
Abstract

Since learning from examples is the most simple way towards understanding, this
paper may serve as a tutorial for the application of various averaging schemes to
the derivation of effective properties of heterogeneous materials which show multi-
ple scales. The simplicity and ease of use of analytical methods may play an enabling
role in attracting young students and even engineers to the field of micromechanics by
giving them the opportunity of directly applying the gained theoretical background to
the solution of a variety of engineering problems. Several vastly dissimilar material
systems are examined. In particular, the calculation of Young’s modulus as a function
of the degree of hydration of alkali-activated fly ash is discussed first followed by the
application of micromechanical modeling to natural wood and closed with the refer-
ence to metallic foams. To show a common merit of individual materials the following
topics will govern their analysis: a) identification of scales based on image analysis,
b) identification of intrinsic material properties of individual phases based on nanoin-
dentation, c) hierarchical homogenization employing the most suitable method on a
given scale, d) corroborating theoretical predictions by experimental observations on
the macro-scale.

Keywords: Mori-Tanaka method, self-consistent method, differential scheme, alcali
activated fly ash, natural wood, metallic foam, image analysis, nanoindentation, multi-
scale homogenization.

1 Introduction

The field of composite materials now offers a tremendous variability and complexity
of microstructures in dependence on their particular application. Nevertheless, it still
shows a number of common features which bring various material systems to the same
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footing at least from their analysis point of view. The latter issue has been repeatedly
exploited particularly in connection with systems described by limited number of data
often reduced to volume fractions and material properties of individual phases and
assumptions of their statistically uniform arrangement [9, 2, 4].

Introduction of images of real microstructures into the analysis opened the way to
more rigorous quantification of microstructures [15] as well as more advanced model-
ing strategies based on statistically equivalent representation of microstructural details
by computational models [22, 17, 23] often formulated in the hierarchical manner to
account for multiple scales [5, 14]. The use of advanced computational strategies was
further supported by novel techniques such as nanoindentation [12, 11] for the deter-
mination of material properties of composite constituents on the level of microns. Note
however that combining image analysis, nanoindentation and hierarchical modeling is
by no means limited to complex and time consuming computations. By contrast, the
use of analytical models such as Self-consistent [6] and Mori-Tanaka [1] methods is
sufficient in many practical applications particularly if benefiting from the above three
items. This last statement will be scrutinized hereinafter.

Since learning from examples is the most simple way towards understanding, and
to further support an interdisciplinary character of the field of composites, we con-
sider thorough evaluation of three, from the application point of view, vastly dissim-
ilar material systems. Calculation of Young’s modulus as a function of the degree of
hydration of alkali-activated fly ash [19] is discussed next to the application of mi-
cromechanical modeling to natural wood [8] and metallic foams [12].

The remainder of the paper is structured as follows. Section 2 outlines material
characterization adopting image analysis to identify individual scales and nanoinden-
tation to derive local mechanical properties of individual phases. Application of the
two basic averaging schemes in the light of multi-scale analysis is presented in Sec-
tion 3. Summary of the advocated modeling strategy is finally provided in Section 4.

2 Material quantification

Application of simple averaging schemes, and the Mori-Tanaka method in particular,
may cause certain complications when combining several phases of dissimilar shape
and orientation at the same time, e.g. reinforcing inclusions and porosity. The two on
the other hand often show obvious size differences which allows us to treat them on
separate scales thus simplifying the analysis to two-phase systems only. This example
is just one of many, as will be seen in Section 2.1, where image analysis proves useful
in properly identifying the essential material length scales. Prediction of effective
properties then typically relies on uncoupled “bottom-up” multi-scale analysis.

Regardless of number of scales, the local phase properties on the smallest scale
are needed to perform the first homogenized step. In the present study such data are
acquired with the help of nanoindentation examined in Section 2.2 as another tool for
material characterization.
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2.1 Identification of scales

This section summarizes the results of image analysis carried out at the Department
of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague.
In particular, Alkali-activated fly ash (AAFA), natural wood and metallic foam are
considered in a sequel.

