
Abstract

The influence of time dependent effects, namely the creep and shrinkage of the con-

crete flange, on the long-term behaviour of steel-concrete continuous beams with de-

formable connection is analysed. The stress and internal forces redistributions and

evolution are evaluated. The non-linear behaviour of concrete is considered by tak-

ing into account the cracking of concrete flange in negative moments. The non-linear

behaviour of the connection between the steel girder and the concrete flange is also

considered in order to simulate experimental results. The analysis is performed using

finite elements based on the internal forces approximation with functions that strictly

satisfy equilibrium. The viscoelastic behaviour of the concrete is considered through

an incremental process in time using a numerical method based on the creep approxi-

mation with a finite number of Dirichlet series terms. Finally, some numerical exam-

ples demonstrating the scope of this paper are presented.

Keywords: steel concrete composite beams, connection, time dependent effects.

1 Introduction

The time dependent analysis of composite beams with deformable connection taking

in account the concrete cracking in hogging regions is presented in this paper. The

study is focused on the stress and internal forces redistributions as a result of creep and

shrinkage of the concrete slab simultaneously with the flexibility of the connection. In

fact, the effect of the connection deformability in the behaviour of composite beam

was already proven to be relevant through the seminal work of Newmark. Regarding

this scope further works have been published, [1, 2, 3, 4]

The steel-concrete beam formulation corresponds to considers two Euler-Bernoulli

beams interconnected at the interface through mechanical devices with an appropri-
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ated stiffness. The analysis is performed by a finite element model derived from the the

corresponding beam differential equations admitting the connection to be distributed

along the element.

The analysis of steel-concrete beam models have been performed either by model-

ing each of the beam components through adequate finite elements from the libraries

of general purpose finite element software or through specific derived finite element

models, [10]. This work considers a finite element derived by the authors for the

analysis of composite beams with flexible connection that, since the analysis is fo-

cused on the redistributions of stresses and the respective internal forces, adopts the

approximation of the internal forces instead of a more conventional displacement field

approximation; as a result solutions that locally satisfy equilibrium being globally

compatible are obtained, rather than local compatible solutions but equilibrated on a

global sense, [7], [8].

Regarding the development of specific finite element for composite beams, several

works can be found in the literature; the most of these formulations considers an ap-

proximation of the displacement field, which however have some limitations due to

locking problems, [9]; finite element models based on a force method were devel-

oped by [5], which overcome the difficulties of locking but require a refined process

of iteration for the physical non linear analysis, [12]. Mixed formulations that con-

sider independently approximations for the displacement field and internal forces have

also been developed and successfully applied, [11]. There are also other approaches,

namely the finite difference implementation of [14] and a stiffness matrix derived by

[13].

The influence of the limited strength of concrete in tension, the time dependent be-

haviour of concrete in the structural behaviour of the composite steel-concrete beam

with flexible connection, in particularly regarding stresses and internal forces, is ana-

lyzed in this work through the analysis of a continuous beam.

2 Model formulation

The model adopted herein consists of two beam elements used to model the concrete

slab and the steel girder, respectively, interconnected by an interface model. Although

the shear connectors are discrete, a distributed stiffness of the shear connectors along

the composite beam axis is adopted in order to simplify the model, [2], [3]. The

shear deformations of the concrete and steel section are neglected and only the relative

displacement along the beam axis “slip” is considered in the analysis.

2.1 Equilibrium equations

The differential equations of equilibrium are established for an infinitesimal element

of the composite beam, where the geometric centre of each component is adopted for

the corresponding reference point. The distance between the interface and the refer-
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ence point of the concrete slab and steel girder is represented by hc and hs, respec-

tively. The equilibrium equations in terms of internal forces are written as follows,

• concrete section

dNc

dxc

+ pxc
+ fh = 0 (1)

dVc

dxc

+ pzc
+ fv = 0 (2)

dMc

dxc

− Vc + myc
+ fh hc + fθ = 0 (3)

• steel section

dNs

dxs

+ pxs
− fh = 0 (4)

dVs

dxs

+ pzs
− fv = 0 (5)

dMs

dxs

− Vs + mys
+ fh hs − fθ = 0 (6)

in which Nc, Vc and Mc are, respectively, the axial force, shear force and bending

moment in the reference point of the concrete section; and Ns, Vs and Ms are, respec-

tively, the axial force, shear force and bending moment in the reference point of the

steel section.

