
Abstract

In this paper, a numerical model of the coupled hydro-mechanical behaviour of soils is
presented. The micro-mechanics-based model which covers the theory of deformation
of soils (soil skeleton) and other porous materials is based on the concept of effective
stresses. The final set of equations is simplified and derived for water flow in porous
media and the finite element method is used for the spatial discretization. The model
was implemented to the SIFEL software package and some numerical examples are
presented.

Keywords: moisture transfer, deforming porous medium, soil, pore pressures.

1 Introduction

Soils consists generally from three components - grains (skeleton), liquid (water) and
gas (water vapour and air). Total stress in soil can be decomposed to effective stress
between grains, pore water pressure and pore gas pressure. Transport of water and heat
together with deformation of solid represent non-linear coupled transport problems
which can be described by three types of equations. There are constitutive equations
(retention curves, material properties), transport equations (Fick’s law and Darcy’s
law) and continuity equations. After discretization of driving equations using finite
element method (FEM), a system of non-symmetric and non-linear algebraic equa-
tions is obtained generally, even if the deformation of the solid is linear elastic. On the
other hand, the moisture transfer is a very slow process and therefore, in case of linear
consolidation, no iteration is necessary within time steps. From experiments, it is ev-
ident that such a description of consolidation by the linear elastic model for a porous
medium along with the constant permeability could not be realistic. At least the per-
meability is mostly subject of variation reflecting the dependence of the permeability
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on void ratio. The Cam-Clay model with the bilinear form of the normal consoli-
dation line (NCL) is then adopted as a suitable model which describes the effect of
over-consolidation and structure strength on time dependent processes in soils.

2 Heat and moisture transfer in porous medium

Significant improvement in numerical modelling of coupled heat and moisture trans-
port in porous materials has been attained. There are many material models in the
literature that allow for the description of coupled heat and moisture transport. For ex-
ample, there are phenomenological models based on diffusion [1], [2] and [3]. These
models are suitable for numerical simulations and modelling of building structures
under common climatic conditions. On the other hand, complex micro-mechanical
based models, e.g. Lewis and Schrefler’s approach [4] and Tenchev’s approach [5],
using averaging techniques are applied namely to modelling of concrete structures
under high temperature conditions and modelling of soil behaviour.

2.1 Lewis and Schrefler’s approach of coupled heat and moisture
transfer

2.1.1 Principles of mass and heat transfer - retention curves

Porous materials have the capability of absorbing moisture from an environment of air
due to adsorption forces, attracting molecules of vapour to the solid parts of the porous
system, and due to the depression of water pressure because of the tension over the
concave menisci of the water filled capillaries. Moisture in materials can be therefore
present as moist air, water and ice or in some intermediate state as adsorbed phase
on the pore walls, respectively. Since it is in general not possible to distinguish the
different aggregate states, the water content is defined as the ratio of the total moisture
weight to the dry weight of the material [6]. Equilibrium of the water content with
its local environment is represented by a retention curve of the material, relating the
moisture and the relative humidity h of the surrounding air.

In the transient region II, there is a relationship between the relative humidity, the
water content (saturation) and the capillary pressure in the pores [4]

pc = pg − pw, (1)

where pw > 0 is the pressure of the liquid phase (water).
The pressure of the moist air, pg > 0, in the pore system is usually considered as

the pressure in a perfect mixture of two ideal gases - dry air, pga, and water vapour,
pgw, i.e.,

pg = pga + pgw =
(ρga

Ma

+
ρgw

Mw

)
TR =

ρg

Mg

TR. (2)
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Figure 1: Sorption isotherms

In this relation ρga, ρgw and ρg stand for the respective intrinsic phase densities, T is
the absolute temperature, and R is the universal gas constant.