Alcali-activated fly ash The first example considers a low-calcium fly ash, class F,
see e.g. [18] for more details. The back scattered electron (BSE) images of matured
alkali-activated pastes taken by environmental scanning electron microscope (ESEM)
for two particular samples cured at ambient (≈ 25◦C) and high (≈ 80◦C) temperatures
appear in Figure 1. Clear morphological dissimilarities of the resulting microstruc-
tures linked to a particular curing step are easy to observe.

Regardless of the curing process, one may identify at least two distinct scales: the
level of N-A-S-H gel and the level of paste. While the paste level is typically con-
sidered as a three-phase material system consisting of partly activated or nonactivated
remainder of fly ash and compact glass particles (phase 1) and part of the open poros-
ity filled with an activator in the form of evaporable water (phase 2) embedded into
a N-A-S-H gel matrix (phase 3), the level of gel is decomposed into two phases of
solid gel particles and the remainder of open porosity. However, it has been observed
in [19] that for AAFA the entire open porosity can be assigned to the level of N-A-S-H
gel, which allows us to treat the material at both levels as a two-phase composite.

Paste level
10-6 – 10-4 m

N-A-S-H level
10-9 – 10-6 m

Ambient-cured 
AAFA

Heat-cured 
AAFA

Figure 1: Representation of individual scales.The paste level displays BSE images of
two microstructures from alkali-activated fly ash (AAFA, ambient and heat cured)

Natural wood Birch is considered in this paper as one particular representative of
natural cellular materials of low relative density. It belongs to a group of hardwoods
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with a typical microstructure seen in Figure 2. It consists of hollow 10 – 30 µm wide
and 3-7 mm long tubes (cells) called tracheids and larger cells called vessels. Vessels
are used to carry water up the tree, they are much wider than tracheids and may extend
for several meters.

These basic features of wood microstructure help us to identify four distinct scales
also shown in Figure 2. Clearly, on every scale the composite can be considered as a
two-phase system with a certain homogenized matrix derived from the homogeniza-
tion step performed on a lower scale.

If zooming in on the cell wall we recognize several sequentially deposited layers
building up the wall. About 80 – 90% of the total cell wall thickness is taken by the
secondary layer 2 (S2), which is the major contributor to the mechanical properties
of wood cell walls. On the inner side of the wall we identify the compound middle
lamella (CML) connecting the wood cells, the primary layer (P) and the secondary
layer 1 (S1), while on the outer side we encounter the tertiary layer (T). The material
species found within individual layers can be assumed tissue independent, universal to
all woods. In [8] the authors considered further downscaling into the cell-wall level.
Here, we examine the possibility of replacing the heterogeneous cell wall by equiva-
lent properties provided directly by nanoindentation. This approach thus reduces the
proposed multi-scale scheme again to a two-step homogenization considering only the
level of tracheids and the level of vessels.

Figure 2: Representation of scales. From the left - macro-scale RVE of birch cross-
section, ESEM image of meso-scale dominated by large vessels, ESEM image of
meso-scale dominated by tracheids, ESEM image of cell wall identifying individual
layers (micro-scale)

Metallic foam A lightweight aluminium foam is another example of highly porous
materials. While a cellular microstructure of closed cell metallic foams can be seen
as a link to a natural wood discussed previously their internal porosity, often exceed-
ing 90%, is considerably higher making foams again a unique example for testing
adequacy of averaging schemes in similar applications.

A hierarchy of microstructures typical of closed cell foams, identifying two par-
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ticular scales of interest be subject to homogenization, is seen in Figure 3(a). From
the micromechanics point of view, the metallic foam resembles a composite made of
a metal matrix weakened by randomly distributed ellipsoidal voids. If further zoom-
ing into the aluminium wall we observe one additional two-phase material consisting
of Al-rich areas (dark zone) and Ca/Ti-rich area (light zone). While the Al-rich zone
consists mainly of aluminium and aluminium oxide, the Ca/Ti-rich contains apart from
the previous two components non-negligible traces of calcium and titanium, see [12]
for details.

