
1

Abstract

Genetic algorithms (GA) and particle swarm optimisation (PSO) are well-known for
their ability in obtaining global optima. Some evidence exists in the structural
engineering literature that PSO involves less overall computation effort than GA.
Hence, these two methods have been selected and benchmarked against each other
to test their relative robustness and efficiency for structural optimisation
applications. This paper examines the performance and efficiency of these two
optimisation algorithms in solving both mathematical benchmark functions and the
classical ten-bar truss redundant problem. Tests are performed to assess the
performance of each in relation to population size required and number of
generations to achieve convergence. For the more complex problems, the PSO is
shown to outperform the GA for smaller population sizes.

Keywords: optimisation, evolution, genetic algorithm, particle swarm optimisation,
efficiency, performance comparison, population size, truss.

1 Introduction

In structural engineering optimisation, searching for the global optimum essentially
means finding the best solution in a set of admissible solution candidates subject to
one or more constraints. Optimisation techniques can be categorised into two
groups. The first is classical optimisation which relies on derivative functions and
has applications in many engineering and mathematical problems, especially where
the region of the optimum can be predicted. Where the solution space is complicated
or non-differentiable, such methods tend to converge on local optima rather than a
global best solution. In these cases, the second group, non-derivative and
evolutionary methods have been shown to succeed.

Paper 68

A Comparison of Genetic Algorithm and
Particle Swarm Optimisation for
Theoretical and Structural Applications

Z. Wang, T.J. McCarthy and M.N. Sheikh
Faculty of Engineering
University of Wollongong, Australia

©Civil-Comp Press, 2012
Proceedings of the Eleventh International Conference
on Computational Structures Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

2

In this paper, two of the non-derivative evolutionary global optimisation search
approaches are compared for both standard test mathematical functions and a much
cited engineering design test application. To compare GA with PSO for obtaining
global optima, two mathematical benchmark functions are taken from Yao et al. [1]
and Premalatha and Natarajan [2]. The classical 10 bar redundant truss problem is
also used [3]. In the mathematical test function benchmarking, GA and PSO are
used to solve non-constraint problems within a limited range. Optimised solutions
are compared with theoretical solution of those mathematical functions. For the
engineering design test case, the classical redundant ten-bar truss problem is used
with constraints modelled using penalty functions.

2 Genetic Algorithms (GAs)

The GA is an optimisation method based on the Darwinian rule of ‘Survival of the
fittest’. It simulates of the process of natural selection. A full coverage of GA can be
found in Refs [4-5].

The GA deals with a population set of potential solutions. Each member of the
population is coded to resemble a string of chromosomes. The representation is
called the genotype. The unit make of the genotype is the gene. It represents the
values of each design variable in a problem. There are various notations of
chromosome representations such as binary bit string, floating points and q-ary
coding [6].

Three main stages comprise the process of GA: fitness function evaluation; selection
of the fittest individuals; and reproduction of the offspring [7]. In the first phase,
fitness evaluation, the objective function is calculated for each of the population in a
generation. The selection method employed in this paper is the tournament method
[7]. In this, two members of the population are chosen at random and the better
fitness is selected for reproduction. The probability of being chosen for the
tournament is a function of the member’s fitness. The reproduction phase has two
operations. The main operation is called crossover, wherein the new generation is
formed by combining part of the genes from two fit parents. Once the new
population is created, a second operation called mutation is performed. This is only
done on a small proportion of the population and is an attempt to maintain genetic
diversity. The two operators create the next generation according to the formulae in
Equation 1.

 1 2

1 2

 (1)
 (1)

parent parent

parent parent

x x x
x x x

γ γ
αβγ αβ γ

= + −
= + −

 (1)

where x is the design variable’s representation, γ is a random number determining
how many of the genes needed from that parent, α is the mutation probability and β
is a random number between 0 and length of the chromosome to decide which gene
is to be mutated or perturbed.

3

Processes of running GA’s are as follows:

1. Randomly initialise the first population
2. Calculate the value of fitness for each member of the population
3. All members of the population go to the selection operator with their

corresponding fitness values where the best are selected for reproduction.
4. Crossover operation occurs to produce the next generation.

a. A (small) selection of the new population are mutated
5. Repeat step (2) to (4) until the convergence criteria are met.

The main choices the GA user has in using the technique are population size,
selection method and mutation rate. Generally, the larger the population the more
likely it is to find a near optimal solution

3 Particle Swarm Optimisation (PSO)

The PSO was developed using the analogy of social behaviour in a flock of birds
flock or a school of fish. Kennedy and Eberhart [8] first introduced this evolutionary
based optimisation technique. Similarly to GA, the fitness of an objective function
is evaluated for each individual particle. At each iteration, the particle’s movement
within the swarm is influenced by three factors: it has an existing momentum and
seeks to carry on its current course; its own best position from the first iteration to
the current one acts as a draw to pull it back to a better state; it is also guided
towards the best position in the swarm. These three components are added
vectorally to produce the movement to its next location in the solution space where
the objective function is recalculated.

