
Abstract

In this paper we present a discrete a posteriori error estimate for a thermoelastic model
problem approximated using the component mode synthesis (CMS) model reduction
method. The problem is one-way coupled in the sense that heat transfer affects the
elastic deformation, but not vice versa. The error estimate bounds the difference be-
tween the reduced and the standard finite element solution in terms of discrete residu-
als and corresponding dual weights. A feature of the estimate is that it automatically
gives a quantitative measure of the propagation of error between the thermal and elas-
tic solvers with respect to a certain computational goal. We accompany the analytical
results by a numerical example.

Keywords: model reduction, component mode synthesis, adaptivity, a posteriori, er-
ror estimation.

1 Introduction

Many important problems in industry are so called multiphysics problems which in-
volve several different types of physics. One such problem is thermoelastic stress
analysis where the objective is to predict the elastic strain of a material caused by
heat flow in order to prevent structural failure. A common technique for simulating
thermoelasticity is to connect two finite element solvers, one for heat transfer and
one for elastic deformation, into a network where each physics is solved for and data
exchanged between the solvers.

Component mode synthesis (CMS) [1, 2] is classical model reduction method based
on the idea of domain decomposition. Here, basis functions associated with the sub-
domains and the interface in a partition of the computational domain are used as to
construct reduced finite element models. The basis functions associated with the sub-

1

 
Paper 87 
 
Adaptive Model Reduction for  
Thermoelastic Problems 
 
M.G. Larson and H. Jakobsson 
Department of Mathematics and Mathematical Statistics 
Umeå University, Sweden 

©Civil-Comp Press, 2012 
Proceedings of the Eighth International Conference 
on Engineering Computational Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



domains are given by the solution of a constrained eigenvalue problem associated with
each of the subdomains, and coupling of the response in the substructures is achieved
through the inclusion of so called static modes defined as the structural response to
prescribed displacements on the interface.

A difficulty in model reduction is choosing the model parameters such that satis-
factory overall accuracy is guaranteed. In CMS this amounts to choosing the number
of modes in each subspace, e.g. cf. [3, 4, 5].

In this paper we present a method to automatically control the reduction error in
both the thermal and elastic solver for a one-way coupled thermoelastic problem where
each of the physics is approximated using CMS. The method is based on a posteriori
error estimation for multiphysics problems, e.g. cf. [6, 7, 8], and the error estimate
measures the difference between the reduced and the full finite element solution in a
given quantity of interest. The results presented herein extends the results in [5] by
allowing temperature dependendent elastic parameters, leading to a linearized thermal
dual problem.

The rest of this paper is organized as follows: In section 2 we present the thermoe-
lastic model problem; in section 3 we describe the component mode synthesis method;
in section 4 we present the a posteriori error estimate and formulate an adaptive algo-
rithm; finally, in section 5 we present some numerical experiments.

2 The Equations of Thermoelasticity

2.1 The Heat Transfer Problem

Let Ω ⊂ Rd, d = 2 or 3, be a polygonal or polyhedral domain with boundary ∂Ω and
outward unit normal n occupied by a a homogeneous isotropic material. Assume that
the temperature T within Ω is described by the stationary heat equation

−∇ · (c∇T ) = s, in Ω, (1a)

T = 0, on ΓT
D, (1b)

n · (c∇T ) = κ(T − T∞), on ΓT
N , (1c)

where c is the thermal conductivity coefficient, and s is any external heat source.
The temperature T is assumed to vanish on the boundary segment ΓT

D, whereas the
temperature flux n · (c∇T ) is assumed to be proportional to the difference between
T and the temperature of the ambient media T∞ on the boundary segment ΓT

N . The
constant of proportionality κ is the heat permeability on the boundary.

2.2 The Linear Elastic Problem with a Thermal Strain

Given the temperature T , assume that the displacements u and stress tensor σ of the
body are described by the static equations of linear elasticity with a thermal strain load
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−∇ · σ = f , in Ω, (2a)
σ = 2µε(u) + (λ∇ · u− β(T )(T − T0))I, in Ω, (2b)
u = 0, on Γu

D, (2c)
n · σ = 0, on Γu

N , (2d)

where ε(u) = 1
2
(∇u + ∇uT ) is the linear strain tensor, f is any body force, I is

the d × d identity matrix, and λ and µ are the Lamé parameters, which are given by
λ = Eν/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)), with E = E(T ) Young’s elastic
modulus and ν = ν(T ) Poisson’s ratio. Further, T0 is the temperature of the body in
its stress free state, and β(T ) = (3λ + 2µ)α with α = α(T ) the thermal expansion
coefficient.

