
Abstract

Nowadays, industrial applications frequently need to deal with large and complex
numerical simulations. To run, they require the use of large computers, such as TERA-
100 at CEA DAM. To efficiently exploit such architectures, be able to have a correct
load balance of the computations is a key issue, as the speed of the overall computa-
tion is very often given by the speed of the slowest process. This paper presents load
balancing issues for large multi-physics simulations, and specially it is focused on en-
gineering aspects. Using the ARCANE framework, we show how to make an efficient
use of state-of-the-art partitioning tools. We describe our methodology and we also
discuss what improvements are needed on the path towards peta-scale and exa-scale
computing.

Keywords: partitioning, load balancing, multi-criteria, multi-physics, distributed mem-
ory, high performance computing.

1 Introduction

At CEA DAM, the French research institute on nuclear technologies, a particular effort
in developing large scale complex numerical simulations is driven since the end of the
90s by The Simulation Program [1]. One goal of this project consists in designing
and in implementing codes that simulate complex physics phenomena related, for
example, to laser experiments. Mostly often, these phenomena are lying over several
kinds of physics, and therefore codes have been designed to deal with multiple physics
at the same time. Moreover, for such large simulations, very large computers such as
TERA-100 have to be used efficiently.

On this kind of computer, simulations have to handle distributed memory on large
number of processors. To efficiently perform this is a difficult task. This can be

1

Paper 4

Load Balancing for Mesh Based
Multi-Physics Simulations in the Arcane Framework

C. Chevalier, G. Grospellier, F. Ledoux and J.C. Weill
CEA, DAM, DIF
Arpajon, France

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

addressed by using development framework such as ARCANE [2]. The latter manages
all technical aspects of a simulation code while ensuring a high performance over
thousands of cores. To achieve this goal, one of the key problems to solve is how to
distribute data on the machine.

This paper presents work and results we have done solving this distribution problem
in the ARCANE framework for multi-physics mesh based simulations. However, most
of the remarks are generic enough to be valid and relevant for other frameworks.

First, we quickly describe the context of this work, then we show what are the
classical ways to theoretically address this distribution issue. Afterwards we describe
how we can implement them inside the ARCANE framework. Finally, we provide
some results and we discuss about the current limits of state-of-the-art models and
implementations.

2 Multi-Physics Code Design with Arcane

In this work, we consider complex mesh-based simulations of hydrodynamics phe-
nomena with particle interactions. From a computational point of view, it means that
we have to take into account several constraints. First, physical domains are dis-
cretized using 2D and 3D unstructured meshes having any type of cells (i.e. Triangles,
quadrilaterals, polygons, tetrahedrons, hexaedrons, prisms, polyhedrons.). Secondly,
hydrodynamics computations yield in each mesh cell (noted e). They are generally
computed locally to cell e or its close neighbourhood (e.g., in 2D, cells sharing an
edge with e). Moreover, we have to deal with different kinds of particles that live in
the mesh. Each particle arises, moves and dies somewhere in the mesh and not locally
to a cell. In other words, the location of particles changes during the simulation pro-
cess. Finally, the different physics that we have to handle are generally not localised in
specific area of the physical domain, meaning that some parts of the mesh get involved
in several different computational phases.

Writing a simulation code handling such specifications in distributed memory con-
text is a difficult task. Thus, in order to ease the development of multi-physics sim-
ulation codes, the ARCANE framework has been developed at the CEA for a decade
(see [2]). ARCANE can be seen as a component-based architecture where an AR-
CANE component is called a service that fulfills a contract. The contract defines an
expected behaviour, and each contracting service has to provide an implementation of
this behaviour. ARCANE framework is C++/C# written and it is aimed at managing
all technical aspects (i.e. Mesh management, memory management through ARCANE

variables, input/output, parallelism (MPI, threads), etc.), while ensuring high comput-
ing performances of numerical codes on clusters over 10000 cores. Another important
goal is to speed-up the development process by providing a set of tools to build, debug,
verify and validate numerical codes.

In order to build a multi-physics simulation code with ARCANE, the developer
has to build modules specific to each physics. Technically, a module is independent

2

from the others: it can use ARCANE services, but not another module. To exchange
data, modules share physical variables. The main principle of an ARCANE-based
numerical simulation is to perform a time loop, where, during each time step, some
physical modules are called in a specific order. Some ARCANE services can also be
called to perform technical operations like synchronisation, load-balancing or output
file generation. Figure 1 provides a simple example of a three physics simulation code
using the ARCANE framework.