An advantage of this algorithm is that it uses ‘prior knowledge’ in the search
process. Information about the local particle and swarm are shared to create the
swarming behaviour. The algorithm terminates when the swarm approaches the best
known position regardless of the behaviour of the swarm, or the whole swarm
converges to a position in the solution space.

Mathematically, the position x of a particle i, at time t is updated as
 1

i i i
t t tx x v t−= + Δ (2)

where i
tv is the velocity vector at time t, and Δt is the time step between iterations.

The incremental step, Δt, is taken as a unit (one) here for convenience. Particles have
set values for each of the input variables which have been defined as the dimensions
of the solution space. The velocity component of a particle has been separated into
vectors that have multi-dimensions. Each of the dimensions in the velocity vector
array represents the changing of a variable. The velocity vector of each particle is
calculated as

4

 1 1 1 1 2 2 1 1
1

() ()i i g i
i i t t t t
t t

c r p x c r p xv wv
t t

− − − −
−

− −
= + +

Δ Δ
 (3)

where, both r1 and r2 are generated uniformly between 0 and 1 for the purpose of
providing randomness; corresponds the best particle position of particle i in its
time history; represents the best position of all the particles at time t-1; and

 are acceleration parameters; is the inertia coefficient.

The acceleration coefficients c1 and c2 control the random search effect of the
cognitive and social components of velocity. The exploratory nature of particles is
determined by the relative values of c1 and c2. A large cognitive acceleration
coefficient, c1, makes the particle wander excessively. A large social acceleration
coefficient tends to trap the optimisation in local minima. Perez and Behdinan [9]
claim that the coefficients, w, c1 and c2 are stable as long as the conditions in
Equation (4) are met.

1 2

1 2

0 4

1 1
2

c c
c c w

< + <
+

− < <
 (4)

Instead of using static inertia weight, Eberhart and Shi [10] suggested a dynamic
improvement can be made to the inertia weight by using a constriction factor.
Ratnaweera [11] proposed a method that gave a higher value of c1 initially and
reducing it each iteration, while for c2 initially had a low value and increasing it each
iteration. They are given by:

1,min 1,max
1 1,max

2,max 2,min
2 2,min

()
()

()
()

t

t

c c t
c t c

n
c c t

c t c
n

−
= +

−
= +

 (5)

where c1,max = c2,max = 2.5 and c1,min = c2,min = 0.5, t is the time step and nt is the total
number of time steps. This method initially allows particles to explore the search
space widely and then converges to a good optimum towards the end of the process.
The controlling stopping condition for this is the maximum iteration number.

According to Perez and Behdinan [9], the process of PSO can be summarised into
following steps:

1. Initialise a set of particles randomly distributed through the solution space.
Initial velocities can be offset to zero or to random values.

2. Evaluate the objective function for the swarm of particles and store their
position information.

3. Update the position of each particle from the corresponding velocity .
4. Repeat step (2) and (3) until the stop criterion is reached.

As with the GA, the user has to choose the population size. In addition the PSO
momentum and acceleration coefficients need to be selected.

5

4 Optimisation algorithms in benchmark functions

The benchmark mathematical functions used to compare GA and PSO are
summarised in Table 1. The purpose of the benchmarking is to test the robustness
and efficiency of the optimisation method. The optimisation technique should
display the following:

• It is able to search for and find the best solution in a problem.
• It has good computational efficiency.
• It requires minimal input from users and is less sensitive to these inputs.

Efficiency of optimisation methods is also important. The ability to find the global
optimum of GA and PSO has been demonstrated by many researchers. It is useful to
know which technique finds a solution with the smallest population and the least
iterations.

Name Functions Dimension range of xi
Rosenbrock’s

Valley () ()
1 2 22

1
1

() 100 1
n

i i i
i

f x x x x
−

+
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑ 10 ±2.048

Schwefel’s
Function ()

1
() sin | |

n

i i
i

f x x x
=

⎡ ⎤= −⎣ ⎦∑ 10 ±500

Table 1: Benchmark Functions[1-2]

Figure 1: Graphs of simplified benchmark functions

4.1 Benchmark functions

The benchmark functions used have 10 dimensions. Rosenbrock’s Valley function
and Schwefel’s function are uni-modal where there is only one minimum. The
number of independent variables (dimensionality) defines the complexity of a

6

problem. The greater the number of design variables a problem has, the harder it is
for an algorithm to find its optimum.

