
Abstract

OpenMP and MPI are typically used in combination to implement distributed shared

memory parallelization schemes for numerical simulations on hybrid systems. The

performance of said numerical simulations is frequently linked to the efficient and

accurate computation of derivatives. One method of acquiring this derivative infor-

mation for a given code is algorithmic differentiation (AD). AD implementations are

subdivided into either source transformation or overloading tools. We investigate a

generic approach of applying AD tools on hybrid parallel codes. A dense matrix-

matrix multiplication serves as a case study.

Keywords: algorithmic differentiation, adjoint MPI, adjoint OpenMP.

1 Motivation

Numerical simulation software is generally run on multi-core parallel architectures.

On these clusters, the number of nodes as well as the number of cores per node is

steadily increasing. This trend implies hybrid parallelization schemes consisting of

both distributed and shared-memory programming models. The de facto standard

for distributed memory is the message passing interface (MPI) [5]. MPI is used to

decompose the workload into large chunks which are distributed onto computer nodes

(e.g. grid partitioning scheme). Additionally, each node is composed of several cores

that access the same memory locations over a common physical memory. Hence, we

assume that the core numerical problem, called kernel, is distributed among the nodes

through MPI. On each node the kernel is assumed to use OpenMP [8] for shared-

memory parallelization.

Numerical simulation and optimization typically rely on robust and efficient deriva-

tive information, thus potentially favoring AD [4] over finite difference approximation

1

Paper 7

Adjoining Hybrid Parallel Code

M. Schanen, M. Foerster, J. Lotz, K. Leppkes and U. Naumann
LuFG Informatik 12
Software and Tools for Computational Engineering
RWTH Aachen University, Germany

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

in order to avoid truncation and rounding errors. There exist two distinct derivative

models explained in more detail in the following section. First, the tangent-linear

model based on the straightforward application of the chain rule. And second, the

adjoint model resulting from the associativity of the chain rule. AD applies the two

models semi-automatically by transforming a given original code into its derivative

equivalent where in addition to the values, derivatives are computed. Thus, a poten-

tially tedious implementation of the derivative code by hand is avoided.

Unfortunately, no existing AD tool is able to generate the derivative code of a

hybrid parallel implementation automatically. In the following, we use both categories

of tools (source transformation and overloading) to implement the adjoint derivative

model. At runtime, crucial information for adjoining OpenMP pragmas is missing.

Therefore only a source transformation tool (e.g. compiler) parsing these pragmas, is

able to adjoin OpenMP code. If MPI is used in a kernel of an application it can be

adjoined using dcc and in fact this was subject to a publication at EuroMPI2010 [10].

However, parsing the entire code using an AD tool is a difficult task that no tool has

ever completely achieved or even strived for, since the additional effort far outweighs

the benefits. As MPI resides mostly on a higher layer of an application, this is in

particular true for adjoint MPI. Hence an overloading AD tool is used for adjoining

MPI.

To motivate and illustrate our approach, we implemented a distributed dense matrix

multiplication based on the Cannon algorithm [2]. Being a well documented problem

in parallel programming, this example serves as an emulation of large-scale simulation

codes, covering both the distribution of the input problem using MPI as well as a local

computation of a kernel using OpenMP.

We consider a dense matrix multiplication C = A · B, A ∈ R
m×p, B ∈ R

p×n

and C ∈ R
m×n. To avoid infeasible memory consumption for large m, p and n, the

Cannon algorithm divides the matrices A,B and C into block matrices Ai,k, Bk,j and

Ci,j . Each block is computed according to Ci,j+=Ai,k ·Bk,j . The Ci,j are incremented

locally on each node, while the block matrices Ai,k and Bk,j are switched among nodes

as described by Cannon’s algorithm using two MPI grid topologies for A and B. The

block matrices are communicated using blocking MPI sendrecv replace calls. Each

node uses OpenMP shared-memory multithreading for computing the local product of

one block for a given i, j.

The structure of the paper is as follows. Section 2 gives a short introduction to

AD. In Section 3 we present the integration of the adjoint MPI library and discuss the

adjoining of the OpenMP region. We then describe the coupling of two parallelization

schemes along the adjoint version of the code. Section 4 presents the results of our

case study in order to validate our approach.