P1

P2

H

LB

Time Loop

Modules Manager

Variables Manager

Parallelism

Mesh

Arcane

Architecture

Input modules

Output modules

Figure 1: Multi-physics simulation code based on ARCANE framework. Four modules
are used: three physics (H, P1 and P2) and one for the load balancing (LB).

For our concerns, the ARCANE service dedicated to load balancing might be called
when computations become unbalanced. In order to illustrate the usage of load bal-
ancing in a multi-physics simulation, let us consider Figure 2 where six time steps of a
simulation involving three physical modules are depicted. Module (H) is related to hy-
drodynamics while modules P1 and P2 are related to particles (typically Monte Carlo
steps). One iteration of multi-physics simulations is generally divided into multiple
steps (here, three) separated by synchronisations such as barriers. These synchroni-
sations prevent the code from being handled like a mono-physics one: all processes
have then to wait for the end of each phase before starting the next phase. To reduce
the computational time, we can minimise the maximum time spent at each step, so we
have to load balance each phase. A time representation of the three physics simulation
presented in Figure 1 is shown in Figure 2. Load balancing happens at the begin-
ning of iteration 4, and the following iterations are more efficient, as less computing
resource is spoilt by process 0 (resp. 1) for P1 (resp. P2).

Visual explanation of load balancing is shown in Figure3. The first picture repre-
sents the mesh and its distribution on the two processes at iteration 1. At the beginning
of iteration 4, particles have moved and now high concentration areas can be identi-
fied. Data distribution has to be changed in order to obtain better load imbalance.

3

H P1 P2 H H H H H

H H H H H H

1 2 3 4 5 6

Time

Proc 0

Proc 1 P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1P2

P2

P2

P2

P2

P2

P2

P2

P2

P2

P2

Figure 2: First iterations of a 3 physics simulation on 2 processes. Vertical bars corre-
spond to synchronisation points. Load balancing occurs at the beginning of iteration
4.

Proc 1

Proc 0

(a) Computational domains at iteration 1. Par-
ticles are uniformly scattered across the mesh.

Proc 1 Proc 0

P1

P2

(b) Computational domains at iteration 4. Par-
ticles are now mostly localised in two areas. A
new data distribution is computed in order to
balance particles.

Figure 3: Illustration of a 3 steps multi-physics simulation running on two processes.

In the following, we do not explicitly give any details about physical phenomena
and models. We have chosen to have a generic framework for load balancing, which
requires only a computational point of view of the models, and we want to illustrate
that it can be a reasonable choice.

3 Load Balancing and Mesh Based Simulations

This section summarises popular models developed to perform load balancing for
mesh simulation. Technical implementation aspects will be discussed in section 4.

We consider simulations executed on large 2D or 3D unstructured meshes. Paral-
lelism is achieved by distributing these meshes on the different processing units and
by concurrently computing on these subdivisions. Designing a “good” distribution is

4

a problem that has been intensively discussed since the 80s. If we discard numerical
stability aspects, the popular way to simplify and solve it is to perform load balanc-
ing. However Hendrickson [3] warns us that having a good load balance is only a
requirement to achieve good performances, it is not sufficient.

The load balancing problem consists in distributing data in such a way that all
the computing units have the same amount of work to do. Very often, it is solved
using partitioning. In this context, a simulation can be described as a topological
entity such as a graph where the graph vertexes correspond to the localisation of the
computations, vertex weights represent the computational amount (or the memory)
and edges between two vertexes mean that some dependencies exist between the two
entities. In this model, distributing the data in an efficient manner over p processes
can be computed by partitioning the corresponding graph in p parts, minimising load
imbalance and edge-cut.

As mentioned earlier, our simulations are mesh based. In other words, the com-
putational domain is represented by a mesh that can minimally be defined as a set of
cells and a set of nodes. Moreover, in simulation codes using ARCANE, computational
loops are mainly done over cells. We thus discard the nodal graph model, which con-
sists in defining the graph from the mesh by identifying mesh nodes as graph vertexes
and mesh edges as graph edges. Instead, we choose the most popular way to model
a mesh as a graph, “the dual graph representation”. In this model, for 3D meshes,
graph vertexes correspond to mesh cells and graph edges correspond to mesh faces or
mesh nodes. For instance, if data are exchanged between cells through faces, graph
edges will correspond to mesh faces. On the opposite, if the simulation has a nodal
formulation, it is better to define the interesting neighbourhood relationship as “two
cells are neighbours iff they share a node”.