2.3 Finite Element Approximation

Let V h ⊂ V = {H1(Ω) : v|ΓT
D
= 0} be the standard finite element space of all con-

tinuous piecewise linear polynomials on a partition K = {K} of Ω into shape regular
triangles or tetrahedra depending on the dimension d. Let further V h ⊂ V = {v ∈
[H1(Ω)]3 : v|Γu

D
= 0} be the space of all continuous piecewise linear d-dimensional

vector polynomials.
The finite element approximation of (1) takes the form: find T h ∈ V h such that

aT (T h, v) = lT (v), ∀v ∈ V h, (3)

where the linear forms aT (·, ·) and lT (·) are defined by

aT (v, w) = (c∇v,∇w) + (κv, w)∂Ω, (4)
lT (v) = (s, v) + (κT∞, v)∂Ω, (5)

respectively.
Similarly, the finite element approximation of (2) takes the form: find Uh ∈ V h

such that

au(U
h, v) = lu(T

h; v), ∀v ∈ V h. (6)

Here, the linear forms au(·, ·) and lu(T
h; ·) are defined by

au(w, v) = 2(µε(w) : ε(v)) + (λ∇ ·w,∇ · v), (7)

lu(T
h; v) = (f , v) + (β(T h)(T h − T h

0 ),∇ · v), (8)

where we have written lu(T
h; ·) to emphasize the dependence on the temperature T h.
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3 Component Mode Synthesis

Let S = {Ωi}N
i=1 be a partition of Ω into N subdomains Ωi joined at the interface Γ,

such that each Ωi = ∪K∈Ki
K, for some subset Ki ⊂ K. An aT -orthogonal decompo-

sition

V h =
N⊕

i=1

V h
i , (9)

of V h may then be constructed by letting V h
i = {v ∈ V h : v|Ω\Ωi

= 0}, i = 1, . . . , N ,
and by letting

V h
0 = {Eν ∈ V h : ν ∈ V h|Γ}, (10)

where Eν ∈ V h denotes the harmonic extension of a function ν ∈ V h|Γ to Ω, and
V h|Γ denotes the trace space of V h associated with Γ.

Each subspace V h
i , i = 0, . . . , N , is spanned by a basis of di, i = 0, . . . , N , eigen-

modes obtained from the discrete eigenvalue problems: find (Λi, Zi) ∈ R × V h
i for

i = 0, . . . , N , such that

aT (Zi, v) =Λi(Zi, v), ∀v ∈ V h
i , i = 0, . . . , N. (11)

To reduce V h we let V h,m ⊂ V h be defined by

V h,m =
N⊕

i=0

V h,mi

i , (12)

where m = (mi)
N
i=0, 1 ≤ mi ≤ di, is a multi-index, and

V h,mi

i = span{Zi,j}mi
j=1, i = 0, . . . , N. (13)

An au-orthogonal decomposition of V h, and a reduced space V h,n ⊂ V h, where
n = (ni)

n
i=0, can be similarly constructed.

3.1 The Reduced Problem

Introducing the spaces V h,m and V h,n in the thermoelastic model we get the following
reduced problem: find Tm ∈ V h,m such that

aT (Tm, v) = lT (v), ∀v ∈ V h,m, (14)

and find Un ∈ V h,n such that

au(U
n, v) = lu(T

m; v), ∀v ∈ V h,n. (15)

We wish to estimate the discrete error E = Uh−Un in the reduced problem (15).
In doing so, we are lead to a posteriori error estimates, which account for the reduction
error in both the thermal and elastic models.
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4 An A Posteriori Error Estimate

Let the operators Ri : V h → V h
i , i = 0, . . . , n, denote Ritz projectors defined by

aT (w − Riw, v) = 0, ∀v ∈ V h
i , the operators Pmi

i : V h → V h,mi

i , i = 0, . . . , n,
denote Fourier expansion in the space V h,mi

i , i.e. Pmi
i w =

∑mi

j=1(w, Zi,j)Zi,j . The
same conventions also apply for operators on subspaces in V h. We further define the
discrete subspace residuals Rh

i (w) ∈ V h
i and Rh

i (w) ∈ V h
i respectively, for w ∈ V h

by

(Rh
i (w), v) = lT (v)− aT (w, v), ∀v ∈ V h

i , (16)

and for w ∈ V h by

(Rh
i (w), v) = lu(v)− au(w, v), ∀v ∈ V h

i . (17)

The following error representation formula holds

mu(U
h −Un) = lu(T

m; φu − Pnφu)− au(U
n, φu − Pnφu) (18)

+ mT (T h)−mT (Tm),

where mu(·) is a linear functional representing the goal of the computation, φu ∈ V h

is the solution to the associated dual problem

mu(v) = au(v, φu), ∀v ∈ V h, (19)

and mT (T h)−mT (Tm) is the so-called modeling error, which accounts for the effect
of the discrete error in the temperature on the elastic equations. The modeling error
takes the explicit form

mT (T h)−mT (Tm) = lu(T
h; φu)− lu(T

m; φu) (20)

= (β(T h)T h − β(Tm)Tm,∇ · φu). (21)

Making a Taylor expansion of β(T ) around T = Tm, assuming T h ≈ Tm, yields

β(T h)T h − β(Tm)Tm = β(Tm)T h + β′(Tm)(T h − Tm)T h (22)

+O(|T h − Tm|2)− β(Tm)Tm

= β(Tm)(T h − Tm) + β′(Tm)Tm(T h − Tm) (23)

+O(|T h − Tm|2)

Introducing the linearized modeling error

m̄T (T h − Tm) = ((β(Tm) + β′(Tm)Tm)(T h − Tm),∇ · φu) (24)

and the linearized thermal dual problem: find φT ∈ V h, such that

m̄T (v) = aT (v, φT ), ∀v ∈ V h, (25)
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where

m̄T (v) = ((β(Tm) + β′(Tm)Tm)v,∇ · φu), (26)

it can be shown that the following a posteriori error estimate holds

|mu(U −Un)| ≤
N∑

i=0

∣∣(Rh
i (T

m),RiφT − Pmi
i RiφT )

∣∣ (27)

+
∣∣(Rh

i (U
n),Riφu − Pni

i Riφu)
∣∣ .