2

2 Algorithmic Differentiation

We assume that numerical code implements multivariate vector functions y = F (x), F :

R
n → R

m. The tangent-linear model of F computes the directional derivative ẏ =
∇F (x) · ẋ = Ḟ (x, ẋ) of the outputs y with respect to the inputs x at the current point

and for a given direction ẋ ∈ R
n. Exploitation of the associativity of the chain rule

yields the adjoint model of F computing adjoints of the inputs x̄ = ∇F (x)T · ȳ =
F̄ (x, ȳ) ∈ R

n for given adjoints ȳ ∈ R
m of the outputs.

The difference in complexity between these two modes is the runtime for accumu-

lating the entire Jacobian ∇F . While the tangent-linear model needs n evaluations of

ẏ for ẋ set equal to each Cartesian basis vector in R
n, the adjoint model needs m eval-

uations of x̄ for ȳ set equal to each Cartesian basis vector in R
m . For numerical codes

where the number of inputs x far exceeds the number of outputs y, the difference in

runtime complexity Cost(Ḟ) = O(n) · Cost(F) versus Cost(F̄) = O(m) · Cost(F)
may be crucial. Cost(F) denotes the computational cost of a single function evalua-

tion of F .

Technically, the adjoint code is split up into a forward and a reverse section. The

forward section computes the function values following the same data flow as the orig-

inal code. The reverse section computes the adjoints along the reverse of the original

data flow. The control flow of the forward section needs to be traced. Moreover, values

that are overwritten in the forward section may later be needed in the reverse section

in order to compute the adjoints and, therefore, must be recorded. This is not the case

in tangent-linear code being a rather straight-forward assignment-level augmentation

of the original code. Hence, the development of adjoint differentiation tools is a more

complex task than the implementation of the tangent-linear model. This paper will

focus on the application of the adjoint model.

The matrix multiplication C = A · B, with A ∈ R
m×p, B ∈ R

p×n and C ∈ R
m×n

involves p(n+m) inputs as opposed to n ·m outputs. The ratio between the number

of inputs and the number of outputs grows with p. We assume p ≫ m,n.

Example: We consider the computation of a Jacbian matrix line
∂c0,0

∂[ai,k,bk,j]
of the

dense matrix multiplication

A ·B =

[

1 2
3 4

]

·

[

1 2
3 4

]

=

[

6 10
15 22

]

= C

in adjoint mode.

The computation of the matrix C represents the forward section in the adjoint

mode. In the reverse section the adjoints Ā and B̄ are accumulated. To accumulate
∂c0,0
∂ai,k

and
∂c0,0
∂bk,j

we set c̄0,0 equal to 1. By adjoining the computation of ci,j according to

the adjoint model we obtain

ā0,0 = b0,0 · c̄0,0 + b0,1 · c̄0,1 = 1 · 1 + 2 · 0 = 1
ā0,1 = b1,0 · c̄0,0 + b1,1 · c̄0,1 = 3 · 1 + 4 · 0 = 3
ā1,0 = b0,0 · c̄1,0 + b0,1 · c̄1,1 = 1 · 0 + 2 · 0 = 0
ā1,1 = b1,0 · c̄1,0 + b1,1 · c̄1,1 = 3 · 0 + 4 · 0 = 0

3

Listing 1: Matrix multiplication with OpenMP directives serving as input to dcc.

void MxM(i n t n , i n t m, i n t p , double ∗A,

double ∗B, double ∗C)

#pragma ad indep A B

#pragma ad dep C

5 {
i n t i =0;

i n t k =0;

i n t Aidx =0;

i n t Bidx =0;

10 i n t C size=m∗n ;

#pragma omp p a r a l l e l for pr ivate (i , k , Aidx , Bidx)

for (i =0; i<C size ; i ++) {
#pragma ad simple loop

for (k =0;k<p ; k++) {
15 Aidx =(i / n) ∗p+k ;

Bidx =(i%n) +k∗n ;

C[i]=C[i]+A [Aidx]∗B[Bidx] ;

}
}

20 }

and similarly B̄.