As our simulations usually use faces, we consider the dual graph model defined
by faces. This model can be extended from a graph to an hypergraph by keeping the
definition of vertexes and associating to each vertex one hyperedge corresponding to
all the neighbour cells. This provides a slightly richer model for partitioning, commu-
nication costs being evaluated accurately by the λ− 1 hypergraph partitioning metric
[4]. Other models to represent mesh simulations as graphs or hypergraphs can be
found (see [5]). However, in this paper, we keep the dual graph defined by faces or
its hypergraph extension as topological models for load balancing. We discuss more
precisely their practical usage in Section 4.

In Section 1, we mentioned that our goal was to provide load balance for multi-
physics simulations. At this time, the chosen dual graph model does not handle any
information about the multi phases essence of the simulation. The most natural way
for the partitioner to find a good load balance for all the different phases of the sim-
ulation is to add one computational cost for each phase inside the graph. This can be
done by giving vertex weight as a vector of scalars for which each component cor-
responds to a computing step [6]. By performing multi-criteria partitioning of this
multi-weighted graph, we can obtain a distribution that balances computations for
each phase. However, finding the best partition for a generic non weighted graph be-

5

ing already a NP-Hard problem (solved in practice only with heuristics), its extension
to multi-weighted graphs can be more problematic to solve.

Therefore, other strategies have been developed, such as the proposal of Walshaw
[7], which consists in doing several mono-criterion partitioning of reduced prob-
lems. Unfortunately this approach requires that computational domains of the dif-
ferent phases to be disjoint (at least for phases with particles.). As, in our simulations,
it is not the case, we have to handle multi-physics differently.

Another approach to deal with some multi-physics simulations is known as do-
main replication [8, 9]. The mesh is distributed across MPI processes, but with some
replicated parts. Indeed, mesh parts that support heavy particles computations are
duplicated, and now it is particles that are partitioned between these processes. As
we are also concerned about memory issues, we will not allow duplications of data,
however, domain replication can theoretically be used conjointly with the develop-
ments presented in this paper. In fact, for small meshes, implementation in ARCANE

is currently in progress.

4 Load Balancing Implementation in ARCANE

In this section, we will first quickly introduce the ARCANE goals in respect to data
distribution. Afterwards, we will present the load balancing implementation inside
ARCANE.

The ARCANE load balancing service deals with performance issues due to the dis-
tribution and can be called from ARCANE main loop whenever needed. It is only
focused on using (hyper-)graph partitioning libraries and is designed to be a tool box
to solve load balancing problems.

ARCANE load balancing module consists in three steps:

1. build a “partitioning object” (mostly often a graph) that models the simulation
costs ;

2. partition this object according to its costs function ;

3. redistribute the ARCANE entities and variables according to this partitioning.

The first and the third steps are done by ARCANE, while the second is generally
performed using one of the libraries described below.

The “partitioning object” is built accordingly to the models presented in section 3.
These models are converted accordingly to the partitioning tool used at the second
step, so the first and the last steps are pure ARCANE codes.

To summarise, data manipulations are directly performed by ARCANE whereas
partitioning computation uses heuristics that are generally implemented in specialised
third party libraries such as PARMETIS [10], SCOTCH [11] and ZOLTAN [12]. Re-
sults that will follow are obtained with PARMETIS version 3.1.1, SCOTCH 5.1.11 and
ZOLTAN from Trilinos 10.6.

6

These libraries are supported in various ways, to be able to have the best adequacy
to the different kinds of problems that can occur in ARCANE based simulation codes.
All these libraries provide parallel partitioning for distributed graphs, relying on MPI
for communication. They all use multi-level algorithms, and they are known to pro-
duce state-of-the-art results, in term of both quality and speed.

