
Abstract

This paper considers wave propagation in circular cylindrical beams adopting a power

series expansion method in the radial coordinate. Equations of motion together with

consistent sets of end boundary conditions are derived in a systematic fashion up to ar-

bitrary order using a generalized Hamilton’s principle. These equations are believed to

be asymptotically correct. Numerical examples for dispersion curves, eigenfrequen-

cies, displacement and stress distributions are given for various sorts of finite beam

structures. The results are presented for series expansion theories of different order

and various classical theories, from which one may conclude that the present method

generally models the beam accurately.

Keywords: circular beam, series expansion, recursion relations, asymptotic, eigen-

frequency.

1 Introduction

There exist many models which describe the elastodynamic wave propagation in finite

circular cylindrical beams. It has been treated at different levels; from a simple one-

dimensional wave propagation problem to the complete three-dimensional theory of

elastodynamics. The involved three-dimensional theory has been adopted in conjunc-

tion with various levels of approximations when studying dynamic beam problems for

different standard end boundary conditions. Most such works consider eigenfrequency

analyzes using fix frequency. There exists on one hand analytical solutions based on

expansion in terms of Bessel functions [1, 2] where part of the boundary conditions

are satisfied approximately, and on the other hand numerical solutions such as the Ritz

method [3, 4, 5] or the finite element method [6].

However, the bulk of analysis has been on various approximate models due to the
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complexity of the exact theory. In these simplified theories, both the dynamic equa-

tions and the boundary conditions are often derived using various kinds of simplify-

ing kinematic assumptions. The most used approximate theory is the simple Euler–

Bernoulli equation, where shear and rotary inertia are neglected. This leads to a dif-

ferential equation that has the undesired feature of being non-hyperbolic. However, if

the beam radius is much smaller than the wavelengths this approximation is known to

yield accurate results. The next level is to include shear and rotary inertia described

by Timoshenko [7], resulting in a hyperbolic equation of motion. There are several

other more advanced beam theories in use. Some of these concern only rectangu-

lar cross sections [8, 9, 10], while others are applicable for circular cross sections

[11, 12, 13, 14].

Among the various beam theories, higher order power series expansion are used in

[11, 12]. These work use approaches different from the present theory, such as the

series expansion method, the use of recursion relations, the procedure when collect-

ing terms or the truncation process as a whole. Besides isotropic beams, the present

method has been used on rods, shells and plates [15, 16, 17, 18, 19].

The present paper aims at systematically develop higher order beam equations to-

gether with the end boundary conditions. These equations are supposed to be asymp-

totically correct, and may be derived to an (in principle) arbitrary order. To this end

a generalized Hamilton’s principle is used, where both the displacements and the

stresses are varied independently. This results in traction and displacement boundary

conditions, as well as the beam equation of motion. Besides presenting a hierarchy

of beam equations with end boundary conditions, a more detailed comparison is per-

formed between the lowest nontrivial theory and the Euler–Bernoulli and Timoshenko

theories. The numerical results present the dispersion curves, the lowest eigenfrequen-

cies for simply supported beams, together with corresponding displacement and stress

distributions.

2 Hamilton’s principle

Consider a cylindrical beam with length L and radius a. The beam is homogeneous,

isotropic and linearly elastic with density ρ and Lamé constants λ and µ. Cylindrical

coordinates are used with radial coordinate r, circumferential coordinate θ and axial

coordinate z. The corresponding radial, circumferential and longitudinal displacement

fields are denoted by u, v and w.

A generalized Hamilton’s principle can be used to derive the differential equation

describing the motion of the beam and the corresponding boundary conditions. Simul-

taneous and independent variations of displacements and stresses are adopted [19, 20].

The Hamilton’s principle states that

δ

∫ t1

t0

Ldt = 0, L = T − U + W, (2.1)

where T is the kinetic energy, U is the potential energy and W is the work done by



body forces and surface tractions. The energy densities T and U are defined as

T = ρ/2 u̇ · u̇ = ρ/2
(

u̇2 + v̇2 + ẇ2
)

,

U = 1/2 σ:ǫ = 1/2 (σrrǫrr + σθθǫθθ + σzzǫzz) + σrθǫrθ + σrzǫrz + σθzǫθz,
(2.2)

where σ is the stress, ǫ is the strain and a dot denotes a time derivative. By consid-

ering displacement terms and force terms as independent, the variational expressions

become

∫ t1

t0

(
∫

V

(∇ · σ + ρf − ρü) · δu dV +

∫

St

(

t̂ − n · σ
)

· δu dS +

∫

Su

(û − u) · δt dS

)

dt = 0.