Note that the adjoints Ā and B̄ are evaluated in one computational run of the adjoint

model. Thus the accumulation of the entire Jacobian ∇F would amount to 4 runs by

setting one single entry c̄i,j of C̄ equal to 1 at each run. The tangent-linear model

however would need 8 evaluations since each direction ȧi,k and ḃk,j would have to be

set equal to 1 individually. Ā and B̄ may be computed analytically with Ā = C̄ · BT

and B̄ = AT · C̄. This is considered to be an implementation by hand of the adjoint

code as opposed to AD.

2.1 AD by Source Transformation using dcc

Source transformation tools take an implementation of a function F as an input and

generate the implementation of Ḟ or F̄ in tangent-linear or adjoint mode, respectively.

Therefore, source transformation tools need to be able to parse the entire computer

language in order to generate adjoint code. Our source transformation tool is the

derivative code compiler dcc [9]. Its focus is on the efficient derivative code genera-

tion while supporting a well defined subset of C/C++ as an input code. The advantage

of such a compiler is the access to extra information about the input code retrieved

through program analysis techniques [1] at compile time. Moreover, the user may

provide additional information through pragmas in the source code. These pragmas

declare certain code properties. In Listing 1 we have two kinds of pragmas. On the

one hand, the OpenMP pragmas starting with ’#pragma omp’, and on the other hand

the AD related pragmas starting with ’#pragma ad’. The pragmas in line 3 and line 4

declare that the derivative code should compute the derivative of output C (dependent

4

variable) with respect to inputs A and B (independent variables). In line 13, the user

declares the subsequent loop as simple. This tells the compiler that the order of the

loop counter is defined only by the loop itself and the counter is not modified during

the evaluation of the loop body. This is important for the reverse section because the

loop is evaluated in the opposite order of the forward section. Therefore, the loop

header of the forward section for(k=0;k<p;k++) becomes for(k=p−1;k>=0;k−−) in the

reverse section. The OpenMP pragma in line 11 defines the following loop to be eval-

uated in parallel by a group of threads. Each thread has a private copy of the variables

i ,k,Aidx,Bidx. With Listing 1 as input, dcc transforms the signature into

void t1 MxM (i n t n , i n t m , i n t p , double∗ A,

double∗ t1 A , double∗ B, double∗ t1 B ,

double∗ C, double∗ t1 C)

in tangent-linear mode and into

void a1 MxM(i n t mode, i n t n , i n t m, i n t p ,

double∗ A, double∗ a1 A , double∗ B,

double∗ a1 B , double∗ C, double∗ a1 C)

in adjoint mode.

Each floating-point variable v is augmented by t1 v (directional derivative) or a1 v

(adjoint). The only difference in the signature between the two modes is the parameter

mode. This is used for the interprocedural joint reversal scheme [7] by dcc for storing

the function’s arguments. Mode 2 is identical to the call of the original function except

that the arguments are store before the function call. Mode 1 consists of restoring the

arguments and evaluating first the augmented forward section and then the reverse

section. This way the reverse section is always called immediately after the forward

section. Another reversal scheme mostly used by overloading tools is split reversal,

where the execution of the reverse section may not immediately follow the forward

section. Joint reversal has higher memory efficiency than split reversal, whereas split

reversal has a lower computational cost than joint reversal. Optimal reversal is known

to be NP-complete [6] and is not subject of this paper.

Based on the code presented in Listing 1 we used dcc to generate t1 MxM in

tangent-linear mode and a1 MxM in adjoint mode. For m = 100 and n = 100 we

measured serial run times of the Jacobian accumulation for various p in Figure 1.

With increasing number of inputs p · (m + n) the computational cost of F, Ḟ and F̄

is increasing linearly. However, for the Jacobian accumulation the computational cost

of the tangent-linear code is increasing quadratically whereas the adjoint code is still

increasing linearly. The logarithmic scale of Figure 1 illustrates this by a twice as

steep slope for the tangent-linear mode as for the adjoint mode. The Jacobian runtime

is extrapolated from the runtime of Ḟ or F̄ times the number of inputs or outputs,

respectively.

5

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 100 1000 10000

R
u

n
ti
m

e
(s

)

p

tangent-linear
adjoint

Figure 1: Jacobian accumulation runtime of a sequential matrix multiplication

A(m, p) · B(p, n) = C(m,n) for various dimensions p and with n = 100, m = 100
using dcc.