Once knowing the volume fractions of both phases, estimated for example from
the binary counterparts of original images, the overall properties can be once again
predicted from a two-step analysis first homogenizing the scale of a cell wall followed
by the homogenization of a porous foam.

5mm

Figure 3: Representation of individual scales. From the left - image of a metallic foam
structure, ESEM image of a cell wall, detailed ESEM image of a cell wall showing
Al-rich (dark zone) and Ca/Ti-rich (light zone) areas

2.2 Identification of intrinsic material properties

Prediction of complex macroscopic response of highly heterogeneous materials from
local phase constitutive theories is a formidable aspect of micromechanical modeling.
However, the reliability of these predictions is considerably influenced by available
information on material data of individual constituents. At present, nanoindentation is
the only experimental technique that can be used for a direct measurement of mechan-
ical properties at material micro-level. However, it goes beyond the present scope
to discuss the details of this measuring technique. We therefore refer the interested
reader to [11, 13, 12, to cite a few] and limit our attention only to the results perti-
nent to the selected three systems, particularly in the light of the expected hierarchical
modeling.

Alcali-activated fly ash We begin by noting that the area affected by nanoindenta-
tion amounts to about 3× the depth of indents, which ranged from 100 nm to 400 nm
in this particular case [13] (the scale of N-A-S-H gel according to Figure 1). Such an
area thus embraces majority of all pores. The elastic modulus estimated from nanoin-
dentation must therefore be understood in a sense of a homogenized quantity of a
two-phase composite collecting both the solid gel particles and open porosity.
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Figure 4: Results of deconvolution algorithm: (a) ambient-cured AAFA, (b) heat-
cured AAFA

Figure 4 shows distributions of the elastic moduli of principal phases derived from
700 indents. It clearly identifies the influence of curing step on the microstructure
heterogeneity. The results corresponding to particular time of indentation (98 days for
both ambient-cured (DoR≈0.44) and heat-cured (DoR≈1) samples, see Section 3 for
DoR (degree of reaction) identification) are listed in Table 1 together with associated
volume fractions. How the volume fractions can be related to the time of indentation
will be briefly discussed in the next section. Further details are available in [19].

Phase Heat cured Ambient cured
A. N-A-S-H gel 17.03 ± 3.48 (50.7%) 17.72 ± 3.75 (77.5%)
B. Partly-activated slag 29.95 ± 3.66 (26.6%) 26.06 ± 0.18 (1.1%)
C. Nonactivated slag 46.9 ± 7.76 (17.6%) 38.27 ± 10.13 (17.5%)
D. Nonactivated compact glass 79.15 ± 14.34 (5.1%) 79.65 ± 16.99 (3.9%)

Table 1: Phase volume fractions in [%] and elastic moduli in [GPa] of AAFA from
deconvolution of indentation results [13]

Natural wood Suppose that the equivalent material properties below the cell level
can be extracted from nanoindentation data. In such a case the prediction of macro-
scopic properties simplifies to a two-step homogenization of a two-phase porous sys-
tem where inclusions would be well approximated by a hollow cylinder with a circular
cross-section. One particular loading diagram is shown in Figure 5(b). Ten such in-
dents were made in the S2 layer to render the mean value of Young’s modulus in the
longitudinal direction equal to 11.8 MPa.