Both PARMETIS and SCOTCH are parallel graph partitioners, and in ARCANE,
they both exploit the dual graph model introduced in Section 3. Thereby, without
being misled by implementation artifacts, we can perform a better evaluation of the
model. However, software capabilities differ quite a bit between the two. PARMETIS

is able to compute repartitioning (in fact partitioning and remapping) as well as multi-
criteria partitioning. SCOTCH, even if it is currently limited to mono criteria static
partitioning, can take advantage of more clever heuristics such as diffusion algorithms
[13] to improve the partition quality [14, 15, 16].

ZOLTAN provides other kinds of algorithms and models, like geometric and hyper-
graph partitioning [4] that we exploit in ARCANE. For geometric models, we partition
a set of vertexes, which correspond to the cell mass centres, their weights being the
same as in the dual graph or hypergraph models. We have led our experiments using
RCB [17] algorithm as it allows us to use multi-weighted vertexes. Hypergraph model
corresponds to the extension of dual graph model presented in Section 3, but does not
allow multiple weights.

5 Realisations and Results

This section summarises quickly the load balancing issues that arise when dealing
with dynamic multi-physics simulations. It also describes solutions we have retained.

5.1 Dynamic Load Balancing.

One key aspect of our simulations is the fact that they model dynamic phenomena,
which can move in the computational domain, creating load imbalance during the
simulation. In order to improve overall running time, ARCANE provides dynamic
load balancing.

Dynamic load balancing is implemented directly within ARCANE as a (re)partition
stage followed by data redistribution. Note that even if current version of SCOTCH

deals only with partitioning, i.e. is primarily designed for static load balancing, it is
possible to use it as a partitioner in a dynamic context, at the expense that data mi-
gration costs are not taken into account. For PARMETIS and ZOLTAN, repartitioning
interfaces are used, allowing us to minimise the overall communication cost of both
migration and simulation steps [18, 19].

Table 1 presents a comparison between static and dynamic partitioning for a dy-
namic simulation composed by one hydrodynamics phase and two phases computing
on particles. These run-times are given for the beginning of the simulation (first five

7

Approach
2D test case 3D test case

MPI processes MPI processes
128 256 512 128 256 512

Static 1,724 985 481 2,157 1,145 619
PM-old 1,102 † 535 † † †
PM-new 719 491 260 1,693 848 522

Table 1: Run-times (s) for multi-physics simulations involving hydrodynamics and
two kinds of particles. † represents inability to compute, usually due to memory short-
age.

hundred iterations).
Each mesh has one million cells, and twelve million particles of kind P1. 2D

test case has ten million particles of kind P2 while 3D case has two hundred fifty
million. PARMETIS was used as partitioner, enforcing multi-criteria for non static
cases. Static distribution was obtained by splitting the mesh using serial METIS, which
provides in this case better quality than PARMETIS. However, after few iterations,
computations become highly unbalanced, some processes staying without any particle
while the others are dealing with all the complexity. That is the reason why dynamic
load balancing seems mandatory, and this phenomenon is amplified when continuing
the computations. In the dynamic case, data redistribution can be computed every
10 iterations if the imbalance in running time between processes is greater than a
threshold of 20%. As shown in Table 1, periodically computing load balance (methods
PM-old and PM-new) greatly improves performances: here, up to a 2.4 speed-up on
128 processors.

5.2 Costs Evaluation for Dynamic Load Balancing.

Partitioning for dynamic load balancing requires to evaluate individual computational
costs for each cell. In a perfect world, we should be able to predict such costs, but
unfortunately, for general cases, we can just estimate them by taking into account
what happened during the previous iterations.

In order to achieve a complete abstraction towards user’s code, the most natural
way is to use time measurements as weights for the partitioner. Easy to implement,
allowing to use fully opaque physics codes, this was the approach chosen for the
original version of ARCANE (like PM-old). Nevertheless an important drawback
can be identified: it is very sensitive to foreign and side effects. Indeed, it is hard
to obtain an accurate value of distribution layout costs by measuring the time spent
into the simulation. As weight should be defined for each cell, the best way is to get
measurement per cell, but unfortunately, system noise (communications, system load,
contexts switching, . . .) predominates at this level. Moreover, even the distribution
can have side effects at cell level: for example, for a given cell, computational times
can vary a lot depending on the previous computations (cache, super-scalar or pipeline

8

effects . . .). Thus, without any instrumentation of physics code, it seems impossible
to get an accurate evaluation of partitioning weights. It has been confirmed by some
experiments. Especially, on platforms with highly congested networks, we observed
that using timings gave us worst computational timings (and not only communication
timings) than a more resource free version of the machine.