(2.3)

Since the virtual displacement components in δu and the virtual traction components

δt are independent, equation (2.3) reduces to separate equations for each variational

term. For clarity of sake, each equation is written below on component form. The

equations of motion contained in the volume integrals are thus
∫

V

(

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+

∂σrz

∂z
+

σrr − σθθ

r
+ ρfr − ρ

∂2u

∂t2

)

δu rdrdθdz = 0,

(2.4)
∫

V

(

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

∂σθz

∂z
+ 2

σrθ

r
+ ρfθ − ρ

∂2v

∂t2

)

δv rdrdθdz = 0, (2.5)

∫

V

(

∂σrz

∂r
+

1

r

∂σθz

∂θ
+

∂σzz

∂z
+

σrz

r
+ ρfz − ρ

∂2w

∂t2

)

δw rdrdθdz = 0, (2.6)

and the surface integrals follow directly.

3 Series expansion

The displacement components are now expanded in power series in the radial coordi-

nate r

u = u0(θ, z, t) + ru1(θ, z, t) + r2u2(θ, z, t) + . . . ,

v = v0(θ, z, t) + rv1(θ, z, t) + r2v2(θ, z, t) + . . . ,

w = w0(θ, z, t) + rw1(θ, z, t) + r2w2(θ, z, t) + . . . .

(3.1)

Using this ansatz in the stress–displacement relations this results in stress expressions

on series form

σij = r−1σij,−1(θ, z, t) + σij,0(θ, z, t) + rσij,1(θ, z, t) + . . . , (3.2)

that are to be used in (2.4)–(2.6). Each term in the radial series ansatz (3.1) are ex-

panded in Fourier series according to

uk =
∞

∑

m=0

uk,m(z, t) cos mθ, vk =
∞

∑

m=0

vk,m(z, t) sin mθ, wk =
∞

∑

m=0

wk,m(z, t) cos mθ.



(3.3)

Here the angle θ is measured from a vertical axis in a plane through the cross section

of the cylinder with a horizontal z axis. Hereby, the case m = 1 correspond to the

flexural motion in the vertical direction. The axisymmetric case m = 0 is for a rod

with radial and longitudinal motion, treated in [15, 19].

Adopting (3.3) in (2.4)–(2.6) using the stress–displacement relations gives the re-

cursion relations for each Fourier mode m as

(k + 1)(k + 3)
[

(k + 1)(k + 3) + 4m(k + 2) + 4m2
]

µ(λ + 2µ) um+k+2,m =
[

(m + k + 1)(m + k + 3)µ − m2(λ + 2µ)
] (

ρüm+k,m − µu′′
m+k,m

)

− [m(m + k + 1)(λ + µ) − 2mµ]
(

ρv̈m+k,m − µv′′
m+k,m

)

− (k + 1)(m + k + 3)(2m + k + 1)µ(λ + µ)w′
m+k+1,m, k = 1, 3, . . . ,

(3.4)

(k + 1)(k + 3)
[

(k + 1)(k + 3) + 4m(k + 2) + 4m2
]

µ(λ + 2µ) vm+k+2,m =
[

(m + k + 1)(m + k + 3)(λ + 2µ) − m2µ
] (

ρv̈m+k,m − µv′′
m+k,m

)

+ [m(m + k + 3)(λ + µ) + 2mµ]
(

ρüm+k,m − µu′′
m+k,m

)

+ m(k + 1)(2m + k + 1)µ(λ + µ)w′
m+k+1,m, k = 1, 3, . . . ,

(3.5)
[

(m + k + 2)2 − m2
]

µ wm+k+2,m = ρẅm+k,m − (λ + 2µ)w′′
m+k,m

− (m + k + 2)(λ + µ)u′
m+k+1,m − m(λ + µ)v′

m+k+1,m, k = 0, 2, . . . .

(3.6)

Here a prime denotes a z-derivative. Two further equations may also be obtained by

combining the recursion relations for negative k values, resulting in

um−1,m + vm−1,m = 0,
(3.7)

[

m(m + 2)(λ + 2µ) − m2µ
]

um+1,m +
[

m2(λ + µ) − 2mµ
]

vm+1,m

= ρüm−1,m − µu′′
m−1,m − m(λ + µ)w′

m,m.
(3.8)

By inspection, these equations reveal that the terms in (3.3) are such that

uk,m = vk,m = wk,m−1 ≡ 0, k < m − 1. (3.9)

Moreover, uk,m and vk,m are zero when k and m are either both even or both odd,

respectively. The opposite situation holds for wk,m. The recursion formulas (3.4)–

(3.6) together with (3.7) and (3.8) allow for expressing higher order index terms in the

mutually independent lowest order index terms. This is to be used in the derivation

process for obtaining a hierarchy of beam equations with pertinent boundary condi-

tions.