For illustration, Figure 1 shows the graph of the two benchmark functions in their
smallest dimensional presentation. The 2D Schwefel function is presented in the x-y
plot. The 3D Rosenbrock valley function has been plotted with a log-scale so that
the global minimum can be seen. These functions are considered as good benchmark
functions for an optimising program as they include several local minima and only one
global minimum. Schwefel’s function has the second best minimum geometrically
distant from the global minimum. Some algorithms tend to get trapped in local optima.

4.2 Parameters

For the purpose of this study, the configurations of PSO and GA were fixed for all
functions. Coefficients are given in Table 2. The Matlab global optimisation toolbox
was employed as the GA engine for this study.

 PSO Configuration GA Configuration
Population 20 20
Number of Iterations 100 100
Cognitive coefficient (c1) Equation (5) N/A
Social coefficient (c2) Equation (5) N/A
Inertia coefficient (w) 0.8 N/A
Selection method N/A Tournament
Crossover rate N/A 0.8
Mutation N/A Adaptive feasible
Elite number N/A 2

Table 2: PSO and GA configurable coefficients

It has been suggested by Wolpert and Macready [12] that within certain
assumptions, there is no one algorithm that is the best for all problems. Furthermore,
there is no one set of parameters for a single algorithm that is best for all problems
either. Since both approaches has been proved to be successful in finding the global
minimum for these benchmark functions in Yao et al. [1] and Premalatha and
Natarajan [2], the main question here is on the computational efficiency. The
performances of both GA and PSO are evaluated at the end of 100 iterations and
also at convergence or 800 iterations. Following Ratnaweera’s method [11] the PSO
acceleration coefficients are taken from Equation (5) for this study.

4.3 Benchmark results and comparison

Rosenbrock’s Valley function has a known global minimum of zero when all the xi
are equal to one. The Schwefel’s function has its smallest value of -4189.829 when
all the xi equal to 420.9687[1-2]. Columns 3 and 4 of Tables 3 and 4 show the
solutions found by GA and PSO after 800 iterations. The GA is slightly better than

7

PSO for Rosenbrock’s function while both produce the correct solution for
Schwefel’s function. Since the ability to find the best solution in benchmark
functions is not the main aim of this study, the computational efficiency is of
interest. Therefore, results reported at the 100th iteration are examined in terms of
their performance and efficiency.

Experiments were carried out in two groups with respect to number of initial
candidates (population). The initial population of the first group was generated
uniformly on a random basis and is named Uniformly Generated Initial Population
(UGIP) group. Each run had a different random initial population. The other group
kept the same initial population, named as Same Initial Population (SIP) group, for
both GA and PSO. This population was generated randomly for each run and given
to both algorithms.

Tables 3 and 4 summarise the results of benchmark functions in comparison of both
PSO and GA. The results of GA and PSO are taken from the best of 10 runs. The
true minimum of these functions are given as well for reference.

 Rosenbrock’s Valley Function

True UGIP (800 iterations) UGIP (100 iterations) SIP (100 iterations)
GA PSO GA PSO GA PSO

f(x) 0 0.000811 0.02084 0.183782 1.562608 1.32283 6.62202
x1 1 0.97239 0.99941 0.989858 0.992501 0.990379 0.751846
x2 1 0.913261 0.999219 1.00736 0.988137 0.980376 0.546456
x3 1 0.849115 0.998002 1.002535 0.98474 0.969381 0.310197
x4 1 1.006635 0.995507 0.991605 0.965107 0.940484 0.105409
x5 1 1.00165 0.991558 0.980749 0.896334 0.888687 0.02242
x6 1 0.863724 0.983242 0.970574 0.776144 0.788604 0.005274
x7 1 1.022321 0.967305 0.954449 0.640092 0.617933 -0.01101
x8 1 0.923904 0.936416 0.922452 0.425128 0.383442 0.007974
x9 1 0.889392 0.877236 0.844496 0.192532 0.150443 0.021963
x10 1 0.563994 0.768571 0.71227 0.039914 0.026062 0.018382

Table 3: Results comparison for Rosenbrock’s Valley Function

Figures 2 and 3 show the global minima versus iterations from both GA and PSO for
the two benchmark functions. Combining the final results shown in Tables 3 and 4,
and the global best convergence patterns in Figure 2 and Figure 3, it can be
concluded that each algorithm is capable of finding the near optimal solutions. The
initial path to convergence is less clear.

The GA results for Rosenbrock’s Valley are better at the end of the 100th iteration
for both UGIP and SIP groups. In contrast, PSO showed a better fitness value for
Schwefel’s function. There are still significant errors between the true solution and
the answers after 100 iterations. Examining the curves in Figure 2, it is arguable
that the performance may be influenced by the quality of the initial population.