Identity (2) defining the molar mass of the moist air, Mg, in terms of the molar
masses of individual constituents is known as Dalton’s law. The capillary pressure
is larger the smaller the capillary radius is. It is shown thermodynamically that the
capillary pressure can be expressed unambiguously by the relative humidity h using
the Kelvin-Laplace law

h =
pgw

pgws
= exp

(
− pcMw

ρwRT

)
. (3)

The water vapour saturation pressure pgws is a function of the temperature only.
Volume fractions of the liquid water (nSw) and gas (nSg) (moist air) in porous

medium with the porosity n are defined by the following identity

(1− n)ρsw = nSwρw + nSgρ
g, Sw + Sg = 1, (4)

where the volume moisture w (kg·kg−1) is relate to the water content u (kg.m−3) by
the formula

u = (1− n)ρsw = nSρw + n(1− S)ρg = nS(ρw − ρg) + nρg (5)

In soil mechanics, the moisture retention curves are mostly substituted by the ma-
terial relationship [4]

pc = pc(Sw, Θ), (6)

again obtained from laboratory tests, where Θ = T − T0 is the temperature difference
above a reference value T0.

Retention of enthalpy in materials having heat capacities is the term deliberately
used to emphasize the similarity to the description of the moisture retention. The
retention of enthalpy is simply described as

H = H(T ), (7)

3



where H is the mass specific enthalpy (J.kg−1), T - temperature (K).
It is not common to write the enthalpy in an absolute way as here. Instead, changes

of enthalpy are described in a differential way, which leads to the definition of the
specific heat capacity as the slope of the H − T curve, i.e.

Cp =
(∂H

∂T

)
p=const.

. (8)

The heat capacity varies insignificantly with temperature. It is customary, however, to
correct this term for the presence of the fluid phases and to introduce the effective heat
capacity as (

ρCp

)
eff

= ρsC
s
p + ρwCw

p + ρgC
g
p . (9)

Retention curves reflect material properties of porous media and their descriptions
together with Equation (8) are commonly known as the state equations.

2.1.2 Moisture transfer - Darcy’s and Fick’s laws

The general approach to the coupled moisture and heat transfer in porous media is to
express the vector of the mass flux of moisture J and the heat flux vector q as a linear
combination of the gradient of free (not chemically bound) pore-water content and
of temperature as driving potentials. Off-diagonal phenomenological coefficients of
a square (2x2) matrix describing this relation represent cross effects - the Soret flux of
moisture and the Dufour flux of heat (see, e.g. [8], [9]). Since gradients grad(w) and
grad(T ) are not the generalized thermo-dynamical forces associated with the fluxes
J and q, the coefficient matrix is generally non-symmetric. In addition, the water
content is not even a continuous potential. That is why a number of modified models
have been developed (see, e.g., [8], [1]) considering w as a function of temperature
and pore water pressure and assuming that relevant functions are valid for the modified
phenomenological coefficients.

If moisture convection is neglected, the liquid and gas (moist air) transport and the
vapour diffusion taking place in the gas are the remaining driving mechanisms.

The mass averaged relative velocities, vα − vs, are expressed by the generalized
form of Darcy’s law [4]

nSα

(
vα − vs

)
=

krαksat

µα

(
− grad pα + ραg

)
, (10)

where α = w for the liquid phase and α = g for the gaseous phase. Dimensionless rel-
ative permeabilities krα ∈ 〈0, 1〉 are functions of degree of saturation krα = krα(Sw).
ksat (m2) is the square (3x3) intrinsic permeability matrix and µα is the dynamic vis-
cosity (kg.m−1s−1). The intrinsic mass densities ρα are related to the volume averaged
mass densities ρα through the relation

ρα = nSαρα. (11)
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Diffusive-dispersive mass flux (kg.m−2s−1) of the water vapour (gw) in the gas (g)
is the second driving mechanism. It is governed by Fick’s law

Jgw
g = nSgρ

gw
(
vgw − vg

)
= −ρgDgw

g grad
(ρgw

ρg

)
, (12)

where Dgw
g (m2.s−1) is the effective dispersion tensor. It can be shown [4] that

Jgw
g = −ρg MaMw

M2
g

Dgw
g grad

(ρgw

ρg

)
= ρg MaMw

M2
g

Dga
g grad

(ρga

ρg

)
= −Jga

g . (13)

Recall that Dgw
g = Dga

g = Dg. Here, Jga
g is the diffusive-dispersive mass flux of the

dry air in the gas.
There is a number of models based on the assumption, where the water vapour

is considered to be the only component of the gas and Darcy’s law (10) is used to
describe the motion of the liquid phase as well as of the water vapour (see, e.g., [7]).
In such a case, Equation (10) is valid for upper scripts α = w, gw and corresponding
expressions for the respective mass fluxes of these components in the solid assume the
form

Jα
s = nSαρα

(
vα − vs

)
=

Kα

g

(
− grad pα + ραg

)
=

=
krαksat

να

(
− grad pα + ραg

)
, α = w, gw, (14)

where να = µα/ρα (m2.s−1) is the kinematic viscosity of α component. For the liquid
transport, Kw/g (s) is called hydraulic conductivity (g is acceleration of gravity).

