent a basis for the displacement modes associated with

those solutions have to be obtained. However, the geometric multiplicity of the null

eigenvalue is 4: the submatrix K0,t (3 × 3) is null due to the in-plane undeformability

and the submatrix K0,a is obtained through the integration between a set of functions,

having one linear dependency. Therefore, since the algebraic and thr geometric mul-

tiplicities of the null eigenvalue do not coincide, a Jordan chain block of matrices has

to be obtained in order to identify the respective generalised eigenvectors, [44].

This fact corresponds to consider for the beam governing equation a general solu-

tion of the following form,

ũ(x) =

(

xk

k!
ũ0 + . . . ,+x ũk−1 + ũk

)

eλ x with ũ0 6= 0 (31)

where in the absence of span loads k = 3. According to [43] the solution (31) is valid

if and only if the following equalities hold,

∑i

j=0

1

j!
Qj(0)ui−j = 0 for i = 0 · · · k. (32)

where the superscript j in Q(j)(0) represents the jth derivative in relation to λ of the

matrix Q. The application of (32) results in the successive solution of a linear system
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of equations. The first set of equations, corresponding to j = 0 and i = 0, reads as

follows,

K0 u0 = 0 (33)

which solution is obtained by the null space of matrix K0. The vectors u0 are eigen-

vectors associated with λ0 = 0, spanning a space of dimension β0, i.e., the geometric

multiplicity of eigenvalue λ0. Since β0 < α = 12 and providing that u0 6= 0 the

next set of equations needs to be considered. The following set of equations is then

solved,

K0 u0 = 0 and K1 u0 + K0 u1 = 0

being mandatory that the eigenvector should not be null, i.e., u0 6= 0. For the

beam homogeneous differential equations either for a two-dimensional or a three-

dimensional formulation, it was verified that for achieving a convergence, i.e., β =
α = 12, four sets of equations are required, corresponding to 4 sets of generalised

eigenvectors: u0, u1, u2, and u3.

3.3 Application to cross sections rigid in-plane

A closer analysis of the differential beam governing equations allows to conclude that

it is possible to establish a relation between the transverse displacement amplitudes

and the amplitudes of the axial displacements approximation. This fact allows to

write the beam governing equations exclusively in terms of the axial amplitudes, in a

procedure similar to the dynamic analysis, which is well kwon as static condensation.

Towards this end, considering the coefficient matrices defined in (24) and given the

fact that since the in-plane cross section deformation is neglected the submatrix K0,t

becomes null, the beam governing equations are separated in the axial direction and

in the transverse direction as follows,

K2,a ũ
′′

a(x) + K1 ũ
′

t(x) + K0,a ũa(x) = 0 (34)

K2,t ũ
′′

t (x) + K1 ũ
′

a(x) = 0 (35)

Given the fact that the sets of approximation functions, Φ and Ψ, are constituted by

linear independent basis functions the submatrices K2,a, K2,a are non-singular and

hence can be inverted. Considering the equation (35), it is possible to obtain a relation

between the axial and traverse amplitudes of the displacement approximation func-

tions through the integration of the equilibrium equations on the transverse direction,

equation (35),

ũ
′

t(x) = −K−1
2,t K1 ũa(x) + c (36)

The subsequent substitution on the axial equilibrium equations allows to obtain a sim-

plified governing differential system of equations,

K2,a ũ
′′

a(x) + K∗
0,a ũa(x) = c∗ (37)
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being the matrix K0,a defined by

K∗
0,a =

(

K0,a − K1 K−1
2,t K1

)

ũa(x) (38)

which is a symmetric matrix. Considering a general homogeneous solution for (37)

through

ũa(x) = ũa0 e
√

µ x (39)

a generalised eigenvalue problem allowing to obtain the warping modes for the beam

cross section is obtained,

(

µK2,a + K∗
0,a

)

ũao = 0 (40)

The eigenvectors obtained by (40) allows to obtain a general homogeneous un-

coupled solution of the beam governing equations for the higher order deformation

modes, i.e., modes with a decaying behaviour along the beam axis. In order to define

an orthogonal displacement basis for the displacement field that allows the definition

of warping modes, the eigenvectors of (40) must be swept from the set of generalised

eigenvectors previously defined in section 3.2.