However, this value considerably deviates from the one provided by analytical ho-
mogenization that consideres the tissue-independent wood species observed below the
cell wall level [7]. This can be attributed to the intrinsic anisotropy of cell walls driven
by the orientation of microfibrils of the crystalline cellulose and the loading angle of
the Berchovich tip as seen in Figure 5(a). Obvious thought thus would be to exploit
the nanoindentation results in estimation of the microfibrils angle (MFA) as outlined
in the next section.
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Figure 5: (a) Orientation of the loading angle of the Berchovich tip with respect to a
microfibril angle, (b) Loading diagram

Metallic foam The results from nanoindentation tests are plotted in Figure 6 show-
ing on the right a typical loading diagram for each phase. Two hundred indents were
considered in two selected regions covered by a 10 × 10 loading pattern with a 10
µm spacing between individual indents. The results of statistical analysis are seen
in Figure 6(a).
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Figure 6: (a) Deconvoluted phases identifying one dominant Al-rich and one minor
Ca/Ti-rich phases, (b) Loading diagrams for Al-rich and Ca/Ti-rich zones

A relatively high scatter of the measurements pertinent to the Ca/Ti-rich phase can
be attributed to a considerable variation in the area of isolated light zones, which might
not be sufficiently large to comply with the theoretical assumption of the elastic sub-
space [12]. Notice also much larger standard deviation for the Ca/Ti-rich phase in
comparison to the Al-rich phase in Table 2 listing also the associated mean values of
the elastic moduli and the estimated volume fractions of both phases.
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Phase Mean [GPa] Standard deviation [GPa] Volume fraction [-]
Al-rich 61.9 4.6 0.64
Ca/Ti-rich 87.4 16.7 0.36

Table 2: Phase volume fractions and elastic moduli from deconvolution [12]

3 Effective properties from hierarchical modeling

This section is concerned with the application of simple averaging techniques to the
evaluation of effective elastic properties of the selected material systems. From the
homogenization point of view it is sufficient to consider the following four material
systems:

1. isotropic matrix reinforced by transversely isotropic cylindrical fibers,

2. transversely isotropic matrix reinforced by cylindrical pores,

3. isotropic matrix reinforced by randomly distributed isotropic spherical particles
or more generally a two-phase systems where both phases are assumed spherical
and isotropic,

4. isotropic matrix reinforced by randomly distributed isotropic spherical pores.

The Self-consistent, Mori-Tanaka and differential schemes were adopted in this
study at some point of the multi-scale homogenization approach. These methods are
briefly summarized hereinafter. We limit our attention only to their specific formats
pertinet to the above material systems where applicable:

• The Self-consistent method for a two-phase composite system where both
phase are isotropic of a spherical shape provides the effective bulk and shear
moduli (KSC, GSC) by solving the following set of implicit equations

c1K1

3K1 + 4GSC
+

c2K2

3K2 + 4GSC
=

KSC

3KSC + 4GSC
, (1)

c2G1

GSC −G1

+
c1G2

GSC −G2

= −2

5
− 3KSC

5(3KSC + 4GSC)
, (2)

where Kr, Gr, cr are the phase bulk and shear moduli and volume fraction, re-
spectively.

• Application of the Mori-Tanaka method to a two-phase system consiting of a
traneversely isotropic matrix reinforced by transversely isotropic fibers having
circular cross-section leads to the following set of equations written here in
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terms of Hill’s moduli [3]

kMT =
k2k1 + m1 (c2k2 + c1k1)

c2k1 + c1k2 + m1

,

lMT =
c2l2 (k1 + m1) + c1l1 (k2 + m1)

c2 (k1 + m1) + c1 (k2 + m1)
,

nMT = c2n2 + c1n1 + (l − c2l2 − c1l1)
l2 − l1
k2 − k1

, (3)

mMT =
m2m1 (k1 + 2m1) + k1m1 (c2m2 + c1m1)

k1m1 + (k1 + 2m1) (c2m1 + c1m2)
,

pMT =
2c2p2p1 + c1 (p2p1 + p2

1)

2c2p1 + c1 (p2 + p1)
.

To arrive at a porous system it is sufficient to remove the material constants cor-
responding to the fiber phase 2; c2 then represents the volume fraction of pores.
For a two-phase system where the isotropic matric is reinforced by randomly
distributed spherical particles the Mori-Tanaka method yields the effective bulk
and shear moduli (KMT, GMT) in the form

KMT = K1

(
1 +

c2(K2 −K1)

K1 + (1− c2)ξ1(K2 −K1)

)
, (4)

GMT = G1

(
1 +

c2(G2 −G1)

G1 + (1− c2)η1(G2 −G1)

)
, (5)

where ξ1, η1 are written in terms of the matrix bulk and shear moduli of the
matrix phase K1, G1 as

ξ1 =
3K1

3K1 + 4G1

, η1 =
6K1 + 12G1

15K1 + 20G1

.