The expressions for the stresses follow directly from (3.1) and the stress–displacement

relations. Hereby {σrr, σθθ, σzz, σrz} are expanded in cos mθ and {σrθ, σθz} are ex-

panded in sin mθ. The stresses may be written

σij =
∞

∑

m=0

σ̃ij,m(r, z, t){cos mθ; sin mθ}, (3.10)

using either cos mθ or sin mθ according to above. The Fourier modes are

σ̃ab,m = rm−2σab,{m−2,m} + rmσab,{m,m} + rm+2σab,{m+2,m} + . . . ,

σ̃cd,m = rm−1σcd,{m−1,m} + rm+1σcd,{m+1,m} + rm+3σcd,{m+3,m} + . . . ,
(3.11)

where ab is for {rr, θθ, zz, rθ} and cd is for {rz, θz}. Each stress term is expressed

as

σrr,{k,m}(z, t) = [(k + 2)(λ + 2µ) − 2µ] uk+1,m + mλvk+1,m + λw′
k,m, (3.12)

σθθ,{k,m}(z, t) = [(k + 2)λ + 2µ] uk+1,m + m(λ + 2µ)vk+1,m + λw′
k,m, (3.13)

σzz,{k,m}(z, t) = (k + 2)λuk+1,m + mλvk+1,m + (λ + 2µ)w′
k,m, (3.14)

σrθ,{k,m}(z, t) = µ [kvk+1,m − muk+1,m] , (3.15)

σrz,{k,m}(z, t) = µ
[

u′
k,m + (k + 1)wk+1,m

]

, (3.16)

σθz,{k,m}(z, t) = µ
[

v′
k,m − mwk+1,m

]

. (3.17)

4 Equations of motion

The lateral boundary conditions at r = a constitute the beam equations of motion.

Considering the standard case of only prescribed tractions, the set of three lateral

boundary conditions thus becomes from (3.11), (3.12), (3.15) and (3.16)

am−2 [(m(λ + 2µ) − 2µ) um−1,m + mλvm−1,m] +

am
[

((m + 2)(λ + 2µ) − 2µ) um+1,m + mλvm+1,m + λw′
m,m

]

+ . . . = t̂r,m,

(4.1)

am−2µ [(m − 2)vm−1,m − mum−1,m] + amµ [mvm+1,m − mum+1,m] + . . . = t̂θ,m

(4.2)

am−1µ
[

u′
m−1,m + mwm,m

]

+ am+1µ
[

u′
m+1,m + (m + 2)wm+2,m

]

+ . . . = t̂z,m.

(4.3)

Adopting the recursion relations (3.4)–(3.6) together with (3.7) and (3.8), a hierarchy

of beam equations is obtained expressed in terms of the mutually independent lowest

order index terms. These beam displacement terms are um−1,m, vm+1,m and wm,m for

m > 0, and u1,0, v1,0, and w0,0 for m = 0. The axisymmetric case using u1,0 and w0,0

in (4.1) and (4.3) is described in [15, 19].

The differential orders of the beam equations depend on the number of terms used

in (4.1)–(4.3). Consider now the case when m > 0. The resulting hyperbolic beam



equations using nr terms in (4.1), nθ terms in (4.2) and nz terms in (4.3) (including

zero terms) are of total differential order 2(nr + nθ + nz) − 8 in both space and time.

This is readily seen by eliminating within the set of equations, so as to obtain one

equation in one of the fields, say um−1,m. Due to the same differential terms appearing

in both (4.1) and (4.2), it is natural to set nθ = nr. As for (4.3), the appearance of

higher order derivatives implies that one should choose nz = nr or nz = nr − 1. For

nontrivial solutions, (4.1)–(4.3) are solved using ni > 1. However, since for m = 1 the

first a−1 terms in (4.1) and (4.2) are zero, one has here that nr > 2 and nθ > 2.

The lowest order set of beam equations that incorporates flexural motion is for the

present theory when nr = nθ = 3 and nz = 2 in (4.1)–(4.3). Written out explicitly,

the truncated system may be expressed as

(3λ + 4µ) u2,1 + λv2,1 + λw′
1,1 + a2

[

(5λ + 8µ) u4,1 + λv4,1 + λw′
3,1

]

= 0,

(4.4)

v2,1 − u2,1 + a2 [3v4,1 − u4,1] = 0, (4.5)

u′
0,1 + w1,1 + a2

[

u′
2,1 + 3w3,1

]

= 0. (4.6)

Using the recursion relations, this is seen to be a hyperbolic 8:th order system.

5 Numerical results

The behavior using the present beam theory is to be compared to exact and classical

beam theories. These comparisons comprise dispersion relation curves for an infinite

beam, eigenfrequencies for a finite beam, as well as mode shapes and stress distribu-

tions. These dynamical problems are for laterally free beams.