8

Therefore, the same experiments were carried out with the same initial population of
both GA and PSO and shown in Figure 3. The PSO starts well for Rosenbrock’s
function but the GA ultimately overtakes it. The opposite is true for Schwefel’s
function solution.

 Schwefel’s Function

True
UGIP

(800 iterations)
UGIP

(100 iterations)
SIP

(100 iterations)
GA PSO GA PSO GA PSO

f(x) -4189.83 -4189.83 -4189.83 -3306.75 -4026.08 -3045.19 -3566.97
x1 420.9687 420.9687 420.9687 -489.513 426.1113 -298.849 -500
x2 420.9687 420.9687 420.9687 -277.859 422.9728 -142.741 423.218
x3 420.9687 420.9687 420.9687 459.187 415.4945 -299.917 424.465
x4 420.9687 420.9687 420.9687 409.1342 421.463 420.4999 421.707
x5 420.9687 420.9687 420.9687 424.5183 -313.455 429.7488 423.777
x6 420.9687 420.9687 420.9687 -294.442 417.4509 438.5725 421.623
x7 420.9687 420.9687 420.9687 409.2465 420.1107 -297.189 431.479
x8 420.9687 420.9687 420.9687 423.1055 429.7586 423.9826 429.473
x9 420.9687 420.9687 420.9687 420.2371 430.312 -24.5423 -500
x10 420.9687 420.9687 420.9687 423.2134 422.147 416.802 -299.33

Table 4: Results comparison for Schwefel’s Function

Figure 2: GA & PSO performance comparison with random initial candidates

9

Figure 3: GA & PSO performance comparison with the same initial candidates

4.4 Benchmark results discussion

From the results above it cannot be concluded that one optimisation algorithm is
better than the other. Other mathematical functions from Yao et al [1] and
Premalatha and Natarajan and [2] were also investigated with similar results.

The curves in Figure 2 and 3 show only the best out of total ten runs. Taking the
average performance and efficiency into consideration, Table 5 gives the mean and
standard deviation values of the ten runs of each benchmark functions. The PSO
demonstrates lower mean values and standard deviations. In other words, within the
same amount of calculations, the lower mean value represents better efficiency. The
lower standard deviation values indicates that the PSO has a more reliable
performance for the early stage of the optimisation.

Fn
Name

UGIP (100 iterations) SIP (100 iterations)
Method Mean Std. Dev Method Mean Std. Dev

RV GA 32.52 33.80 GA 45.49 44.12
PSO 10.23 3.89 PSO 9.10 1.77

SF GA -2623.8 421.0 GA -2478.3 374.8
PSO -3352.2 327.7 PSO -3228.8 259.1

Note: RV, Rosenbrock’s Valley Function, SF, Schwefel’s Function; UGIP,
Uniformly Generated Initial Population group, SIP, the Same Initial
Population group.

Table 5: GA & PSO results comparison based on 10 runs

10

5 Ten-bar redundant truss problem

Since both GA’s and PSO are evolutionary global solution search algorithms and it
is difficult to judge their performance in purely mathematical functions, it is of
interest to compare their effectiveness on a structural optimisation problem. The ten-
bar redundant truss optimisation problem (Figure 4) was selected for this purpose.
The structural optimisation problem selected herein is a classical problem in
optimisation. Many researchers such as Galante [13], Jingui et al [14], Rajeev et al
[15] and Leite et al [16] published their works about this problem. Ward and
McCarthy applied a hybrid GA-ANN to solve this truss [17] while McCarthy and
Fenwick [18] used a GA to optimise the topology of this truss.

5.1 Ten-bar truss redundant problem

The ten-bar redundant truss problem, shown in Figure 4, may be solved as a
continuous problem or a discrete one. The continuous method assumes that the all
the members of the truss have continuous range of selection of cross-section. The
optimisation has been solved as a continuous problem by both Perez and Sunar [3,
9], where the cross section area varies between 0.1 in.2 (64.52 mm2) and 35.0 in.2
(22580.6 mm2).

The truss is to be optimised for minimum weight subject to constraints. In Figure 4,
the solid circles are the truss nodes numbers, and the hollow circles are the member
numbers. The stress for every member cannot exceed 25 ksi (172.3689 MPa), and
the maximum deflection of any node is ±2 inch (50.8mm). The original problem
was solved using imperial units. The current work was done in metric SI units
(shown in Table 6).