The shear forces need not to be considered explicitly in the equilibrium equations

since the corresponding deformations are neglected. The elimination of the shear

forces from the equilibrium equations is obtained by substituting equations (2) and (5)

on the result obtained by taking the derivative of the sum between equations (3) and

(6), leading to:
d2M

dx2

+ H
df

dx
+ pz = 0 (7)

in which M = Ms + Mc; dx = dxc = dxs; and H = hc + hs represents

the distance between the references axes adopted for the concrete and steel sections.

Rewriting the equations (1), (4) and (7), the following equilibrium equations are ob-

tained

D s + p = 0 (8)

being the internal forces, s, and the span loads, p, represented as follows,

s =
[

Nc Ns M fh

]t
p =

[

pxc
pxs

pz

]t

The equilibrium differential operator is given by

D =













d

dx
· · 1

·

d

dx
· − 1

· ·

d2

dx2
H

d

dx













(9)
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2.2 Compatibility conditions

Since the longitudinal deformability of the connection between the concrete slab and

the steel girder is considered, the Bernoulli hypothesis is no longer valid for the com-

posite beam section as a whole. Nevertheless, the above mentioned hypothesis is

admitted to remain valid for the concrete and steel sections. The displacement field

for each beam component is then given as follows,

ucz(x, z) = ūcz(x), θc(x, z) = θ̄c(x) ucx(x, z) = ūcx(x) + θ̄c(x) zc (10)

usz(x, z) = ūsz(x), θs(x, z) = θ̄s(x) usx(x, z) = ūsx(x) + θ̄s(x) zs (11)

Since that only the relative displacement along the beam axis, “slip”, is considered and

neglecting the shear deformation of the section, the following relations are obtained:

ūcz(x) = ūsz(x) = ūz(x), θ̄c(x) = θ̄s(x) = θ̄(x) and θ̄(x) = −

dūz(x)

dx
(12)

Considering the small displacements hypothesis to be valid, the following compat-

ibility conditions are obtained for the deformations of the composite beam element:

e = D
∗ u (13)

where D
∗ corresponds to the compatibility operator, which is self-adjointed to the

equilibrium operator in equation (9) and

e =
[

ǫc ǫs χ sh

]t
and u =

[

ūcz ūsz ūz

]t
(14)

where ǫc and ǫs represent the axial deformation at the concrete and steel reference

point, respectively, χ corresponds to the section curvature and sh represents the rel-

ative displacement along beam axis; ūcz and ūsz corresponds to the longitudinal dis-

placement of the concrete and the steel part of the beam and ūz represent the vertical

displacement of the beam.

2.3 Constitutive relations

The internal forces can be defined by weighting the stress field through the corre-

sponding deformation modes as follows,

s̄ =

∫

A

Et
σ dA with s̄ =

[

Nc Ns M
]t

and σ =
[

σc σs

]t
(15)

being σc and σs the axial stress for the concrete and steel section, respectively, and E

the matrix that represents the deformation modes, which is written as follows,

E =

[

1 · zc

· 1 zs

]

(16)
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The following constitutive relation at a cross section level is then obtained

s = K e (17)

being the siffness matrix K defined as follows,

k =









Ec dAc · Ec zc dAc ·

· Es dAs Es zs dAs ·

Ec zc dAc Es zs dAs Ec z2
c dAc + Es z2

s dAs ·

· · · kch









(18)

where Ec and Es represent the concrete and steel elastic modulus and kch the connec-

tion stiffness.

3 Numerical model

3.1 Finite element formulation

The numerical model adopted in this work for the analysis of composite beams ne-

glects the shear deformation of the beam section and considers the deformability of

the connection along the beam axis. The set of equations previously presented (equi-

librium, compatibility and constitutive), along with appropriate boundary conditions,

define the behaviour of the composite beam finite element adopted.