The porous system can be addressed similalry as in the case of fibrous compos-
ite.

• When adopting the Differential scheme the estimates of the effective bulk and
shear moduli (KDS, GDS) for the isotropic matrix wekened by spherical pores
receive the form, see [24] for more details,

GDS

G1

= (1− f)2


2(1 + ν1) + (1− 5ν1)

(
GDS

G1

)3/5

3(1− ν1)


1/3

, (6)

1

KDS
=

3

4GDS

[
1 +

1− 5ν1

1 + ν1

(
GDS

G1

)3/5
]

, (7)

where ν1 is the Poisson ration of the matrix phase.
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Alcali-activated fly ash In [19] the authors developed a volumetric model for alkali-
activated aluminosilicate materials to describe the change of volume of phases evolv-
ing during reaction processes as a function of so called degree of reaction (DoR).

Without going into details we consider a two-step homogenization and write for
the level of paste

1 = cFA + cNASH , (8)

where cFA and cNASH stand for the volume fraction of nonactivated material and the
volume fraction of N-A-S-H gel at the paste level. When moving down to the level of
N-A-S-H gel we get

1 = cNASH
SGP + cNASH

OP , (9)

cNASH
SGP =

cSGP

cNASH

, (10)

cNASH
OP =

cOP

cNASH

. (11)

where cSGP and cOP correspond to the volume fraction of the solid gel particles and
open porosity, respectively. For DoR = 0.44, which corresponds to the date of inden-
tation of ambient cured samples, the respective volume fractions are stored in Table 3.

Parameter Calculated at DoR = 0.44
cFA 0.325
cSGP 0.354
cOP 0.321
cNASH
SGP 0.525

cNASH
OP 0.475

Table 3: Volume fractions of phases entering the volumetric model [19]

The intrinsic material properties used in homogenizaton are available in Table 4.
Note that the intrinsic modulus of solid gel particles ESGP was found from homog-
enization adopting the Mori-Tanaka method (Eqs. (4) - (5)) and the value of ENASH

measured by nanoindentation, recall Table 1.

Phase Young’s modulus [GPa] Poisson ratio [-]
Fly ash 105 0.2
Open porosity 0.001 0.001
Solid gel particles 49.75 0.2

Table 4: Intrinsic elastic properties used in the homogenization [19, 10, 13]

We should point out a relatively high value of Young’s modulus assumed for non-
activated particles on the paste level (Fly ash), which was found to deliver much better
results in comparison to those derived from the homogenized value corresponding to
nonactivated phases listed in Table 1. This can be attributed to the fact that even if
an indented particle of a nonactivated phase has the size sufficiently exceeding the
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affected volume (20-40 µm vs 3× 100− 400 nm), since being solitary, the measured
value of the elastic modulus is significantly influenced by the surrounding material of
more compliant N-A-S-H gel.
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Figure 7: (a) Evolution of the homogenized Young’s modulus as a function of DoR at
the level of: (a) N-A-S-H gel, (b) Paste - percolation transition is bounded by lower
DoRLB and upper DoRUB bounds

The results of a two-step multi-scale homogenization are evident in Figure 7. Fig-
ure 7(a) first displays evolution of the homogenized N-A-S-H gel elastic modulus as
a function of DoR depicting also the matched measured value at DoR=0.44. These
plots were found from Eqs. (1) - (2) and Eqs. (4) - (5). The results of the second
homogenization step, where the nonactivated spherical particles (EFA) are introduced
into the homogenized N-A-S-H gel matrix, appear in Figure 7(b). These plots were
obtained from the same equations as in the first homogenizations step on the level of
N-A-S-H gel.