The fluid is also transferred across interfaces with the surrounding environment by
means of convection fluxes Jα

c , α = w, wg, that can be expressed by the following
boundary conditions for liquid water

qw = νT Jw
c = νT ρw krwksat

µw

(
− grad pw + ρwg

)
, on Γw, (15)

and for the water vapour on Γgw

qgw = νT Jgw
c = νT ρgw krgwksat

µgw

(
− grad pgw + ρgwg

)
= βgw

(
pgw

surf − pair

)
, (16)

where βgw (s.m−1) is the convection mass transfer coefficient, pgw
surf is the surface water

vapour pressure and pair is the water vapour pressure of surrounding air.

2.1.3 Transfer of heat - Fourier’s law

Conduction in normal sense comprises radiation as well as convective heat transfer on
a microscopic level. The generalized version of Fourier’s law is used to describe the
conduction heat transfer

q = −χeffgrad T, (17)

5



where q is the heat flux (W.m−2), χeff is the effective thermal conductivity matrix
(W.m−1.K−1).

The outer surface exchange heat can be expressed by convection and thermal radi-
ation

νT q = (βc + βr(T ))(Tsurf − Tair) + βcν
T Jgw

c , (18)

where βc is the heat transfer coefficient and βr is the radiation heat coefficient. The
last term is the heat loss due to latent heat of moisture vaporization at the surface.

2.1.4 Mass and energy balance equation

In addition to the constitutive equations, the mass and energy balance equations are
needed to complete a set of equations describing the mass and heat transfer. The
balance equations are based on the assumptions of extended Biot’s theory.

Starting from the mass balance equation for the solid

∂
[
(1− n)ρs

]
∂t

+ div
[
(1− n)ρsvs

]
= 0. (19)

The corresponding equations for the fluid phases assume this form for liquid water

∂
(
nSwρw

)
∂t

+ div
[
nSwρwvw

]
= −ṁ, (20)

and for gas

∂
[
n(1− Sw)ρg

]
∂t

+ div
[
n(1− Sw)ρgvg

]
= ṁ, Sg + Sw = 1, (21)

where ṁ is the mass rate of evaporation, ∂/∂t is the time derivative.
Writing Equation (21) for superscript gw instead of g and then using Equation (12),

the following form of the mass balance equation for the vapour phase is obtained:

∂
[
n(1− Sw)ρgw

]
∂t

+ divJgw
g + div

[
n(1− Sw)ρgwvgw

]
= ṁ. (22)

Equations (19) through (22) can be rearranged in different manners. A starting point
is elimination of the time derivative of the porosity by means of Equation (19). Substi-
tution of this term into Equation (20) and Equation (21) gives the continuity equations
of the liquid water and gas.

When dealing with the phase change, it is more convenient to express the energy
balance by means of the specific enthalpy. If some insignificant terms are neglected
and providing the local equilibrium state holds

(
Tα = T, for α = s, w, g

)
, the energy

balance equation leads to the following form [4](
ρCp

)
eff

∂T

∂t
+

(
ρsC

s
pv

s + ρwCw
p vw + ρgC

g
pvg

)
gradT = −divq − ṁ∆Hgw, (23)
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where ∆Hgw = Hgw −Hw is the latent heat of evaporation, the convective heat flux
in the solid phase ρsC

s
pv

s =
(
1− n)ρsCs

pv
s is usually neglected. The convective heat

fluxes due to movement of the fluid ρwCw
p vw and ρgC

g
pvg can be usually neglected

as well. But in rapid heating this might not be true. In some cases, further source
terms should be introduced in addition to the heat due evaporation (e.g., the heat of
dehydration of concrete).