Therefore, as automatic evaluations of distribution related costs seem inappropri-
ate, more flexibility towards the black box concept for physics modules within AR-
CANE is needed, allowing us to instrument modules that require load balancing. It is
necessary to exhibit quantities that are only related to distribution (i.e. deterministic in
respect to the data distribution) and that are meaningful regarding computational cost
(timings).

Our simulations mainly involve two entities: cells and particles. Hydrodynamics
step deals only with cells and its theoretical complexity in time only depends on the
number of cells. Particles steps complexities rely on number of particles and poten-
tially also on the number of cells (for example when particles are scanned by looking
at the cells). We retain these criteria to characterise distribution costs for ARCANE

simulations.
Pertinence of this costs characterisation is illustrated in Table 1 by strategy PM-new.

PM-old uses time measurements information while PM-new corresponds to the new
approach, using particles counts as characteristics. We can observe that comparing to
the full black box approach (PM-old), code efficiency is higher (up to a speed-up of
2 on 512 processors). Moreover, the robustness is also improved, allowing us to com-
pute harder instance (like the 3D problem) and to obtain more consistent performances
from one run to another.

Therefore, with a not too intrusive instrumentation that simply evaluates the num-
ber of relevant particles for each phase, it is possible to give a proper characterisation
of the problem to the load balancing algorithm. Table 2 confirms it. The instrumented
simulation has a good scalability thanks to dynamic load balancing using SCOTCH.
Moreover, we can observe that dynamically load balanced simulation on 512 proces-
sors run twice as fast as the static one on 1024 processors. Above, problem becomes
over distributed but we can still observe some speed-up.

MPI
Average computing time (s) per iteration Time (s)

in [0.0, 0.4] in [0.4, 0.6] in [0.6, 0.8] in [0.8, 1.0] to 1× 10−7s
512 3.9 ×1 5.1 ×1 7.3 ×1 8.9 ×1 6,610 ×1
1024 nr 2.2 ×1.8 8.3 ×0.6 17.8 ×0.4 41.8 ×0.2 12,814 ×0.52
1024 2.2 ×1.8 3.5 ×1.5 4.4 ×1.7 6.1 ×1.5 3,559 ×1.86
2048 1.5 ×2.6 2.2 ×2.3 3.5 ×2.1 4.6 ×1.9 2,508 ×2.64
4096 1.0 ×3.9 1.6 ×3.2 2.0 ×3.7 2.9 ×3.1 2,220 ×2.98

Table 2: Run-times (s) for a particle simulation (6.88 million cells) load balanced
by SCOTCH. Average computing time per iteration is relative to CPU time spent in
physics modules (load balancing cost is not taken into account). All cases but “1024
nr” use dynamic load balancing.

9

5.3 Multi-physics and Load Balancing.

Now that a correct quantification of computing costs in each physics module individ-
ually is given, we can focus on how to handle different physics and associated costs at
the same time.

With some partitioners, we can directly exploit the multi-criteria model introduced
in Section 3. In particular, PARMETIS provides multi-criteria partitioning for graphs,
while ZOLTAN supports it only for geometric. Besides, ZOLTAN approach cannot
insure to meet balance for all criteria. It currently tries to find a contiguous area by
doing recursive coordinates bisections, and in our simulations, we observe that it was
not always possible to satisfy all balance constraints this way.

To not only rely on PARMETIS and thus to avoid pathological cases (implemen-
tation or heuristics problems triggered by “bad” instances, . . .), we still want to use
SCOTCH or ZOLTAN at least as alternatives. As neither the multi-criteria nor Wal-
shaw’s approaches can be used, another model, exploiting mono-criteria partitioning,
is needed.

A classical way to convert multi-weights vectors to scalar weights is to compute
a linear combination of vector components. Withal, coefficients have to be carefully
chosen and have to be closely related to the simulation case to allow this approach to
produce decent results. Dependency towards the case specificity being essential, this
linear combination approach cannot really be used in an automatic way, so it cannot
be used in ARCANE.

The main issue in the previously described approach is that combination occurs on
different kinds of quantities have thus to use a quantity which is relevant for each sin-
gle module, and still significant outside the module. The memory consumption fulfills
these requirements. Besides, it is a significant characteristic for data distribution qual-
ity. ARCANE modules use ARCANE variables to handle data, so the framework is able
to sharply evaluate the allocated memory, even for one single cell (and its associated
particles).