5.1 Dispersion curves

In order to illustrate the effects from the number of terms adopted in (4.1)–(4.3), dis-

persion relations are calculated for nr = nθ = n and nz = n− 1, where n = 3, 4, 5, 6.

A normalized frequency Ω = ωa/cE is introduced with c2
E = E/ρ. Considering the

flexural case m = 1, Figure 1 shows the three lowest modes using both the series

expansion theories (4.1)–(4.3) and the exact theory. It is clear that higher accuracy is

obtained as more terms are used. Among the results, the lowest curve is accurately

captured in the lower frequency range for all theories. Note that the n = 5 curve for

the second mode virtually coincides with the exact curve, which is also the case for the

first mode over most of presented frequencies. Here the case n = 6 is not plotted as

these three curves are indistinguishable from the exact curves in the presented range.
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Figure 1: Dispersion curves for m = 1: —— Exact, · · · n = 3, - · - n = 4,- - - n = 5

5.2 Eigenfrequencies

In this section, the eigenfrequencies for the flexural series expansions theories m = 1
are compared with one another using different truncation orders. These expansions

are also compared to other classical theories as well as the exact theory for simply

supported ends. As for the dispersion relations nr = nθ = n and nz = n − 1 are

chosen. This results in 3n − 5 BCs at each end. The three lowest eigenfrequencies

for L/a = 10 and L/a = 2 are presented for the bending dominant mode in Table 1.

It is clear from the table that the series expansion results converge to the exact results

as the power series orders are increased. These series results seem to converge mono-

tonically from below to the exact values. It is clear from Table 1 that more accurate

results are obtained for lower frequencies and slender beams. The Timoshenko theory

is astonishingly accurate. This behavior relates to the choice of shear correction fac-

tor, here chosen as κ = 0.932. The results for the Euler-Bernoulli theory confirm the

well known fact that this theory renders reasonably accurate results for slender beams

in the low frequency spectra.

5.3 Mode shapes and stress distributions

In order to illustrate the differences between the current beam theory, classical theories

and the exact theory when m = 1, various plots on mode shapes and stress distribu-

tions are compared for the fundamental frequency in case of the lowest bending mode

for a simply supported beam when L/a = 10. The presented numerical results are

such that the curves using the lowest series expansion theory n = 3 are very close to

the exact curves. Hereby, separate exact curves virtually on top of the n = 3 curves

are not plotted. Moreover, the eigenmodes are normalized so that the maximum radial

displacement u at r = a is equal to unity.



L/a Ω Exact EB T n = 3 n = 4 n = 5 n = 6

Ω1 0.047215 0.049348 0.047214 0.046910 0.047214 0.047215 0.047215

10 Ω2 0.16955 0.19739 0.16952 0.16619 0.16950 0.16955 0.16955

Ω3 0.33422 0.44413 0.33404 0.32308 0.33388 0.33422 0.33422

Ω1 0.71391 1.2337 0.71310 0.67335 0.71115 0.71381 0.71391

2 Ω2 1.7079 4.9348 1.7074 1.5053 1.6748 1.7040 1.7076

Ω3 2.6765 11.103 2.6864 2.1134 2.5227 2.6465 2.6717

Table 1: The eigenfrequencies for L/a = 10 and L/a = 2 using exact, Euler-Bernoulli

(EB), Timoshenko (T) and the series expansion theories of orders n = 3, 4, 5, 6 for the

bending dominant mode in a beam simply supported at z = 0, L

Figure 2a illustrates the radial displacement u as a function of the radius for z =
3L/4. For the exact and the present beam theories, the radial displacement varies,

while both the Euler-Bernoulli and the Timoshenko theories describe a constant dis-

placement field lying on top of each other. Still the differences between theories are

quite small, which partly stem from the normalization process. For the stress distri-

bution, Figure 2b presents the shear stress σrz. It is seen that the Timoshenko theory

generates a constant shear stress, while the stress magnitudes from the Euler-Bernoulli

theory are zero. Note that the shear stress using the present theory is zero at the lateral

boundary, as expected.
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(a) Radial displacement u at z = 3L/4.
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(b) Shear stress σrz at z = 3L/4.

Figure 2: Cross section distribution for the lowest eigenfrequency. —— Exact,

· · · Euler–Bernoulli, - - - Timoshenko

6 Conclusions

This paper presents the beam equation and corresponding boundary conditions to ar-

bitrary order according to the power series expansion theory. The method used is a

generalized Hamilton’s principle resulting in variationally consistent equations that

seem to be asymptotically correct. Numerical results are presented for different beam



theories. Here, all theories are fairly adequate for calculating the eigenfrequencies,

but the distribution of stresses varies considerably between theories. One application

of this theory is to implement it in finite element codes. Hereby one benefits from the

accurate results using the present theory, and at the same time the number of elements

can be considerably reduced compared to using three-dimensional elements.
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