3 Deformation of solid skeleton

3.1 Concept of effective stresses

The stresses in the grains, σs, can be expressed using a standard averaging technique
in terms of the stresses in the liquid phase, σw, the stresses in the gas, σg, and the
effective stresses between the grains, σef . The equivalence condition for the internal
stresses leads to [10]

(1− n)σs = (1− n)Swσw + (1− n)Sgσ
g + σef (24)

similarly, the total stress can be expressed as

σ = nSwσw + nSgσ
g + (1− n)σs + ∆τ, (25)

where ∆τ is the surface traction on the surface between the liquid and the gas phase
of neighbouring volumes. Combining Equations (24) and (25) gives

σ = σef + Swσw + Sgσ
g + ∆τ. (26)

Assuming negligible shear stress in fluids, Equation 26 takes the form

σ = σef − psm, (27)

where m = {1, 1, 1, 0, 0, 0}T and ps = Swpw + Sgp
g. Deformation of a porous skele-

ton associated with the grain rearrangement can be expressed using the constitutive
equation written in the rate form

σ̇ef = Dsk(ε̇− ε̇0). (28)

The dots denote differentiation with respect to time, Dsk = Dsk(ε̇, σef , T ) is the tan-
gential matrix of the porous skeleton and ε̇0 represents the strains that are not directly
associated with stress changes (e.g., temperature effects, shrinkage, swelling, creep).
It also involves the strain of the bulk material due to changes of the pore pressure

ε̇pp = −m
( ṗs

3Ks

)
, (29)

where Ks is the bulk modulus of the solid material (matrix).
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When admitting only this effect and combining Equations (27), (28) and (29), the
following equation is obtained

σ̇ = σ̇ef − ṗsm = Dskε̇− αmṗs, (30)

where α is the Biot’s constant.
It has to be point out that changes of the effective stress along with temperature and

pore pressure changes produce change of the solid density ρ̇s. This quantity can be
obtained from the mass conservation equation for the solid phase and the derivation in
detail can be found literature, e.g. in [4] and [6].

3.2 Set of governing equations

The complete set of equations describing the coupled moisture and heat transport in
deforming porous media comprises the linear balance (equilibrium) equation formu-
lated for a multiphase body, the energy balance equation and the continuity equations
for the liquid water and gas. The continuity equation for the liquid phase can be de-
rived from the balance equation (20) converted by means of Equations (19), (23) and
by neglecting the gradient of (1− n)ρs

α− n

Ks

∂

∂t

(
Swpw + Sgp

g
)

+ n
ṗw

Kw

− [(α− n)βs + nβw]Ṫ + n
Ṡw

Sw

αdivvs

+
1

Swpw
divJw

s = − ṁ

Swρw
, (31)

where the flux of the liquid water in the solid is expressed by Darcy’s law (10). The
continuity equation for gas is derived in a similar manner by modifying the balance
equation (22) and using Equation (2) to eliminate ρ̇g. The final result is:

α− n

Ks

∂

∂t

(
Swpw + Sgp

g
)

+ n
ṗw

Kw

− (α− n)βsṪ +
n

ρg

∂

∂t

[pgMg

TR

]
αdivvs

+
1

Sgpg
divJg

s = +
ṁ

Sgρg
. (32)

The flux of gas is expressed by Equation (14) written for α = g. The equilibrium
equation (the linear balance equation) must yet be introduced to complete a set of
governing equations. Neglecting inertia forces and the convective terms simplifies
this equation into the well-known form

divσ + ρg = 0, (33)

with density of the multiphase medium defined as

ρ = (1− n)ρs + nSwρw + nSgρ
g = ρs + ρw + ρg. (34)

The fundamental unknowns in the theory of the coupled moisture and heat transport
are represented by the pressures in the liquid and gas phase, respectively, pw, pg; the
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temperature T ; the vector of the displacement rate, vs, of the solid phase. The six
unknown functions, defined in a domain Ω with a boundary Γ , can be solved from
6 basic equations - two continuity equations (31) and (32), one energy balance equa-
tion (23) and the equilibrium equations written in the vectorial form (33). Saturation
Sw and Sg = 1 − Sw can be eliminated by means of the retention formula (1) in
conjunction with relation (6). The fluxes Jsw and Jsg are expressed using Darcy’s
law (10).