4 Beam model implementation

The approximation of the displacement filed over the beam cross section can be per-

formed either in a global form or considering a discretization of the cross section into

rectilinear elements, being the displacement approximation performed over each ele-

ment. The later procedure has the advantage of having a more efficient implementation

as well as enhancing h refinement for the displacement approximation. The approxi-

mation of the axial displacements for the cross section element considering quadratic

functions is represented in figure (1).

      

      

   

   

φ1

φ2

φ3

q4

q3q2q1

q5 q6

x

s
n

Figure 1: Approximation functions for a cross section element.

The beam governing equations are obtained from the assembly of the element equa-

tions coefficient matrices by taking in account the compatibility between cross section

elements. However, the tangential deformability of each cross section element is con-

sidered by this form. Since the cross section in-plane deformability is not considered
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in this work, the cross section transverse displacements are referred to the displace-

ments of a generic point of the cross section through a proper change of coordinates

or alternatively a matrix of restrictions regarding the tangential relative displacement

for each wall can be built.

The classic and warping modes are obtained for the beam governing equations

through the procedures described in 3.2 and in 3.3. A change of coordinates for the

beam equations is considered by a set of orthogonal displacement modes obtained

from the generalised eigenvectors and eigenvectors, allowing to establish a set of “un-

coupled” equilibrium equations, which can be written in terms of internal forces al-

lowing to recover the beam classic equilibrium equations and establish a similar set of

equations in terms of generalised internal forces associated with warping modes.

A solution for the axial beam displacement is derived taking in account the eigen-

values obtained through equation (40). The beam axial displacement can then be

obtained as follows,

δx(x) = α1ũa,1 e
µ1 x + α2ũa,2 e

µ2 x · · · αmũa,m eµm x (41)

where m ≤ n because the null eigenvalues have an algebraic multiplicity. The con-

stants αi are obtained taking in account the boundary conditions. However, a finite

element procedure is adopted to solve the differential equations along the beam axis.

Therefore, instead of considering the constants αi together with the associated ex-

ponential form eµi x, a new variable dependent on the beam axis coordinate α̃i(x) is

introduced rewriting the beam displacements as follows,

δx(x) = α̃1(x)qx1 + α̃2(x)qx2 · · · α̃m(x)qxm (42)

where qx1 to qxm correspond to the amplitudes of the interpolation functions along

the beam axis for the warping deformation modes.

5 Examples of application

Some example are presented considering the developed beam model. Firstly, the def-

inition of the warping modes of a cross section with different profile geometry is

illustrated through the proposed uncoupling procedure. The local influence of the

higher order warping modes can be verified through the results obtained for the struc-

tural analysis of the beam in terms of stresses distributions along the beam axis, being

identified a decaying pattern.

5.1 Cross section modes identification

A thin-walled rectangular hollow section made of concrete is considered. The concrete

behaviour is admitted to be linear, elastic and isotropic. The elastic modulus is E =
21GPa. In terms of the cross section discretization, three solutions were analysed: a)
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the cross section divided into 6 elements (two elements for the flange and 1 element

for the web) considering the axial displacements to be approximated through Lagrange

quadratic functions and b) the cross section divided into 12 elements (6 elements for

each flange and two elements per web) adopting linear functions for the approximation

of the axial displacement. The tangential displacement were approximated by linear

function for all the three solutions.

The set of deformation modes were obtained from the uncoupling procedure de-

scribed in 3.2 and 3.3 through the generalised eigenvalue problem. The eigenvalues

obtained are real numbers and occur in symmetric pairs. A null eigenvalue with an

algebraic multiplicity of 12 was obtained, which since the corresponding geometric

multiplicity was different implies the computation of a Jordan chain of matrices. The

Jordan matrices obtained allowed to identify the corresponding classic deformation

modes as well as a warping associated with the shear deformation.