6

2.2 AD by Overloading using dco/c++

AD by overloading is achieved at runtime by defining a new data type which overloads

all operations used for variables of type double. The dco/c++ tape interpretation tool

implements the overloading data type dco::a1s::type . It uses a data structure (tape)

holding all necessary information for the adjoint projection. Additionally an adjoint

value for each program variable is stored in the tape. The tape is being included and

declared with

inc lude <dco . hpp>

dco : : a1s : : tape ∗ g loba l t ape ;

g loba l t ape =dco : : a1s : : tape : : c reate () ;

To read the requested adjoints out of the tape at the end of the tape interpretation,

we need to register the inputs. In our case study, the inputs are the distributed matrices

A and B just before calling Cannon().

for (i n t i =0; i<m∗p ; i ++)

tape−>r e g i s t e r v a r i a b l e (A [i]) ;

for (i n t i =0; i<p∗n ; i ++)

tape−>r e g i s t e r v a r i a b l e (B [i]) ;

Cannon (m, p , n ,A,B,C) ;

When the program is started, the values are computed and the tape is being recorded

by executing the overloaded original code. This corresponds to the forward section.

After the forward section has finished, the stored tape is interpreted in order to com-

pute the adjoint projection of the recorded function. The adjoints seeded in the output

variables in the distributed matrix C are propagated to the input variables A and B.

This corresponds to the reverse section.

Cannon (m, p , n ,A,B,C) ;

s e t (C[0] , 1.0 ,−1) ;

tape−> i n t e r p r e t a d j o i n t () ;

As dco/c++ also implements the tangent-linear mode as well as higher-order mod-

els, the third parameter of set () is necessary for telling dco/c++ to set the adjoint

component of C[0] accordingly. The tape interpreter propagates the adjoints through

the entire tape, by assigning the corresponding adjoint to each variable for each oper-

ation using the information stored in the tape. After the tape interpreter returns, the

adjoints of the registered variables are retrieved out of the tape with get(A[i], temp,−1),

temp being a buffer for storing the adjoint.

3 Parallel Adjoints

Our proposed method of adjoining hybrid parallel code yields the generic call graph

shown in Figure 2. Note that each MPI process will spawn its own call graph, differing

only in its arguments and interprocess communication. First, the program starts in

the top routine called driver. In the driver the dco/c++ tape as well as the AMPI

7

main()

driver

P() interpret adjoint ()

Kernel()

overloaded

a1 Kernel(2)

values

a1 Kernel(1)

adjoints

Kernel()

original

a1 wrapper Kernel()

Overloading

(dco/c++)

Wrapper

Compiler

(dcc)

Figure 2: Call graph of an adjoined MPI program P (e.g. Cannon) relying on a nu-

merical kernel (e.g. matrix multiplication) with OpenMP pragmas.

library is initialized followed by calling the overloaded program P , in our case Cannon

, using the overloading type dco::a1s::type to record the process specific tape. In the

overloaded program P a OpenMP parallelized kernel is called computing in our code

a local matrix multiplication. This is implemented by calling the external function

interface of dco/c++ with mode set equal to 2. This results in the execution of the

original matrix multiplication computing only the values of matrix C. As described by

the Cannon algorithm a1 MxM(2) may be called several times by the Cannon function

depending on the number processes.

After the overloaded program P has finished the execution returns to the driver

which starts the adjoint computation by calling the interpret adjoint function of dco/c++.

P (Cannon) is run in reverse off the recorded tape. Each time the adjoint matrix multi-

plication should be executed, the external wrapper function call is fired. This results in

the a1 MxM(1) function called with mode set to 1. Eventually, the forward section and

reverse section of the matrix multiplication is executed. We will now go through each

layer of our implementation; MPI with dco/c++, OpenMP with dcc, and finally the

coupling between these two layers.

3.1 Adjoint MPI by Overloading

Adjoint MPI (AMPI) is a self-contained library intended at adjoining MPI routines

[11]. It is implemented in C and has been coupled with various AD tools. It is appli-

cable to either source transformation or overloading tools and only incorporates the

logic of reversing MPI communication. No numerical data is stored inside the adjoint

MPI library. We will present the AMPI interface without going through the internals

of the AMPI library.