Note that the results provided by averaging schemes are valid for matured samples
only. However, the available experimental data (+ sign in Figure 7(b)) indicate that a
certain reaction time is needed for the gel to interconnect the unreacted material. This
suggests introduction of a certain lower bound DoRLB on the degree of reaction related
to the percolation threshold. An associated upper bound DoRUB is then assigned to
DoR at the onset of maturity. A simple scaling factor p in the form

p =
DoR−DoRLB

DoRUB −DoRLB

, 0 ≤ p ≤ 1, (12)

was introduced in [19] to interpolate between the two bounds. A relatively good match
between experimental and homogenized values is a clear indication of the applicability
of simple averaging schemes in this particular example.

Natural wood Section 2.2 already pointed out some complications in the determi-
nation of intrinsic material properties of the cell wall from nanoindentation owing
to the uncertainty in the specification of loading angle directly from image analysis.
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On the contrary, this value can be estimated when combining the results of analytical
homogenization at the level of cell wall and nanoindetaion measurements.

To proceed we exploit the knowledge of tissue independent material data provided
in [7], see Table 5, and set up a two-step homogenization scheme at the cell level.

Homogenization Phase cr EA(E) GA(G) νA(ν) ET GT

step [-] [GPa] [GPa] [-] [GPa] [GPa]
Step 1a hemicellulose 0.55 8.1 3 0.33 - -
2 phases lignin 0.45 6 2.3 0.3 - -
Step 1b matrix (Step 1a) 0.65 7.1 2.7 0.33 - -
3 phases amorphous cell. 0.16 5.1 1.9 0.35 - -
wall material crystalline cell. 0.19 168 5.8 0 35 4.5

Table 5: Intrinsic material properties of the cell wall [7]

Homogenization of a wood cell wall with the mid-spam wall thickness of about
5 µm consideres, as siggested in [7], a three-phase composite consisting of cylindrical
fiber-like aggregates of crystalline cellulose and of amorphous cellulose embedded
into an isotropic polymer matrix. In this particular case the Mori-Tanaka method
appears as a suitable choice for the derivation of the cell wall properties. If only
one set of iclusions was present the system could be ellaborated with the help of
Eqs. (3). However, a three-phase medium requires certain generalization as described,
e.g. in [3]. This homogenization step is labeled as “Step 1b”.

The homogenization “Step 1a” is reserved for the evaluation of effective properties
of the matrix phase, which can be treated as suggested in [7] as another three-phase
composite on the scale of nano-meters. At this level of magnification the authors
treated all three phases on the same footing thus promoting the Self-consistent method
as a suitable method of attack. For simplicity we neglect water and other wood ex-
tractives and consider hemicellulose and lignin only as two independent phases con-
stituting the polymer matrix. This homogenization step thus calls for the application
of Eqs. (1) - (2).

Combining the two steps yields the value of axial Young’s modulus equal to 37.5
GPa essentially assuming the cell wall microfibrils be oriented in the longitudinal
direction parallel to the direction of tracheids and vessels. Recall that the value of
longitudinal Young’s modulus provided by nanoindentation was equal to 11.8 GPa,
which is less than half the value of the modulus estimated by homogenization. If we
wish to link this discrepancy to the loading angle we first adopt standard transforma-
tion of coordinates and approximate the elastic moduli in the global coordinate system

12



by 1

E11 ≈
1

M11

=
cos4(α)

EA

+

(
1

GA

− 2νA

EA

)
cos2(α) sin2(α) +

sin4(α)

ET

,

E22 ≈
1

M22

=
sin4(α)

EA

+

(
1

GA

− 2νA

EA

)
cos2(α) sin2(α) +

cos4(α)

ET

, (13)

G12 ≈
1

M66

=

(
1

EA

+
1

ET

+
2νA

EA

)
sin2(2α) +

cos2(2α)

GA

.