Young’s modulus (E) 68.9 GPa
Material density (ρ) 2770 kg/m3
Maximum allowable stress (σ) 172 MPa
Maximum allowable displacements (δ) 50.8 mm

Table 6: Material properties and constraints

This truss problem cannot easily be solved by conventional searching methods. The
minimum weight goal conflicts with the two constraints of permissible stress and
allowable deflection. This introduces the need for penalty functions to be applied to
the objective function when constraints are violated. Final solutions must not
violate either of the constraints.

It is not realistic to treat this truss problem as continuous since most steel truss
members are made of predetermined sizes and provided in the form of
manufacturer’s handbook. For this reason, it is necessary to solve this optimisation
as a discrete problem. Since most published works on the PSO [9, 19-20] algorithm
use continuous structural applications, it is worthwhile to explore the performance

11

and effectiveness of PSO for discrete problems. Therefore, all member sections have
been chosen from the American Institute of Steel Construction (AISC) Manual. All
of the sections have been tabulated below (Table 7).

Figure 4: Ten-bar redundant truss

Section

ID
Area
(in.2)

Area
(mm2)

Section
ID

Area
(in.2)

Area
(mm2)

Section
ID

Area
(in.2)

Area
(mm2)

1 1.62 1045 15 3.63 2342 29 11.50 7419
2 1.80 1161 16 3.84 2477 30 13.50 8710
3 1.99 1284 17 3.87 2497 31 13.90 8968
4 2.13 1374 18 3.88 2503 32 14.20 9161
5 2.38 1535 19 4.18 2697 33 15.50 10000
6 2.62 1690 20 4.22 2723 34 16.00 10323
7 2.63 1697 21 4.49 2897 35 16.90 10903
8 2.88 1858 22 4.59 2961 36 18.80 12129
9 2.93 1890 23 4.80 3097 37 19.90 12839
10 3.09 1994 24 4.97 3206 38 22.00 14194
11 3.13 2019 25 5.12 3303 39 22.90 14774
12 3.38 2181 26 5.74 3703 40 26.50 17097
13 3.47 2239 27 7.22 4658 41 30.00 19355
14 3.55 2290 28 7.97 5142 42 33.50 21613

Table 7: AISC truss member section table[19]

Converting from a continuous problem to a discrete problem for this particular truss
example is simple. The conservative method of discretising is to round each member
up to the next largest one from the AISC table and that is the approach adopted here.

5.2 Objective and penalty functions definition

The total mass of the truss includes a penalty mass which takes into account stress
and/or displacement constraint violations. A number of trials were carried out to

12

determine suitable scale factors for the penalty values. The final values are given in
Equations 6 and 7.

6 4

1 1

2obj i i
i i

F A L A L Pρ ρ
= =

= + +∑ ∑ (6)

 () ()∑∑
==

Λ+Γ=
10

1

/(
10

1

/(11 270150
i

i
i

iP δδσσ (7)

where σi is the stress in a particular truss member, δi, is the deflection of a node in a
particular direction, σ and δ are the maximum allowable stress and displacement
respectively in Table 6. Γ=1 when σi > σ and 0 when σi ≤ σ, Λ = 1 when δi > δ and
0 when δi ≤ δ. Equation (7) is the penalty function used here to impose extra mass if
any violations have been detected. The deflection penalty has a slightly heavier mass
penalty. The values of 150 and 270 in Equation 7 were found by trial and error.
The penalty threshold of Equation (7) has been set to assure there are no violations
at the final solution.

5.3 Parameters and experiments configuration

The PSO and GA parameters used in the comparison are given in Table 8. For this
problem, PSO cognitive acceleration coefficient c1 and social acceleration
coefficient c2 are assigned as 2, the inertia coefficient w is 0.8. Static constants of
these coefficients were used for the purpose of simplicity of PSO. The GA has a
tournament selection algorithm with elite number of 2. This keeps the top two
members of the population for the next generation without changing them.

To examine the efficiency of these two algorithms, population sizes of 10, 50, 100,
150 and 200 were used. The best results at iteration counts 100, 200, 400 and 800
were logged.

 PSO Configuration GA Configuration
Population 10,50,100,150,200 10,50,100,150,200
Number of Iterations 100,200,400,800 100,200,400,800
Cognitive coefficient (c1) 2 N/A
Social coefficient (c2) 2 N/A
Inertia coefficient (w) 0.8 N/A
Selection method N/A Tournament
Crossover rate N/A 0.8,
Mutation N/A Uniform
Elite number N/A 2

Table 8: PSO and GA coefficients

5.4 Results from references

For this truss problem, there were a number of papers [13, 19-21] that have found
the near optimum solution. The consensus is that the minimum weight is in the

13

region of 2490.6kg. Ward and McCarthy [17] solved the discrete problem with a
combination of GA and ANN in 140 generations with a higher weight while
McCarthy and Fenwick allowed for the removal of zero force members and achieve
a weight of 2333kg [18]. A selection of results from the literature is given in Table
9.