We thus have two different approaches to deal with multi-physics simulations: the
first one works on balancing computational times through multi-criteria partitioning,
the latter one deals with memory load balancing through mono-criterion partitioning.

Figure 4 shows that multi-criteria (PM-* and ZOLTAN-RCB) partitioners outper-
form mono-criterion approaches for a multi-physics simulation, even at relatively
small scale. Results also confirm that instrumenting the code helps a lot to improve
performances, differences between PM-new and PM-old speaking for themselves.

6 Discussion

Previous experiments showed us that it is possible, using state-of-the-art partitioning
softwares, to achieve correct load balancing, even for complex and dynamic numerical
simulations. In this section we will discuss what results can be expected from today

10

0

50

100

150

200

250

300

350

400

0.2 0.4 0.6 0.8 1.0 1.2 1.4

PM-new
PM-old
Scotch
Zoltan_RCB
Zoltan_HG

t(e-7s)

C
P
U

 T
im

e
 (

s
)

�������������Time�(e-07�s)

Figure 4: Run-time (s) for a simulation on 64 processors with hydrodynamics and two
particles phases. Multi-criteria methods (PM-old, PM-new and even ZOLTAN-RCB)
perform better than mono-criteria methods. PM-old uses time measurements while
all other methods use particles counts.

partitioning tools and then we will present problems that still have to be addressed for
exa-scale computations of this kind.

6.1 Observations

We have underlined that using correctly partitioning libraries is not trivial, and that the
knowledge of pertinent quantities for describing simulation codes is essential. In the
context of a development framework such as ARCANE, it implies that physics mod-
ules has to submit relevant data to the load balancing module. External measurements
of physics codes (i.e. timings) do not provide accurate enough information for com-
puting a good partitioning, so counters for load balancing have to be placed inside the
modules. With such an information,the framework is able to automatically perform
load balancing.

Once that partitioning tools were fed by the adequate characteristics of the distribu-
tion, our experiments brought into light that there is no perfect partitioning software
for large multi-physics load balancing in production codes. PARMETIS results are
quite interesting, specially because they satisfy multi-criteria balance, but the lack of
reliability above few hundreds processes [20, 21] is problematic for a generic frame-

11

work dedicated to large scale production simulations.
Oppositely, SCOTCH and ZOLTAN insure a good robustness, however they are quite

limited by enforcing only scalar weights balance for topological models. ZOLTAN’s
geometric multi-criteria capabilities are interesting, however the impossibility to ob-
tain non-contiguous parts limits its interest for us.

 Time (e-07 s)

B

C

A

ParMetis
Scotch
Zoltan, hypergraph
ParMetis, mono-criterion
ParMetis, static

C
P
U

 T
im

e
 (

s
)

Figure 5: Time (s) per iteration for a 128 MPI processes simulation with hydrodynam-
ics and particles on a 1.72 million cells mesh.

Figure 5 shows results obtained on 128 processors for a dynamic multi-physics
simulation with one hydrodynamic phase and one particle one. It summarises the
observations we previously made, namely that dynamic load balancing is required,
and that multi-criteria partitioning provides better results than mono-criterion ones.
To describe in more details, high amplitude peaks correspond to repartitioning, while
high frequency oscillations correspond to particle renumbering.

• (A) illustrates that static load balancing is clearly outperformed by any dynamic
approach.

• (B) shows that mono-criterion partitioners provide almost similar results. How-
ever, PARMETIS (version 3.1.1) has an unpredictable behaviour, due to the
32 bits limit for vertex weight. Since version 4.0, PARMETIS can use a 64
bits weight representation and mono-criterion PARMETIS gives results close to
those of ZOLTAN or SCOTCH.

• (C) Multi-criteria partitioning with PARMETIS is the best approach for this case,
keeping iteration cost low. We can also observe that particles numbering seems
to have less performance impact when using SCOTCH partitioning.