Depending on the solution scheme adopted for those equations different formula-

tions are suitable. In this paper, attention is focused on internal forces and stresses

distributions in composite beams with flexible connection, and hence, a force field

based finite element formulation is appropriate, [1], [5].

The equilibrium equation solution is considered to be of the following form,

s = SX + s0 (19)

in which s0 corresponds to a force field distribution in equilibrium with the applied

loads, S collects the internal forces approximation functions that locally satisfy the

equilibrium in the absence of applied loads, being X their associated weights.

The compatibility condition defined in (13) is enforced on average through the

domain, integrated twice by parts in order to introduce the Dirichlet conditions, and

introducing the constitutive relations (17) the following compatibility condition for

the element is obtained:

Aq = FX + u0 (20)

with the flexibility matrix for the element, F, and the generalised deformations asso-

ciated with the beam loading, u0, given as follows:

F =

∫

A

St f S dx and u0 =

∫

A

St f s0 dx with f = k−1 (21)
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where A denotes the compatibility matrix on the boundary; q represents the finite ele-

ment nodal displacements; F represents the flexibility of the composite beam element

and u0 represents the generalised strains due to the applied loads when X is null. The

equilibrium on the boundary is satisfied imposing the following relation:

Q = At X + At
0 (22)

in which At
0 correspond to the nodal forces in equilibrium with the applied loads and

Q represents the nodal forces applied to the composite beam element.

The set of equations (20) and (22) describe the behaviour of the composite beam

finite element and can be compactly written in terms of the nodal displacements q, as

follows

Kb q + Q0 = Q (23)

where Kb represents a stiffness matrix for the composite beam element and Q0 the

corresponding fixed end forces, which are defined by:

Kb = At
F
−1 A and Q0 = −At

F
−1 u0 (24)

3.2 Non-linear analysis

A numerically algorithm was developed in order to consider the non linear behaviour

of the composite beam, particularly in what concerns the non linear constitutive rela-

tions of the concrete slab and the shear connectors. The algorithm consists in a load

incremental analysis, determining iteratively for each increment the corresponding

nodal displacements as follows:

qk = qk− 1 +

iNR
∑

i = 1

∆qk
i (25)

where k denotes the applied load step, i denotes the structural level iteration process,

being iNR the number of iterations needed to achieve convergence.

The nodal displacement increment are obtained from the solution of the following

equations:

K
k
b,i ∆qk

i + ∆Qk
0 = ∆Qk for i = 1

K
k
b,i ∆qk

i = ∆Qk
d,i for i > 1

The unbalanced nodal forces for each iteration are determined by

Qk
d,i = Qk

− Qk
E,i (26)

where Qk corresponds to the applied loads and Qk
E,i represent the element nodal forces

associated to the non linear constitutive relations.

Since the finite element has been developed approximating internal forces, the el-

ement forcesQk
E,i cannot be obtained through the internal forces integration along the
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element, as it would be in a displacement based finite element. In order to overcome

this issue an iterative process based on the deformations associated to the unbalanced

forces at each section is implemented, resulting for each step of iteration i (structural

level) an iterative process at the element level, [4] and [5].

4 Time dependent analysis

The concrete strain for a generic instant t after the beam loading t0 and in the absence

of thermal variations strains can be defined as follows:

ǫc(t, t0) = ǫc σ (t, t0) + ǫc n (t) (27)

where ǫc σ (t, t0) corresponds to the strain stress dependent and ǫc n (t) represents the

shrinkage strain which is independent of the concrete stress. Creep deformation can be

considered approximately linear in relation to stress whenever the stress values remain

less than half of the concrete compression strength characteristic value, and as a result

one obtains:

ǫc σ (t, t0) = σc (t0) φ(t, t0) with φ(t, t0) =
1

Ec(t0
+

ϕ(t, t0
Ecm

(28)

where φ(t, t0) represents the creep function to adopt, in which Ecm is the concrete

modulus at 28 days, and ϕ(t, t0) correspond to the creep coefficient defined as a ra-

tio between the creep strain at time t and the initial elastic strain for a stress σc (t0)
considered applied 28 days up to the casting.