As has been mentioned in the introduction, MPI is commonly used to distribute

8

subproblems on different nodes. Therefore MPI resides on a higher level in the im-

plemented code. Hence, we assume that MPI is mostly differentiated by a tape inter-

pretation tool as has been illustrated by our case study. If the adjoint MPI library is

integrated into a tape interpretation tool, it has six external access functions needed to

access tape information. These had to be implemented manually in dco/c++. In our

Cannon implementation, the block matrices are exchanged using

MPI Sendrecv replace(local A, n, MPI DOUBLE, dest, 0, source, 0, comm, &status)

with local A being the local block matrix, n its size, dest and source its source and

destination respectively on the grid topology. To activate AMPI within a tape inter-

pretation tool, we need to add the header ampi tape.h and replace the MPI calls with

its adjoinable counterparts

AMPI Sendrecv replace(local A, n, MPI DOUBLE, dest, 0, source, 0, comm, &status).

The AMPI routines are directly linked to the AMPI library, while executing the over-

loaded code. Since local A is of arbitrary type, it may only be accessed via the external

access functions from inside AMPI via a pointer of type void∗. Values are read and

written using

void ampi get val(void ∗local A, int ∗ i , double ∗x) and

void ampi set val(void ∗local A, int ∗ i , double ∗v).

AMPI needs to store the location *idx of the adjoints allocated in dco/c++ for each

buffer element buf[i] using

void ampi get idx(void ∗buf, int ∗ i , INT64∗idx).

The adjoints will be written to this location during the tape interpretation. In our case

idx is of type double∗, but may be set to any type through defines of INT64. Finally,

AMPI writes an external AMPI function tape entry as well as tape entries for each

buffer element buf[i] directly into the dco/c++ tape.

void ampi create tape entry(int ∗ i) and

void ampi create dummies(void ∗buf, int ∗size).

During the tape interpretation, each time dco/c++ reads an external AMPI function

off the tape, it calls the AMPI interpretation routine

void ampi interpret tape() .

This routine calls the adjoint computation of the original MPI call. In our case the

adjoint of MPI Sendrecv replace will be

MPI Sendrecv replace(local A, n, MPI DOUBLE, source, 0, dest, 0, comm, &status).

9

The source and destination need to be switched while local A now refers to the adjoints

of local A. These are again read and written using manually implemented external

function calls in dco/c++.

void ampi get adj(INT64 ∗idx, double ∗x) and void ampi set adj(INT64 ∗idx, double ∗x).

The previously stored adjoint location idx is used to access the corresponding memory

location in the dco/c++ tape. By implementing these eight external functions in

dco/c++, we have enabled dco/c++ to interpret arbitrary code using MPI.

3.2 Compiler-Based Adjoint OpenMP

Based on [3], dcc reads in the parallel loop from Listing 1 line 4, exploiting the

provided extra information about parallelism. Without going into the technical de-

tails we explain the output of dcc. In Figure 1, a1 MxM is first called by dco/c++

as an external function with mode set equal to 2 resulting in the evaluation of the

original OpenMP enabled code as shown in Listing 1. When the dco/c++ tape inter-

preter interpret adjoint calls a1 MxM with mode set equal to 1, the differentiated code

in Listing 2 is executed. The forward and reverse section are merged under one single

OpenMP parallel section. A parallel region for each section would imply the need to

save the loop decomposition and its control flow for each thread. Using checkpoints

on all the inputs to the parallel loops enables dcc to generate joint parallel regions,

where in each iteration of OMP the reverse section immediately follows the forward

section.

Two local stacks are defined in line 3 for storing values that are overwritten and

needed in the reverse section. One stack is for integer values, the other one for

floating-point values. For readability we used macros for the definition and for the

stack operations. The stacks are defined locally to exploit memory locality. Memory

efficiency-wise the stored values are consumed right afterwards in the reverse section.

The inner loop from line 6 to line 14 is similar to the original differing only in

additional stack operations. Then follows the reverse section of the iteration, shown

from line 16 to 25. The adjoint loop of a simple loop is again a simple loop, indicated

by the pragma in line 16. Furthermore, the pragmas in line 19 and 21 ensure thread

synchronization. This is necessary because the reversal of the data flow implies that

all threads write to the adjoint arrays a1 A and a1 B in parallel. This race condition is

solved by the atomic directive of OpenMP.