12

On this example, one can notice that performing load balancing takes a lot of time,
and one explanation can be that the graphs are over-distributed across the processes.
Indeed, graph partitioning is not intensive in term of computations and generally re-
quires in distributed memory a lot of communications. Moreover, only a small number
of information is associated to the graph (weights and connectivity) and there is no
point to keep the same distribution of vertexes as the cells of the mesh. In ARCANE,
we now reduce the number of processes that really compute the partitioning by us-
ing only one MPI process by computational node. On TERA-100, we can divide the
number of processes for partitioning by up to 32 and therefore we increase the density
of data as well as the computational efficiency of partitioning tools (and also very of-
ten the quality of their results). To avoid graph centralisation over-costs, we use this
technique when simulation is spread on more than five hundred MPI processes.

6.2 Open Problems

Whether several improvements can be done in software implementations, a lot of con-
cepts also have to be developed for modelling dynamic multi-physics partitioning
problems. Indeed, it appears that these problems need slightly different approaches
to be solved more efficiently. For example, plenty of interesting works about limit-
ing communications during simulations or even during data redistribution [18, 19, 22]
can be found, but in our case of intensive computations simulations, it is not really the
main issue. SCOTCH performing only partitioning provides as good results as ZOLTAN

using a much more richer repartitioning approach, data communication being cheap
comparing to overall computational cost.

On the other hand, some particularities of mesh partitioning have been ignored, in
particular the fact that we can use geometry, or, even more important, the distribution
impact on mesh data structure. Most of simulation codes exploit ghost layers, dupli-
cating foreign boundary cells on local processes. These cells have a special behaviour
inside the code, but still consume memory or computing time and are usually ignored
by standard partitioning models. New models, specific to mesh load balancing, have
to be developed as impact of data distribution becomes more and more important as
the number of processors is increasing.

Partitioning of graphs issued from meshes was for a long time considered as an
easier problem than on more generic graphs [23] (from linear algebra, VLSI design,
etc.). But, in fact, they exhibit characteristics which are not properly handled by cur-
rent heuristics or implementations. If specific and powerful algorithms have been
developed and studied for complex topologies such as power law graphs or social net-
work graphs; simulation graphs are, on the opposite, usually very simple in terms of
connectivity but with a very heterogeneous weight distribution. In parallel distributed
context, we have observed, that softwares have trouble to meet imbalance criterion on
such graphs, even if solutions exist.

13

7 Conclusion

This paper mainly illustrates that, once again, load balancing is a key issue for en-
abling efficient parallel and distributed simulations.

We also found that implementing an efficient generic load balancing capability for
a simulation development framework such as ARCANE is not a trivial task, even when
using well-known models and popular partitioning libraries. We have illustrated that
in the context of a generic framework for simulations, instrumenting code is required.
As shown in Section 4, this instrumentation results in faster (Figures 4 and 5) and more
robust (Table 1) simulations, with all the partitioning libraries. Moreover, for multi-
physics simulations, multi-criteria partitioning appears to be a requirement, providing
much better results than mono-criterion approaches.

However, we also pointed out that with state-of-the-art tools we can, at best, obtain
decent results for medium-sized simulations. For peta-scale computing, current soft-
wares lack functionalities or robustness. Limitations can be related to the model from
a data point of view, such as the inability to take ghost cells into account, specially
annoying at large scale, essentially because in 3D, interface sizes grow faster than the
problem. But, limitations might also be architecture related, in a close future mem-
ory hierarchy will definitely have to be taken into account: at the framework level by
considering new programming paradigms such as MPI-Threads, or at partitioner level
by performing hierarchical partitioning or static (or “dynamic”, i.e. in simulation)
mapping.

References

[1] “The Simulation Program”, http://www.cea.fr/english portal/
defense/the simulation program.

[2] G. Grospellier, B. Lelandais, “The Arcane development framework”, in Pro-
ceedings of the 8th workshop on Parallel/High-Performance Object-Oriented
Scientific Computing, POOSC ’09, pages 4:1–4:11. ACM, New York, NY, USA,
2009, ISBN 978-1-60558-547-5.

[3] B. Hendrickson, T.G. Kolda, “Graph partitioning models for parallel comput-
ing”, Parallel Computing, 26: 1519 – 1534, 2000.

[4] K. Devine, E. Boman, R. Heaphy, R. Bisseling, U. Çatalyürek, “Parallel Hyper-
graph Partitioning for Scientific Computing”, in Proc. IPDPS’06. IEEE, 2006.

[5] E.G. Boman, Ü. Çatalyürek, C. Chevalier, K.D. Devine, Combinatorial Scientific
Computing, Chapter Parallel Partitioning, Coloring and Ordering in Scientific
Computing, pages 351–371, Computational Science Series. CRC Press, 2011.