The best solutions obtained from the current GA and PSO are included in Table 9.
Both the GA and PSO are able to find the near optimum solution to the ten-bar
redundant truss problem. Second, the PSO has slightly better configuration than that
of GA in the particular sets of coefficients preset.

 Weight

(kg)
Truss member ID

1 2 3 4 5 6 7 8 9 10
I. 2546.4 42 1 38 33 1 1 32 37 37 6

II. 2475.9 42 1 38 32 1 1 28 39 38 1
III. 2490.6 42 1 39 32 1 1 28 39 38 1
IV. 2490.6 42 1 39 32 1 1 28 39 38 1
V. 2702 42 1 39 33 2 1 29 40 39 1

VI. 2503.1 42 1 40 33 1 1 28 38 37 1
VII. 2498.7 42 2 39 33 1 2 28 38 38 1
Notes:

I. Rajeev and Krishnamoorthy [19]
II. Galante [13]

III. Cai [20]
IV. Schmidt and Thierauf [21]
V. Ward and McCarthy (GA&ANN) [17] with no constrain violation

VI. The best results from current GA with no constraint violations
VII. The best results from current PSO with no constraint violations

Table 9: Comparison of optimum solutions

5.5 Benchmark results and comparison

The tool used here to analyse the ten-bar truss problem was developed by the
authors in Matlab. The best of ten runs was selected to be the solution shown in
Tables 10 to 13. The average fitness values of the ten runs were summarised in these
tables as well.

The experiments were carried using a standard desktop computer comprising an
Intel Core i7 CPU at 2.93GHz and 4GB of RAM with Windows XP operating
system. The tabulated results reveal that both PSO and GA are capable of finding
feasible solutions without any violations. Further comparison of these two methods
shows that the PSO generally has better results than GA in both best solution and
average solution. Figure 5 plots the average weight results for both GA and PSO
with increasing population size. The weight is normalised to the best solution from
literature. The closer the curve is to unity, the closer it is to the published optimum

14

of 2490 kg. The solid line group represents the performance curve of PSO, while the
dashed line group shows that of GA. It is clear that all of the solid lines are
underneath the dashed lines for each population size.

Figure 6 shows the computational performance of GA and PSO in terms of run-time.
The PSO has a general saving of time within the same population and number of
iterations. Since the method used to calculate the stress and strain of the truss is the
same, the time difference showed in the diagram can be considered as the
discrepancy of time required due to the algorithms themselves.

 Pop B.W. A.W. P M.T
(s)

Truss member ID
1 2 3 4 5 6 7 8 9 10

GA 10 2593.5 2929.9 0 5.93 40 2 39 33 3 6 32 39 39 2
PSO 10 2552.4 2775.6 0 3.37 41 5 38 32 2 4 28 39 40 2
GA 50 2544.7 2770 0 23.92 41 1 41 31 2 1 29 38 36 3
PSO 50 2553.1 2644.4 0 12.48 41 18 40 34 2 2 27 39 28 2
GA 100 2529.9 2615.8 0 48.01 42 1 39 29 1 1 29 38 39 1
PSO 100 2521.9 2569.1 0 25.77 41 1 40 31 1 2 29 37 38 5
GA 150 2511.9 2576.8 0 72.83 41 1 39 31 1 1 29 38 39 1
PSO 150 2512.7 2545.4 0 37.82 41 2 40 34 1 2 28 38 38 2
GA 200 2541.1 2583 0 96.54 41 1 40 30 1 1 30 38 37 1
PSO 200 2507.8 2531 0 46.00 42 2 38 33 2 2 28 39 38 1

Note: Pop= number in population; B.W., best weight; A.W., average weight; P, penalty;
M.T., mean time (s)

Table 10: GA and PSO results comparison for maximum 100 iteration runs

 Pop B.W. A.W. P M.T
(s)

Truss member ID
1 2 3 4 5 6 7 8 9 10

GA 10 2578.5 2811.3 0 12 40 7 40 36 1 4 30 38 36 3
PSO 10 2526.9 2697.8 0 6.42 41 4 38 30 1 2 29 39 39 2
GA 50 2616.3 2720.9 0 47.11 40 1 40 34 1 8 35 37 36 21
PSO 50 2515.8 2545.4 0 25.05 41 2 40 31 2 1 28 39 39 1
GA 100 2522.1 2620.1 0 94.97 42 1 40 32 1 2 29 37 37 2
PSO 100 2503.1 2519.0 0 43.60 41 2 39 35 1 1 28 39 39 1
GA 150 2523.3 2593.8 0 141.1 41 1 38 33 1 1 29 38 39 1
PSO 150 2500.0 2515.8 0 74.48 42 2 39 33 1 1 28 38 38 2
GA 200 2518.6 2569.5 0 185.9 42 1 40 31 1 1 29 37 37 3
PSO 200 2502.2 2509.9 0 99.77 42 2 39 33 1 2 27 39 38 1
Note: Pop= number in population ; B.W., best weight; A.W., average weight; P, penalty;