3.3 Coupling of Overloading Tool with Source Transformation Com-

piler

The coupling of a source transformation compilier with an overloading tool like dcc

and dco/c++ requires a well defined interface for both tools. Our main goal is to

minimize manual code manipulation while keeping both tools as generic as possible.

10

Listing 2: Adjoint parallel region generated by dcc corresponding to Listing 1 lines

11 to 19.

#pragma omp p a r a l l e l for pr ivate (i , k , Aidx , Bidx)

for (i =0; i<C size ; i ++) {
OMP LOCAL INT STACK ;

OMP LOCAL DOUBLE STACK;

5 / / forward sec t ion

#pragma ad simple loop

for (k =0;k<p ; k++) {
OMP IDS PUSH(Aidx) ;

Aidx =(i / n) ∗p+k ;

10 OMP IDS PUSH(Bidx) ;

Bidx =(i%n) +k∗n ;

OMP FDS PUSH(C[i]) ;

C[i]=C[i]+A [Aidx]∗B[Bidx] ;

}
15 / / reverse sec t ion

#pragma ad simple loop

for (k=p−1;k>=0;k−−) {
OMP FDS POP(C[i]) ;

#pragma omp atomic

20 a1 A [Aidx]+=a1 C [i]∗B[Bidx] ;

#pragma omp atomic

a1 B [Bidx]+=a1 C [i]∗A[Aidx] ;

OMP IDS POP(Bidx) ;

OMP IDS POP(Aidx) ;

25 }
}

11

In numerical codes, routines often implement common mathematical functions (e.g.

matrix multiplication, dot product,...). These functions may be differentiated by hand

or by a source transformation like dcc. In both cases we end up with one function

computing the values and another one computing the derivatives. In dcc this dis-

tinction is made through the mode variable. From the dco/c++ tape’s perspective

this is considered as an external function. In the forward section (tape recording) the

external function is called and during its execution, the tape recording is suspended.

Immediately after the external function returns, the tape recording is activated again.

An external function data object has to establish the link between in- and outputs of the

external function in the tape. Additionally all input data needed for the adjoint func-

tion has to be saved (checkpointing) as well as a pointer to the corresponding external

adjoint function itself. The interface for calling an external function and the corre-

sponding adjoint is done generically in dco/c++. The user has to provide correct

wrapper routines.

dcc differentiated functions are treated by the dco/c++ tape as external func-

tions. The matrix multiplication wrapper function (MxM (...) – Listing 3) is called

during the forward section. The wrapper has the same name as the original function,

but is overloaded with the data type atype via the typedef. First an external function

data object is created (line 4), which writes the checkpoint (line 5 - 7) and the con-

nection to the inputs from the tape (line 12 - 17). This is followed by calling the dcc

generated routine with mode=2 (augmented forward run – Section 2.1). In line 10 we

allocate variables of type double in order to call the dcc generated routine. After the

dcc routine has returned in line 19, we activate the output variables to create the link

to the tape again. In line 24 we finally register the external function data object as well

as a function pointer to the adjoint function wrapper in the tape.

During the tape interpretation the adjoint function wrapper (a1 wrapper MxM (...) –

Listing 4) is called with a fixed signature. It has two input arguments, the calling

tape and the external function data object created during the forward section. As user-

defined data objects are allowed, the incoming data type (ext data interface) has to be

casted (line 3). The checkpoint is restored (line 6 - 8) and all needed variables are

allocated (line 10 - 15). In line 19 the output adjoints are read from the tape and the

dcc generated routine is called in mode=1 to compute the adjoint projection (line 22).

The input adjoints are written back to the tape (line 24 - 31) and allocated memory is

freed (line 33).

4 Results

All the benchmarks in this paper were conducted on a Sun SPARC Enterprise T5120

Server cluster consisting of Niagara T2 CPUs with each 8 cores and 32Gb of memory.