However, the concrete stresses will be variable in time and hence the deformation

dependent on the stress is rewritten as follows,

ǫc σ (t, t0) =

∫ σc (t)

σc (t0)

φ(t, τ) d σc(τ) = φ(t, t0) σc (t0) +

∫

t0

t φ(t, τ)
∂ σc

∂τ
dτ (29)

which corresponds to a Volterra integral equation. The implementation of this relation

is considered by approximating the creep coefficient with a finite number of Dirichlet

series terms. This allows a numerical solution of (28), obtaining a consitutive relation

for each interval of time as follows,

∆σk
c = Ek∗

c

(

∆ǫk
c σ − ∆ǫk∗

cc − ∆ǫk∗
sh

)

(30)

where Ek∗
c represents the equivalent elastic modulus to be adopted in the k interval,

being dependent of the creep function approximation; ∆ǫk∗
cc corresponds to the creep

strain in the k interval due to the stress history of the previous intervals and ∆ǫk∗
sh

represents the shrinkage strain.

Introducing the constitutive relation (30) in (17), the governing equation for an

interval of time k, in the absence of applied loads, is written in terms of nodal dis-

placements as follows:

K
k∗
b ∆qk + ∆Qk∗

0,ϕ + ∆Qk∗
0,sh = 0 (31)
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where K
k∗
b represent beam element stiffness matrix for the the k time interval and

∆Qk∗
0,ϕ and∆Qk∗

0,sh represent the fixed end forces corresponding to the creep and shrink-

age strain, respectively.

5 Applications

The numerical example herein presented consists in the analysis of the time dependent

behaviour of a continuous composite beam with three spans (10 m + 15 m + 10 m),
regarding the stress and internal forces redistribution due to creep, shrinkage and

cracking of concrete.

The numerical model presented was adopted for the analysis, considering 10 ele-

ments for the lateral spans and 15 for the central span. The period of time from 10

days to 10000 days is considered in the analysis, corresponding approximately to 30

years, being the period divided into 32 intervals for the analysis.

The concrete slab is connected to a steel section by rows of two studs (φ 19) uni-

formly spaced along the beam axis. The concrete slab is 150 mm thick with an effec-

tive flange of 1500mm and a concrete class C25/30. The steel section consists in a

profile IPE500 grade S275JR.

In order to evaluate the influence of considering the connection flexibility and the

concrete cracking on the composite beam long-term behaviour different kinds of anal-

ysis were performed. The considered analyses were: (i) a linear analysis neglecting

the connection deformability, (ii) a linear analysis with deformable connection, (iii)

a non linear analysis considering the connection non linear behaviour. For the last

type of analysis two different situations were considered: (a) neglecting the concrete

tensile strength (b) limiting the concrete tensile strength to fct = 2 MPa.

The stress redistribution was evaluated considering the influence of i) the con-

nection deformability, ii) the steel reinforcement area at hogging regions and iii) the

flanges effective width. Towards this end, different spacings of the connectors were

considered 150 mm, 300 mm, 600 mm and 750 mm; different reinforcement areas,

As = 10 cm2 As = 20 cm2 As = 30 cm2 As = 40 cm2 and As = 50 cm2 and

different effective flange widths.

The shear force obtained from a linear analysis and a non linear analysis is rep-

resented in figure (1) (given the problem symmetry, the beam is represented from

one end to its mid-span). As it can be observed, the influence of the connection de-

formability is significant; in figure (2), several degrees of connection are considered

by adopting different spacings between connectors. The influence of the reinforce-

ment steel at the hogging region on the shear force distribution can be observed in

figure (3), where the shear force distribution considering the connectors to be spaced

longitudinally 300 mm is depicted for different reinforcement steel areas.

The stresses at the concrete slab in both top and bottom fibers are represented in

figures (4) and (5), respectively, for the different analyses performed. The influence

of the connection deformability is relevant as it can be verified, which together with
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Figure 1: Distribution of shear force, comparison between analysis.
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Figure 2: Distribution of shear force, connection deformability.

the concrete cracking leads to a significative redistribution of stresses. The evaluation

of the redistribution of stresses considering the tensile strength limited to fct for dif-

ferent connections is represented in figures (6) and (7) for the top and bottom fibers

respectively.