M.T., mean time
Table 11: GA and PSO results comparison for maximum 200 iteration runs

15

 Pop B.W. A.W. P M.T
(s)

Truss member ID
1 2 3 4 5 6 7 8 9 10

GA 10 2553.3 2920.8 23.28 41 1 40 30 1 2 31 38 37 1
PSO 10 2507.2 2647.8 0 12.81 41 2 39 35 1 1 28 39 39 2
GA 50 2577.0 2655.8 0 80.04 40 1 42 30 1 1 30 36 38 2
PSO 50 2512.9 2517.1 0 47.07 41 3 40 34 1 1 28 38 38 2
GA 100 2524.0 2592.5 0 155.1 42 4 39 31 1 6 28 39 38 4
PSO 100 2502.9 2513.0 0 94.54 42 2 39 33 1 2 28 38 38 2
GA 150 2527.2 2585.7 0 248.1 42 1 37 31 1 2 29 39 38 2
PSO 150 2499.5 2511.3 0 139.7 42 1 39 32 1 2 28 39 38 2
GA 200 2510.7 2562.7 0 331.2 41 1 38 34 1 1 29 38 38 1
PSO 200 2498.7 2505.3 0 185.9 42 2 39 33 1 2 28 38 38 1
Note: Pop = population size; B.W., best weight; A.W., average weight; P, penalty; M.T.,

mean time (s)
Table 12: GA and PSO results comparison for maximum 400 iteration runs

 Pop B.W. A.W. P M.T
(s)

Truss member ID
1 2 3 4 5 6 7 8 9 10

GA 10 2587.9 2766.3 0 46.08 41 4 38 29 1 4 33 39 39 1
PSO 10 2507.2 2572.1 0 25.66 41 2 39 35 1 1 28 39 39 2
GA 50 2529.9 2715.6 0 121.3 41 1 39 29 1 1 29 38 39 1
PSO 50 2502.4 2509.4 0 99.42 42 2 39 32 1 2 28 39 38 2
GA 100 2527.8 2597.3 0 435.0 41 1 39 30 1 1 28 39 40 1
PSO 100 2500.0 2505.4 0 193.0 42 1 39 32 1 1 27 39 39 2
GA 150 2503.1 2561.9 0 452.4 42 1 40 33 1 1 28 38 37 1
PSO 150 2501.9 2505.9 0 293.6 42 1 38 33 2 1 28 39 38 1
GA 200 2535.4 2578.3 0 563.3 42 1 38 31 1 1 30 38 37 2
PSO 200 2501.9 2507.3 0 384.8 42 1 38 33 1 2 28 39 38 1
Note: Pop = population size; B.W., best weight; A.W., average weight; P, penalty; M.T.,

mean time (s)
Table 13: GA and PSO results comparison for maximum 800 iteration runs

5.6 Comparison discussion

In Tables 10-13 given above, the PSO has better average performance (average
weight) in optimising the truss problem. As seen from Figure 5, the PSO group
(solid lines) are located underneath of the GA. In the graph represented here, the
lower the weight, the better of the performance. It shows that the PSO is better than
GA.

• Both methods are sensitive to population size. The larger the number of
candidates in the population the better the solution for both GA and PSO.
PSO seems to perform better than GA for smaller populations. (See Figure 5).

• For a population of 100, the PSO seems very stable and converges in about
100 iterations.

• Running PSO requires less time than that of GA for the same problem. This
can be shown in Figure 6, where the GA curve is always above the
corresponding PSO curve. PSO uses half the time of the GA. There is a

16

potential reason for the GA taking longer than the PSO. The elitism operator
used in the GA causes the algorithm to wait until all the population in a
generation has been analysed to select the best pair.

• Within the same amount of computational load (i.e. the same population), the
PSO can give better results than that of GA.

Figure 5 Optimisation results comparison for GA and PSO

Figure 6 Time used comparison for GA and PSO

17

In terms of the final solution quality, the PSO has demonstrated a superior result for
the same population and number of iterations. By being able to obtain good
solutions with smaller populations and lower number of iterations, PSO will require
fewer calls to the objective function. When such a function is computationally
intensive, the number of calls will be critical.