The higher order warping modes for the rectangular hollow section are represented

in figures (2) and (3). The modes obtained from two approximations are presented:

a linear approximation that considers the cross section divided into 12 elements and

a quadratic approximation with 6 elements. The modes are presented hierarchically

according to the respective decay length, the warping modes of figure (2) have slower

decay than the modes in (3). The higher order modes represented in figure (2) rep-

resent shear-lag modes, being associated with the corresponding flexure modes. The

modes in figure (3) represent a shear-lag mode associated with the extension (on the

left side) and a higher order mode related to shear deformation of both flanges.
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Figure 2: Rectangular hollow section, 1st and 2nd warping modes

A twin hollow cross section obtained by introducing a sept into the previous rect-

angular hollow section was considered. For the approximation of the displacement

field both quadratic and linear functions were considered, namely a discretization into

7 quadratic elements (one per wall of each cell) and into 7 and 14 linear elements (one

and two elements per wall of each cell, respectively). The discretization into 7 linear

elements is represented in figure 4, being the corresponding degrees of freedom iden-
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Figure 3: Rectangular hollow section, 3rd and 4th warping modes

tified; the cross section is considered rigid by restricting the tangential displacement

along each element, e. g. q11 = q12.

q17 q18 q19
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q12 q13

q14

Figure 4: Twin box beam discretization.
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Figure 5: Shear lag warping modes.
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A set of shear-lag warping modes are represented in figures 5 for the quadratic

element approximation and for the linear approximation with 14 elements. The eigen-

values obtained for these modes through the two approximations solutions are similar.

The discretization with 7 linear elements does not allow to capture such modes, being

the corresponding eigenvalues higher and closer to the warping modes represented in

figure 6. The modes depicted in 6 represent higher warping modes associated with

torsion (on the left side) and with the extension (on the right side).
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Figure 6: Torsion and extension higher order warping modes.

5.2 Beam analysis

A simple supported thin-walled structure with a twin cell hollow section is considered

in order to verify the use of the warping modes derived within the context of a higher

order beam model. The structure represents a concrete girder spanning a length of

L = 15m. The beam cross section is a twin cell box shaped with an overall width

of 2 b = 2m and an height of h = 1m, having a constant thickness of t = 0.15m.

For the material an elastic moduli of E = 21GPa with a Poisson coefficient of

ν = 0.2 was considered. The results are therefore compared with a shell finite element

implemented in [45]. This example was chosen since it was already performed in [8],

and in [15], allowing to establish a comparison between results.

The linear approximation with 7 elements represented in figure 4 was considered

for the warping modes definition. A concentrated load of P = 10 kN is applied at

mid span in one of the outer webs of the cross section, as represented in figure 7,

submitting the beam to a restrained torsion.

The [45] model implemented considers quadrilateral shell elements (S4), adopting

a mesh of 28 elements along the beam cross section and considering the span divided

into 60 intervals, with a total of 1680 elements, which correspond to 9882 degrees

of freedom. The membrane axial stress distribution along the beam longitudinal axis

obtained through the higher order beam mode herein developed and a finite element
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model implemented in [45] is presented in figure 8. Nodal line A is relative to the top

of the beam right web, whereas the nodal B represent the top of the beam left web.

A stress color map obtained using the developed model is represented in figures 9

and 10, where the effect of the local load can be observed. A comparison of the axial

stresses distribution at the mid span cross section obtained from the current model

(green pentagrams), the [8] model (blue pentagrams), the [15] model (red pentagrams)

and results obtained from the [45] model (red circles) is presented in figure 11. A

fairly good agreement of results exist, being the distribution of Sedlacek’s the one

which deviates more from the others.
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Figure 7: Twin box beam loading.
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6 Conclusions

A beam model for the analysis of thin-walled beams was presented. The beam model

relies on the approximation over the cross section using a set of linear independent

basis functions in order to properly capture the three-dimensional structural behaviour.

The cross section in-plane is deformation is neglected, allowing to write the beam

governing equations in terms of the axial components of the displacement field and

establish a procedure for the uncoupling of the beam deformation modes through the

corresponding generalised eigenvalue problem. A set of warping modes for some thin-

walled cross sections was hierarchically obtained by sorting the modes according with

the respective eigenvalue. A twin-cell concrete girder simple supported was analysed

considering the warping modes obtained, being the results successfully compared with

a) the results obtained through a shell finite element model implemented in [45] (where

through kinematical constraints the cross section was considered rigid), b) the results

obtained by Sedlacek in [8] and c) the results obtained from the generalised beam

theory formulation of Möller in [15].
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