The concrete stress (bottom fiber) distribution along the beam axis is represented

for different reinforcement degrees at the internal support in figure (8) and for different

effective flange widths (considering a steel reinforcement of 20 cm2) in figure (9);

the connection degree is equivalent to connectors equally spaced by 300 mm in both

conditions.
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Figure 3: Distribution of shear force, reinforcement steel.
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Figure 6: Concrete stress (different connection degrees) - top fiber.
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Figure 7: Concrete stress (different connection degrees) - bottom fiber.
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Figure 8: Concrete stress - bottom fiber, comparison between reinforcement steel.
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Figure 9: Concrete stress - bottom fiber, comparison between flange widths.

The long term redistribution of stresses and internal forces was also evaluated from

10 to 10000 days. The beam is considered to be loaded at 10 days, being the load con-

stant over the period of time in analysis. Only the effect of the connection deforma-

bility together with the time dependent effects due to creep and shrinkage performed

through a linear analysis is presented.

The distribution of the shear force for different connection degres is represented

for 10000 days due only to creep in figure (10) and considering simultaneously the

effect of creep and shrinkage in figure (11). The time evolution of the shear force at

the beam end support is represent for different connections in figure (12) for both time

dependent effects: creep only and creep simultaneously with shrinkage. The effect of

shrinkage is far more significant than the effect of creep, being more expressive for

more flexible connections.
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Figure 10: Distribution of shear force at 10 and 10000 days due to creep.

The concrete stress distributions along beam axis at 10 days and at 10000 days tak-

ing into account the creep effects and the creep and shrinkage effects in simultaneous
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Figure 11: Distribution of shear force at 10 and 10000 days due to creep and shrinkage.
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Figure 12: Time evolution of shear force at the beam en support.
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Figure 13: Distribution of stress at the upper flange of the steel section.
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are represented for the upper and lower flange of the steel section in figures (13) and

(14), respectively, for connectors spaced at 300 mm. The evolution in time for the

compressive stress for the upper flange at the mid of the lateral span is represented

in figure (15), being the stress at the lower flange at the steel section internal support

represented in figure (16). The results were obtained for different connection degrees

and considering creep and shrinkage effects.
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Figure 14: Distribution of stress at the lower flange of the steel section.
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Figure 15: Distribution of shear force.

6 Conclusion

A finite element previously derived by the authors for the analysis of steel concrete

composite beams with flexible connection was successful adopted for the study of

the long-term behaviour of the referred beams. Moreover, the limited tensile strength

of concrete was also considered in the analysis. The conclusion that as a result of

the concrete slab creep and shrinkage a transfer of stresses from concrete to the steel

14



10
1

10
2

10
3

10
4

−230

−220

−210

−200

−190

−180

−170

−160

Days

S
tr

es
s 

[N
/m

m
2
]

 

 

@=150 mm, creep

@=300 mm, creep

@=600 mm, creep

@=150 mm, creep and shrinkage

@=300 mm, creep and shrinkage

@=600 mm, creep and shrinkage

Figure 16: Distribution of shear force.

girder occurs can be drawn. Moreover, this stress redistribution is more meaningful as

the connection system flexibility decreases.

The limited concrete tensile strength causes a redistribution of stresses, lowering

the concrete stresses and increasing the steel girder stresses. Regarding the results

obtained, the following can be concluded: a) Concrete stresses decreases with time

as a result of the creep effects and are strongly dependent on (i) the concrete tensile

strength and (ii) the connection flexibility; a significant part of the concrete slab is

subject to tensile stresses arising from shrinkage effects; b) Steel stresses increase

with time, being the increase more expressive when the shrinkage is simultaneously

considered and where concrete cracking has occurred. c) The effect of creep in simul-

taneous with shrinkage is far more important than just the effect of creep. In any of

those cases, the redistribution of stresses resulting from creep and shrinkage effects is

as more significant as the connection the stiffness increases.
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