3.3 Saturated-unsaturated one-phase flow in a deforming medium

3.3.1 Fundamental equations

Most processes of consolidation in soils are taking place at constant temperature,
moreover, the water flow is often the only driving mechanism of moisture transfer.
For this case, the assumption of isothermal one-phase flow is adopted. Since a zero
pressure of the moist air, pg = 0, is supposed, the continuity equation (32) for the
gaseous phase can be omitted and remaining equations can be simplified.

The continuity equation (31) for the liquid phase is rearranged as(α− n

Ks

S2
w + n

nSw

Kw

)
ṗw +

(α− n

Ks

Swpw + n
)
Ṡw

+αSwdivvs +
1

ρw
divJw

s = 0. (35)

For fully saturated one-phase flow, the continuity equation can reduced by taking Sw =
1, krw = 1 and ∂Sw/∂pw = 0.

The linear momentum balance equation (33) (equation of equilibrium),

divσ + ρg = 0, (36)

is expressed in terms of the total stresses with density of the multiphase medium ρ =
(1− n)ρs + nSwρw = ρs + ρw, and total stresses

σ = σ′′ − αmSwpw, (37)

where σ′′ = Dskε is the generalized effective stress defined by Equation (30) to
account for the deformation of grains.

Finally, the suitable substitution of Darcy’s law (10) and the relation divvs = mTε
in Equation (31) leads to its following expression(α− n

Ks

S2
w +

nSw

Kw

)
ṗw +

(α− n

Ks

Swpw + n
)
Ṡw + αSwmT∂Tu̇

+∇T
[krwksat

µw
(−∇pw + ρwg)

]
= 0, (38)

where the fundamental unknowns are represented by the scalar field of pore water
pressure pw and the vector field of displacements u = {u, v, w}T.
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3.3.2 Numerical solution

Applying Galerkin’s method, the Gauss theorem and using the spatial discretization
with the usual approximation of the displacement field and the pore water pressure

u = Nudu, (39)
pw = N pdp. (40)

the system of equations for the hydro-mechanical problem (cf. [4], [10]) is obtained(
0 0

Cpu Cpp

) (
ḋu

ḋp

)
+

(
Kuu Kup

0 Kpp

) (
du

dp

)
=

(
fu

f p

)
, (41)

with following matrices:
the stiffness matrix

Kuu =

∫
Ω

BT
u DBu dΩ, (42)

the permeability matrix

Kpp =

∫
Ω

(∇N p)
Tkrwksat

µw
∇N p dΩ, (43)

the compressibility matrix

Cpp =

∫
Ω

NT
p

(α− n

Ks

Sw

(
Sw +

∂Sw

∂pw
pw

)
+ n

(∂Sw

∂pw
+

Sw

Kw

))
N p dΩ (44)

and the coupling matrices

Kup = −
∫

Ω

BT
u αSwmTN p dΩ, (45)

Cpu =

∫
Ω

NT
p αSwmTBu dΩ. (46)

The right-hand side terms are:
the force vector

fu =

∫
Ω

NT
u ρg dΩ +

∫
Γt

NT
u t dΓ, (47)

and the flow vector

f p =

∫
Ω

(∇N p)
Tkrwksat

µw
ρg dΩ −

∫
Γw

NT
u

qw

ρw
dΓ. (48)

For the sake of consistency, it is convenient to approximate the strains ε and the pore
water pressure pw by polynomials of the same degree. Strain-displacement equations
then imply that the displacements are to be approximated by a polynomial one order
higher than the pore pressure.

The system of differential equations (41) has to be solved by an incremental method.
Time discretization is based on the v-form of the generalised trapezoidal method [11].
The resulting system of algebraic equations is generally non-linear and the Newton-
Raphson method [10] has to be used at each time step.
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4 Numerical examples

4.1 Sand desaturation - a benchmark problem for non-saturated
flow

The presented benchmark is based on an experiment performed by Liakopoulos [12]
on a column of Del Monte sand [4]. This test problem has been solved previously
by many authors to check their numerical models, e.g, Liakopoulos [12], Schrefler
and Simoni [13], Zienkiewicz et al. [14], Schrefler and Zhan [15], Gawin and Schre-
fler [16], as well as Lewis and Schrefler [4].