Another conclusion that can be drawn from Figure 5 is the reliability of these two
approaches. All the solid lines (PSO) show an expected behaviour with the
increasing number of candidates and termination number. In contrast, the dashed
lines (GA results curve) were less predictable. For example, the GA with the 50
population has a worse solution after 800 iterations than for 400 iterations.

6 Conclusion

This paper demonstrates that both GA and PSO have good ability of finding feasible
and near optimum solutions without much difficulty. For the uni-modal
mathematical benchmark functions, there is little difference between the GA and
PSO performance. However, for the constraint based structural problem, there is a
significant difference in the average performance between GA and PSO. The PSO
appears to find good solutions with less computational effort than the GA.

The accuracy of the solutions from GA improves with increasing population size.
The PSO seems to function well with smaller population size but benefits from
increased number of iterations. Finally, the PSO algorithm appears to be more
efficient than the GA.

References

[1] X. Yao, et al., "Evolutionary programming made fast," IEEE Transactions on

Evolutionary Computation, vol. 3, pp. 82-102, 1999.
[2] K. Premalatha and A. M. Natarajan, "Combined heuristic optimization

techniques for global minimization," Int. J. Advance. Soft Comput. Appl., vol.
2, pp. 85-99, 2010.

[3] M. Sunar and A. Belegunda, "Trust region methods for structural optimization
using exact second order sensitiviey," International journal for numerical
methods in engineering, vol. 32, pp. 275-93, 1991.

[4] D. Goldberg, Genetic algorithms in search, optimization, and machine
learning. New York: Addison-Wesley, 1989.

[5] M. Gen and R. Cheng, “Genetic algorithms and engineering design”. New
York: Wiley-Interscience, 1997.

[6] C. R. Reeves and J. E. Rowe, “Genetic algorithms - principles and
perspectives”. London: Kluwer academic publishers, 2003.

[7] R. L. Tanaka and C. A. Martins, "Parallel dynamic optimisation of steel
risers," Journal of offshore mechanics and arctic engineering, vol. 133, pp.
11302-9, 2011.

18

[8] J. Kennedy and R. Eberhart, "Particel swarm optimization," IEEE international
conference on neural networks, vol. IV, pp. 1942-8, 1995.

[9] R. E. Perez and K. Behdinan, "Particle swarm approach for structural design
optimization," Computers and Structures, vol. 85, pp. 1579-88, 2007.

[10] R. Eberhart and Y. Shi, "Comparing inertia weights and construction factors in
particle swarm optimization," presented at the IEEE congress on evolutionary
computation (CEC 2000), San Diego, CA, 2000.

[11] A. C. Ratnaweera, et al., "Particle Swarm Optimiser with Time Varying
Acceleration Coefficents," presented at the International Conference on Soft
Computing in Intelligent Systems, 2002.

[12] D. H. Wolpert and W. G. Macready, "No free lunch theorems for
optimisation:," Evol. Comput., vol. 1, pp. 67-82, 1997.

[13] M. Galante, "Genetic algorithm as an approach to optimize real-word trusses,"
Int J Numer Meth Eng, vol. 39, pp. 361-82, 1996.

[14] L. Jingui, et al., "An improved strategy for GAs in structural optimisation,"
Computers and Structures, vol. 61, pp. 1185-191, 1996.

[15] S. Rajeev and C. S. Krishnamoorthy, "Genetic algorithms-based
methodologies for design optimization of trusses," Journal of structural
engineering, vol. 123, pp. 350-8, 1997.

[16] L. P. B. Leite and B. H. V. Topping, "Improved genetic operators for
structural engineering optimisation," Advances in engineering software, vol.
29, pp. 529-62, 1998.

[17] K. Ward and T.J.McCarthy, "Fitness Evaluation for Structural Optimisation
Genetic Algorithms Using Neural Networks," in Proceedings of the Fifth
International Conference on Engineering Computational Technology, Gran
Canaria, Spain, 2006, p. Paper 51.

[18] T. J. McCarthy and A. Fenwick, "Truss topology optimisation using genetic
algorithms," presented at the 9th Int Conf Applications of Artificial
Intelligence in Civil, Structural and Environmental Engineering, Malta, 2007.

[19] S. Rajeev and C. S. Krishnamoorthy, "Discrete optimiation of structures using
genetic algorithm," Journal of structural engineering, vol. 118, pp. 1233-50,
1992.

[20] J. Cai, "Diskrete optimierung dynamisch belasteter tragwerke mit
sequentiellen und parallelen evolutionssatrategien," Dissertation an der
Universitt-Gesamthochschule-Essen, Essen, 1995.

[21] H. Schmidt and G. Thierauf, "A combined heuristic optimization technique,"
Advances in engineering software, vol. 36, pp. 11-19, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