[6] G. Karypis, V. Kumar, “Multilevel Algorithms for Multi-Constraint Graph Par-
titioning”, in Proc. Supercomputing, 1998.

[7] C. Walshaw, M. Cross, K. McManus, “Multiphase Mesh Partitioning”, Appl.
Math. Modelling, 25(2): 123–140, 2000.

14

[8] H.J. Alme, G.H. Rodrigue, G.B. Zimmerman, “Domain Decomposition Models
for Parallel Monte Carlo Transport”, The Journal of Supercomputing, 18: 5–
23, 2001, ISSN 0920-8542, URL http://dx.doi.org/10.1023/A:
1008196906753, 10.1023/A:1008196906753.

[9] R.J. Procassini, M.J. O’Brien, J.M. Taylor, “Load Balancing of Parallel Monte
Carlo Transport Calculations”, in International Topical Meeting on Mathematics
and Computations, 2005.

[10] G. Karypis, K. Schloegel, V. Kumar, “ParMETIS: Parallel Graph Partitioning
and Sparse Matrix Ordering Library, Version 3.1”, Technical report, Dept. Com-
puter Science, University of Minnesota, 2003.

[11] F. Pelligrini, “PT-SCOTCH 5.1 User’s Guide”, Research rep., LaBRI, 2008.
[12] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, V. Leung, L.A. Riesen,

C. Vaughan, Ü. Çatalyürek, D. Bozdag, W. Mitchell, J. Teresco, Zoltan
3.0: Parallel Partitioning, Load Balancing, and Data-Management Services;
User’s Guide, Sandia National Labs, Albuquerque, NM, 2007, Tech. Report
SAND2007-4748W.

[13] F. Pellegrini, “A parallelisable multi-level banded diffusion scheme for comput-
ing balanced partitions with smooth boundaries”, in Proc. Euro-Par’07, Volume
4641 of LNCS, pages 191–200. Springer, Aug. 2007.

[14] C. Chevalier, Conception et mise en œuvre d’outils efficaces pour le parti-
tionnement et la distribution parallèle de problèmes numériques de très grande
taille, PhD thesis, Université Bordeaux I, 2007.

[15] C. Chevalier, F. Pellegrini, “PT-SCOTCH: A tool for efficient parallel graph
ordering”, Parallel Computing, 34(6–8): 318–331, 2008.

[16] J.H. Her, F. Pellegrini, “Efficient and scalable parallel graph partitioning”, Par-
allel Computing, 2009.

[17] M.J. Berger, S.H. Bokhari, “A partitioning strategy for nonuniform problems on
multiprocessors”, IEEE Trans. Computers, C-36(5): 570–580, 1987.

[18] U. Çatalyürek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, L. Riesen,
“Hypergraph-Based Dynamic Load Balancing for Adaptive Scientific Compu-
tations”, in Proc. IPDPS’07. IEEE, 2007.

[19] K. Schloegel, G. Karypis, V. Kumar, “Parallel static and dynamic multiconstraint
graph partitioning”, Concurrency and Computation – Practice and Experience,
14(3): 219–240, 2002.

[20] C. Bekas, A. Curioni, P. Arbenz, C. Flaig, G.H. Van Lenthe, R. Müller,
A.J. Wirth, “Extreme scalability challenges in micro-finite element simulations
of human bone”, Concurr. Comput. : Pract. Exper., 22: 2282–2296, Novem-
ber 2010, ISSN 1532-0626, URL http://dx.doi.org/10.1002/cpe.
v22:16.

[21] A. Turk, C. Aykanat, V. Vehbi Demerci, S. von Alfthan, I. Honkonen, “Inves-
tigation of load balancing scalability in space plasma simulations”, Technical
report, PRACE Partnership for Advanced Computing in Europe, 2012.

[22] C. Walshaw, M. Cross, M. Everett, “Mesh partitioning and load-balancing for
distributed memory parallel systems”, in Proc. Parallel & Distributed Comput-

15

ing for Computational Mechanics, Lochinver, Scotland, 1998.
[23] C. Chevalier, I. Safro, “Comparison of coarsening schemes for the multilevel

graph partitioning”, in Proc. LION’3. Trento, Italy, Jan. 2009.

16