4.1 Adaptive Algorithm

An adaptive algorithm that automatically refines the subspaces V h,mi

i , and V h,ni

i to
increase the accuracy with respect to the goal functional mu(·) is outlined below:

1. Begin with a starting guess of the subspace dimensions m and n.

2. Solve equations (14) and (15) for Tm and Un.

3. Compute the subspace indicators

ηT,i =
∣∣(Rh

i (T
m),RiφT − Pmi

i RiφT )
∣∣ (28)

and

ηu,i =
∣∣(Rh

i (U
n),Riφu − Pni

i Riφu)
∣∣ . (29)

4. Increase the number of modes in the corresponding subspaces according to a
predetermined refinement strategy.

5. Repeat until satisfactory results are obtained.

5 Numerical Experiment

As our numerical example we study the static deformation of a micro electro mechan-
ical system (MEMS) called a microspring thermal actuator [9], see Figure 1. This
device consists of several chevron structures linked together to form a spring like sys-
tem. The actuator is connected to an electrical source through two contact pads. Joule
heating is produced in the material when voltage is applied to the contact pads, and
thermal stresses makes the actuator expand. Insulating beams with low thermal ex-
pansion coefficient are included to constrain the motion to one dimension.
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This problem may be modeled by including an equation for the electric potential
φE in the structure, in addition to the heat and elastic equations. We consider the
electrostatic case where the potential φE is given by

−∇ · (σ∇φE) = 0, x ∈ Ω, (30)

φE = gE, x ∈ Γφ
D, (31)

n · ∇φE = 0, x ∈ Γφ
N , (32)

where σ is the electric conductivity, and g is a prescribed voltage on the boundary Γφ
D.

The potential is coupled to the heat equation through a heat source s in (1) of the form
s = σ|∇φE|2.

Voltage of gE = ±1 is applied to the boundary of the contact pads which is as-
sumed to be fixed, u = 0, to the surrounding substrate. It is also assumed that the
fixed boundary has temperature T = 0, and that the rest of the boundary is thermally
insulated, κ = 0, and stress free n · σ(u) = 0. We further assume that the insulating
beams have electric conductivity σ = 10−12 and that σ = 1 in the rest of the structure.
Finally, the elastic properties of the structure are defined by E = 1, and ν = 0.3. Fur-
ther, α = 10−6 for the insulating beams, and α(T ) = arctan(20) + arctan(T − 20)
in the rest of the structure, see Figure 2. We remark that the properties of the structure
are arbitrarily chosen and do not reflect the actual properties of a microspring thermal
actuator.

The simplified computational domain, partitioned into subdomains, can be seen
in Figure 3. We begin by obtaining a discrete electrostatic potential ΦE by solv-
ing the full associated finite element problem. Since we are using the full finite el-
ement model, the discrete modeling error associated with the potential equation is
zero. Using the heat source S = σ|∇ΦE|2 as in-data to the heat equation we use the
adaptive algorithm to obtain reduced solutions Tm and Un. With the goal of com-
puting the displacements in the x2 direction accurately near the point (0,−2.85), the
goal functional is chosen as mu(v) = (g, v), where g = [0,− exp(−50r2)]T , with
r =

√
x2

1 + (−2.85− x2)2.
Iterating five times using the refinement rule: add 10 modes to the basis in each

subspace V h,mi

i and V h,ni

i , where the subspace indicators ηT,i and ηu,i satisfies

ηT,i > 0.5 max
i

ηT,i, (33)

and

ηu,i > 0.5 max
i

ηu,i, (34)

where ηT,i and ηu,i where defined in (28) and (29), respectively, we obtain the pri-
mal temperature and displacement seen in Figure 5 and Figure 6. For simplicity we
have solved the dual equations using the full finite element model, in practice a richer
reduced model may be used to approximate the dual problems. The obtained dual
solutions may be seen in figures 7 and 8.

The absolute value of the discrete error in the goal functional |mu(U
h − Un)|

together with the estimated error as the adaptation proceeds can be seen in Figure 4.
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Figure 1: Microspring thermal actuator with (a) contact pads, (b) chevron structures,
and (c) insulating beams.
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Figure 2: The thermal expansion coefficient α(T ) = arctan(20) + arctan(T − 20).
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Figure 5: Primal temperature
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Figure 7: Dual temperature
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Figure 8: Dual displacements
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