The aim of the benchmarks is not to show the efficiency of the Cannon matrix multi-

plication. Our goal is to achieve similar scalability for the AD enabled code as for the

original code. Two randomly generated matrices are read in from a file, multiplied

and written out again. The size of the input matrices A and B is set to 64 × 200000

12

Listing 3: Matrix multiplication wrapper calling the dcc generated routine during the

forward section of dco/c++ (tape recording).

typedef dco : : a1s : : type atype ;

typedef dco : : a1s : : tape : : e x t e r n a l f u n c t i o n d a t a h e l p e r ex t da ta ;

void MxM(i n t n , i n t m, i n t p , atype ∗A, atype ∗B, atype ∗C) {
ex t da ta ∗ user data = new ex t da ta () ;

5 user data−>w r i t e t o c h e c k p o i n t (n) ;

user data−>w r i t e t o c h e c k p o i n t (m) ;

user data−>w r i t e t o c h e c k p o i n t (p) ;

double pA [m∗p] , pB [p∗n] , pC [m∗n] ,

10 a1 pA [m∗p] , a1 pB [p∗n] , a1 pC [m∗n] ;

for (i n t i =0; i<m∗p ; i ++)

pA [i] = ext−>r e g i s t e r i n p u t f r o m t a p e (A [i]) ;

for (i n t i =0; i<p∗n ; i ++)

15 pB [i] = ext−>r e g i s t e r i n p u t f r o m t a p e (B [i]) ;

for (i n t i =0; i<m∗n ; i ++)

pC [i] = ext−>r e g i s t e r i n p u t f r o m t a p e (C[i]) ;

a1 MxM(2 , pA , a1 pA , pB , a1 pB , pC, a1 pC , n) ;

20

for (i n t i =0; i<m∗n ; i ++)

C[i] = ext−>r e g i s t e r o u t p u t i n t a p e (pC [i]) ;

g loba l tape−>r e g i s t e r e x t e r n a l f u n c t i o n (&a1 MxM wrapper , ex t) ;

25 }

13

Listing 4: Adjoint matrix multiplication wrapper calling the generated adjoint dcc

routine during the reverse section of dco/c++ (tape interpretation).

void a1 wrapper MxM (dco : : a1s : : tape ∗ tape , i n t mode,

e x t d a t a i n t e r f a c e ∗data) {

ex t da ta ∗ user data = sta t ic cast<ex t da ta ∗>(data) ;

5 i n t n , m, p ;

user data−>read f rom checkpo in t (n) ;

user data−>read f rom checkpo in t (m) ;

user data−>read f rom checkpo in t (p) ;

10 double ∗pA=new double [m∗p] ;

double ∗pB=new double [p∗n] ;

double ∗pC=new double [m∗n] ;

double ∗a1 pA=new double [m∗p] ;

double ∗a1 pB=new double [p∗n] ;

15 double ∗a1 pC=new double [m∗n] ;

for (i n t i = 0 ; i < m∗p ; i ++) a1 pA [i] = 0 ;

for (i n t i = 0 ; i < p∗n ; i ++) a1 pB [i] = 0 ;

for (i n t i = 0 ; i < m∗n ; i ++)

20 a1 pC [i] = user data−>r e a d n e x t a d j o i n t f r o m t a p e (tape) ;

a1 MxM(1 , n , m, p , pA , a1 pA , pB , a1 pB , pC, a1 pC) ;

for (i n t i = 0 ; i < m∗p ; i ++)

25 user data−>w r i t e n e x t a d j o i n t t o t a p e (a1 pA [i] , tape) ;

for (i n t i = 0 ; i < n∗p ; i ++)

user data−>w r i t e n e x t a d j o i n t t o t a p e (a1 pB [i] , tape) ;

30 for (i n t i = 0 ; i < n∗m; i ++)

user data−>w r i t e n e x t a d j o i n t t o t a p e (a1 pC [i] , tape) ;

delete [] pA ; delete [] a1 pA ;

delete [] pB ; delete [] a1 pB ;

35 delete [] pC ; delete [] a1 pC ;

}

14

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 8

R
u

n
ti
m

e
(s

)

OpenMP Threads

1 Process
4 MPI Processes

Figure 3: Runtimes for the hybrid Cannon matrix multipication with the size of the

matrices set equal to A(64,200000),B(200000,64) and C(64,64).