Young’s modulus E = 13 MPa
Poisson’s ration ν = 0.4
Biot’s constant α = 1
Solid grain density ρs = 2000 kg·m−3

Liquid density ρw = 1000 kg·m−3

Poisson’s ration ν = 0.4
Porosity n0 = 0.2975
Intrinsic permeability ksat = 4.5 × 10−13 m2

Water viscosity µw = 1 × 10−3 Pa·s
Air viscorisy µg = 1.8 × 10−5 Pa·s
Gravitational acceleration g = 9.806 m·s−2

Saturation S = 1− 1.9722× 10−11pc2.4279, for S ≥ 0.91
Relative permeability krw = 1 + 2207(1− S)1.0121, for S ≥ 0.91
Relative permeability of the gas phase krg = (1− Se)2(1− S

5/3
e )

Se = (S − 0.2)/(1− 0.2)
Time increment ∆t = 10 s

Table 1: Material properties for the Liakopoulos test problem

In this example, partially saturated flow in deforming porous media is investigated
under the assumption that, either air remains at atmospheric pressure in the unsatu-
rated zone, or there is flow of both water and air. In this Liakopoulos test, the sand
column was continuously added by water from the top and allowed to drain freely at
the bottom through a filter, until uniform flow conditions were established. The mate-
rial properties and parameters are given in Table 1 and the experiment set up is shown
in Figure 2.

The problem was solved as one-phase flow, where the gas pressure was assumed
equal to the atmospheric pressure in the partially saturated zone, as well as two-phase
flow with switching at pc = 2000 Pa (S = 0.998, no gas flow below the bubble point
pressure) and an additional lower limit for the gas relative permeability of krg,min =
0.0001 [4]. The transition from a fully saturated state to a partial saturated state during
the desaturation process is secured by a switching process at certain value close to
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saturation Sw = 1, which is corresponding to the bubbling pressure, which has a
physical justification. The application of an additional lower limit for the gas relative
permeability is necessary to avoid oscillations in the pressure solution [16]. Both
methods of solution gave nearly the same results.

For numerical calculations, the column of soil was divided into 10 isoparametric
quadrilateral (2D) finite elements with linear approximation functions. The bench-
mark was solved by SIFEL software [17], [18], where the algorithm for coupled heat
and moisture transfer in deforming porous medium was implemented. SIFEL (Simple
Finite Elements) computer code is being developed at the Department of Structural
Mechanics at Faculty of Civil Engineering at Czech Technical University in Prague.
The code is written in the C++ language and can be found at the web address [19].
Results of computation are shown in Figure 3.

Figure 2: The Liakopoulos test problem

4.2 Isothermal consolidation

A simple 2D benchmark of a soil consolidation under loaded basement is another ex-
ample which illustrates the moisture transfer in deforming porous medium. In this
case, the assumption of fully saturated porous media is adopted. The setting of the
benchmark with hydrostatic water pressure as the initial condition and loading evo-
lution are shown in Figure 4 with soil parameters: Youngs modulus E = 10 MPa;
Poissons ratio ν = 0.4; bulk modulus of the solid material Ks = 18000 MPa; bulk
modulus of the porous skeleton Ksk = 3.6 MPa; porosity n = 0.5; permeability krwksat

µw

= 1.1574·10−8 m2/s. Selected results are depicted in Figure 5, where the time evolution
of vertical displacement under the loaded basement shows the very slow consolidation
process.
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Figure 3: Water pressure (left) and saturation (right) versus height

Figure 4: Benchmark settings and loading

5 Variation of permeability - Cam-Clay model

There exists, however, experimental evidence that such a description of consolidation
by the linear elastic model for a porous medium along with the constant permeability
could not be realistic. At least the permeability is mostly subject of variation. Some
formulas reflecting the dependence of the permeability on void ratio, e = n/(1 − n)
can be found in literature, where the Cam-Clay model seems to be suitable for mod-
elling of cohesive soils and it was used to confront the results obtained theoretically
and from triaxial tests [20].
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Figure 5: Deformation of soil (left) and time evolution of vertical displacement under
the basement (right)

5.1 Cam-Clay plasticity model

The modified Cam-Clay model is an hardening/softening elastoplastic model where
the hardening/softening behaviour is governed by volumetric plastic strain. The yield
criterion represents envelopes which are self-similar in shape and they correspond to
ellipsoids with rotation about the mean stress axis in the principal stress space. The
shear flow rule is associated and no resistance to tensile stress is assumed in this model.
The model was proposed by [21] originally and more details about the model can be
also found in [22].