The results are plotted in Figure 8. If attributing the difference between theoretical
and experimental values to the loading angle of the Berchovich tip only (α = 25◦ for
MFA of 0◦) we see in Figure 8 that for 25◦ of MFA the value of longitudinal modulus
provided by Eq. (13)1 equals to 14.2 MPa.
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Figure 8: Effective wall properties as a function of the microfibrils angle

The next step would be to account for the wood anisotropy represented by MFA.
Unfortunately, determination of the off-axis loading for a non-zero MFA is not trivial,
since individual phases of the indenter will not form the same angle with respect to the
alignment of microfibrils as evident from Figure 5(a). In [16] the authors addressed
this issue by introducing an effective loading angle larger than, but clearly depending
on, the actual MFA. Thus assuming for example the value of 20◦ suggests the value
of microfibril angle of about 10◦ based on the nanoindentation data (EA = 11.8 GPa,
30◦), see Figure 8.

Completing the derivation of macroscopic properties requires application of mod-
ified Eqs. (3) again in two independent steps, first to consider a porous system com-
posed of aligned cylindrical tracheids surrounded by a transversely isotropic matrix
derived from the first homogenization step and second to account for larger cylindri-
cal vessels.

1We consider only in-plane rotation trough angle α about the global X3 = x3 axis, the local x1 axis
is aligned with the direction of microfibrils.
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Modulus [GPa] MFA=0◦ MFA=10◦ Experiment [21]
E11 16.6 11.6 15.3
E22 1.6 1.5 1.0
G12 0.8 0.9 1.1

Table 6: Effective elastic properties - summary

The final macroscopic predictions are summarized in Table 6. Supporting the theo-
retical predictions by available experimental data permits several general conclusions
closing this section: a good potential of classical micromechanical models in appli-
cations covering a hierarchy of scales has been confirmed; proper identification of
all important microstructural details is decisive for the success and reliability of final
predictions; an independent experimental work on macro-scale must not be omitted.

Metallic foam This is the last example of a complex material system having a hi-
erarchical microstructure. As expected, the prediction of effective properties can be
performed again on two different scales.

It turns out that cell wall effective properties can be well approximated by the
Self-consistent method when introducing the local phase properties and corresponding
volume fractions from Table 2 into Eqs. (1) - (2). This gives the effective Young
modulus and Poisson ratio equal to 70.1 and 0.35, respectively.

The second homogenization step is, however, much more complicated owing to
the large porosity amounting to 91%. Suppose that the present material system can
be modeled as a macroscopically isotropic porous medium with randomly distributed
spherical voids. Inadequacy of the Self-consistent method in applications to porous
media is clearly evident from plots in Figure 9(a). The Mori-Tanaka method (modified
Eqs. (4) - (5)) on the other hand has been shown applicable in this case already in the
previous example. The literature also offers many examples promoting the Differential
scheme, Eqs. (6) - (7), as a suitable alternative.

The results plotted in Figure 9 suggest that unlike the Mori-Tanaka method, the
Differential scheme performs relatively well particularly for higher porosity levels.
This somewhat supports application of the Mori-Tanaka method for lower porosity
wood samples. However, drawing such a conclusion from the study of one particular
material system is precarious as suggested by experimental observations presented
in [20] for a sintered glass containing spherical pores. These results promote on the
other hand the Differential scheme for porosities below 50% while the Mori-Tanaka
method for higher porosities, see Figure 9(b).

4 Conclusion

This paper was concerned with the application of simple micromechanical models
in the framework of hierarchical modelling in vastly different areas of engineering
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Figure 9: Comparison between experimental measurements and predictions: (a)
porous metallic foam, (b) sintered porous glass

interest. The preference has been given here to nanoindentation to determine phase
properties, image analysis to determine phase volume fractions and basic averaging
methods including the Mori-Tanaka, self-consitent and differential schemes to deter-
mine the effective properties. By discussing the quality of theoretical predictions in
comparison with available experimental data we attempted to introduce the reader to
the concept of a virtual testing tool as an integrated set of models, algorithms and
procedures for the prediction of mechanical properties on an arbitrary scale.
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