15

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8

R
u

n
ti
m

e
(s

)

OpenMP Threads

1 Process
4 MPI Processes

Figure 4: Runtimes for the adjoined hybrid Cannon matrix multipica-

tion using dco/c++ and dcc with the size of the matrices set equal to

A(64,200000),B(200000,64) and C(64,64).

16

and 200000× 64, resulting in an output matrix C of size 64× 64. This is a numerical

problem where the inputs far exceed the number of inputs, thus suited for computing

adjoints.

Figure 3 presents the run times obtained with the original hybrid code of the Can-

non algorithm. Figure 4 are the run times of the AD differentiated code using dco/c++

and dcc. While comparing the scalability, we observe that the curves’ tendency ex-

actly match. The differentiated code is a constant factor slower as the original code.

Both with respect to MPI as well as with respect to OpenMP.

With 4 MPI processes and 8 OpenMP threads the runtime of the Jacobian accu-

mulation of this problem would be equal to the number of outputs m · n times 68s.

This amounts to 278s. Note that the accumulation of the Jacobian using e.g. finite dif-

ference would be equal to the runtime of one passive evaluation times the number of

inputs. This is 6.2s for 4 MPI processes and 8 OpenMP threads times p(m+n) = 25.6
million, rendering the accumulation of the Jacobian using finite difference infeasible

with current computer hardware.

5 Conclusion

This paper describes how a given hybrid parallel code may be adjoined using a source

transformation and an overloading AD tool (dcc and dco/c++). MPI, being a li-

brary, is adjoined by overloading while OpenMP with its compiler directives is ad-

joined using source transformation. We conclude that this is the preferred approach

for any hybrid parallel code. The OMP pragmas must be read by a source transforma-

tion tool. And in order to cover the entire C++ language the overloading tool is used

to differentiate the Cannon implementation and its MPI calls. We explained how these

two tools were linked together based the external function interface in dco/c++.

We validated our approach by providing benchmarks, comparing the scalability of

the original code with the scalability of the differentiated code.

Acknowledgment

Michel Schanen is partially supported by the Fond National de la Recherche of Lux-

embourg under grant PHD-09-145.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers. Principles, Techniques,

and Tools (Second Edition). Addison-Wesley, Reading, MA, 2007.

[2] L. E. Cannon. A Cellular Computer to implement the Kalman Filter Algorithm.

1969.

17

[3] Michael Förster, Uwe Naumann, and Jean Utke. Toward Adjoint OpenMP. Tech-

nical Report AIB-2011-13, RWTH Aachen, July 2011.

[4] A. Griewank and A. Walter. Evaluating Derivatives. Principles and Techniques

of Algorithmic Differentiation (2nd Edition). SIAM, Philadelphia, 2008.

[5] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par-

allel Programming with the Message Passing Interface. MIT Press, 1994.

[6] Uwe Naumann. DAG reversal is NP-complete. Journal of Discrete Algorithms,

7(4):402 – 410, 2009.

[7] Uwe Naumann and Jean Utke. Source Templates for the Automatic Generation

of Adjoint Code Through Static Call Graph Reversal. In Vaidy Sunderam, Geert

van Albada, Peter Sloot, and Jack Dongarra, editors, Computational Science

ICCS 2005, volume 3514 of Lecture Notes in Computer Science, pages 337–

383. Springer Berlin / Heidelberg, 2005.

[8] OpenMP Architecture Review Board. OpenMP Application Program Interface.

Specification, 2008.

[9] M. Schanen, M. Förster, B. Gendler, and U. Naumann. Compiler-based Differen-

tiation of Numerical Simulation Codes. In ICCGI 2011, The Sixth International

Multi-Conference on Computing in the Global Information Technology, pages

105–110. IARIA, 2011.

[10] Michel Schanen, Michael Förster, and Uwe Naumann. Second-Order Algorith-

mic Differentiation by Source Transformation of MPI Code. In EuroMPI’10,

pages 257–264, 2010.

[11] Michel Schanen, Uwe Naumann, Laurent Hascoët, and Jean Utke. Interpreta-

tive Adjoints for Numerical Simulation Codes using MPI. Procedia Computer

Science, 1(1):1819 – 1827, 2010. ICCS 2010.

18