The model is expressed in terms of three variables: the mean stress σm, the devi-
atoric stress q and specific volume v. The quantities connected with stress state are
defined with help of stress tensor invariants as follows

σm =
1

3
σii, (49)

sij = σij − δijσm, (50)

q =

√
3

2
sijsij, (51)

where δij is the Kronecker delta. The specific volume v can be given by the ratio of
the total volume V and volume of solid particles Vs, using the the void ratio e or with
help of volumetric strain εv

v =
V

Vs

= 1 + e = v0(1 + εv), (52)

εv = εii. (53)

where v0 is the initial specific volume. Assuming above relations, the yield function
f has the form

f(σij) = q2 + M2σm(σm − pc), (54)
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where pc is the hardening parameter, also called the pre-consolidation pressure, which
determines the diameter of the ellipsoid along the σm axis. The material parameter
M influences the slope of the critical state line and consequently, the radius of the
ellipsoid in the deviatoric plane. The ellipsoidal yield surface for this criterion is
defined by the yield condition such that

f(σ, pc) = 0. (55)

The section of the yield surface in the p− q plane is depicted in Figure 6.

Figure 6: Cam-Clay yielded surface in p− q-plane

The Cam-Clay model reflects a non-linear law derived experimentally from isotropic
compression tests. The results of a typical isotropic compression test is presented in
the semi-logarithmic plot in Figure 7.

Figure 7: Normal consolidation and swelling lines for an isotropic compression test

In Figure 7 can be observed that as the consolidation pressure σm increases, the
specific volume v decreases and the point representing the actual state of the mate-
rial moves along the normal consolidation line whose slope is given by the another
material parameter λ. The NCL line can be expressed by the following relation

v = vλ − λ ln
σm

σm1

, (56)
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where σm1 is the reference pressure and the vλ is the initial specific volume at the
reference pressure σm1.

The swelling line captures elastic unloading excursions from point C and its slope
is given by the material parameter κ. Reloading will move the point along the elastic
swelling line until the normal consolidation line is reached and then it continues along
the normal consolidation line. The equation of the swelling line has the form

v = vκ − κ ln
σm

σm1

, (57)

where the value vκ for a particular swelling lines depends on the location of the
point on the normal consolidation line, from which the unloading was performed.

Rewriting Equations (56) and (57) for point C (see Figure 7) yields

−κ =
vc − vκ

ln(−pc)− ln(−σm1)
, −λ =

vc − vλ

ln(−pc)− ln(−σm1)
. (58)

It should be noted that the λ and κ values are assumed to be positive. Combining
Equations (58) the hardening/softening rule can be obtained in the form

pc = σm1 exp

(
vλ − vκ

λ− κ

)
, (59)

where pc is the pre-consolidation pressure which represents the maximum value of the
mean stress σm attained in the loading history.

The material parameter M is related to the friction angle φ and it also depends
on the type of loading. It is assumed to be M = 6 sin(φ)/(3 − sin(φ)) for triaxial
compression test and M = 6 sin(φ)/(3 + sin(φ)) for triaxial extension test.

Should be noted that in the case of effective stress concept, all stress quantities have
to be computed from the effective stress tensor σef instead of total one.

Plastic materials are characterized by the evolution of irreversible deformations
upon unloading. Additionally, it is assumed that the behaviour of these materials is
elastoplastic which means that the slopes of the stress-strain diagram for unloading are
identical with the initial elastic slope. The total strain can be decomposed as follows

ε = εe + εp (60)

where ε is the total strain, εe is the elastic reversible strain and εp is the plastic irre-
versible strain. The stresses can be calculated with help of elastic strains according to
the linear elasticity law

σ = Deεe, (61)

where De is the initial elastic stiffness matrix. The evolution of plastic strains can be
defined with help of associated plastic flow rule which is defined by the expression

ε̇p = γ̇
∂f

∂σ
, (62)
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where γ̇ is the rate of plastic multiplier or consistency parameter, which controls the
magnitude of the plastic strain εp. This evolution rule represents differential equation
which cannot be integrated in the closed form generally. There are many numerical
integration schemes providing approximate solution which are called stress return al-
gorithms in plasticity (see, e.g., [23], [24], [25]). If the cutting plane algorithm is
adopted for the integration of the flow rule in the Cam-Clay model, the following
derivatives are necessary

∂f

∂σij

= 3sij +
1

3
M2δij(

2

3
σkk − pc), (63)

∂f

∂pc

= −M2σm, (64)

∂pc(εp)

∂γ
= pc

(
v0

λ− κ

)
∂εvp

∂γ
, (65)

∂εvp

∂γ
= M2(2σm − pc), (66)

where εvp is the volumetric plastic strain which is given by inner product of the plastic
strain tensor εp and Kronecker delta εvp = εp : δ.

5.2 Variation of permeability

To describe the way, in which the over-consolidation and structure strength influence
time dependent processes in soils, the bilinear form of the normal consolidation line
(NCL) will be adopted (Figure 7). Both the theoretical and experimental solutions will
be curried out for the simplest case of uni-axial one-phase flow in a fully saturated
medium. In this case, The governing continuity equation (mass balance) reads

− ∂

∂z

(
K

γw

∂pw

∂z

)
+ ε̇v = 0, (67)

where K is the permeability appeared in the hydraulic conductivity Kw/g in Equa-
tion (14), γw = gρw is the specific weight of water, and ε̇v represents the rate of vol-
umetric strain expressed generally as ε̇v = divvs = mTε̇. In case of cohesive soils,
it is convenient to set α = 1 and to neglect gravity term ρwg due to the insignificant
height of samples.

The equation based on the Cam-Clay model is applied to express the rate of volu-
metric strain ε̇v in terms of the mean effective stress

ε̇v = − λ

vλ

σ̇ef
m

σef
m

, (68)

where σef
m stands for the mean effective stress. Eliminating ε̇ is firmly rooted with the

assumption that the chamber pressure is constant, i.e.,

σ̇m = σ̇ef
m − ṗw = 0 ⇒ σ̇ef

m = ṗw. (69)
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The resulting equation assumes this form

∂σef
m

∂t
=

vλ

λ
σef

m

∂

∂z

(
K

γw

∂pw

∂z

)
. (70)

For general stress state and the three dimensional moisture transfer with respect
to changing permeability, the permeability matrix (42) and the flow vector (48) are
changed:

Kpp =

∫
Ω

(∇N p)
T vλ

λ
σef

m

K

γw
∇N p dΩ, (71)

f p =

∫
Ω

(∇N p)
T vλ

λ
σef

m

K

γw
ρg dΩ −

∫
Γw

N p
qw

ρw
dΓ. (72)

It has been verified experimentally that in case of uni-axial consolidation a mere
power law written as [20]

K

K0

=

(
v

vλ

)m

, (73)

represents the soil behaviour fairly well. Parameter m is yet to be determined to match
numerical solution of Equation (70) with the results of triaxial tests. It turns out from
numerical calculations that the classical Cam-Clay model combined with a linear form
of the NCL does not comply well with the results obtained experimentally (Figure 8).
Conversely, if the bilinear NCL is involved, the evolution of the pore pressure obtained
numerically coincides with the time history of pressures resulting from triaxial tests
much better.

Figure 8: Time history of pore pressure (linear form of the NC line)
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6 Conclusions

The numerical model describing coupled hydro-mechanical behaviour of soils was
presented. Main principles of the micro-mechanics-based model based on Lewis and
Schrefler’s approach of heat and moisture transfer in deforming porous media was
briefly described. For modelling of soil behaviour, the assumption of one-phase flow
(water flow) in deforming porous medium was used in the derivation using the fi-
nite element method. The numerical model presented was implemented in the SIFEL
package and tested on the simple benchmark of sand desaturation. Further, it was ap-
plied to the computer simulation of the soil consolidation process with the assumption
of elastic behaviour of the soil skeleton. It was shown that the description of consol-
idation by the linear elastic model for a porous medium along with the constant per-
meability is not realistic. Therefore, the permeability variation from Cam-Clay model
for modelling of cohesive soils was adopted and it will be topic of the future works
The wide area of application can be found, e.g, in the structure - subsoil interaction
influenced by changes of ground water level.
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