
Abstract

In this paper two ant colony optimization (ACO) techniques are proposed, based on

the ant system (AS) and the ant colony system (ACS), to solve multi-objective struc-

tural optimization problems. The algorithms are equipped with an adaptive penalty

method (APM) in order to handle the constraints of the model, corresponding to the

stress of the bars. The results obtained in the computational experiments are used to

analyse the proposed methods as well as to compare with values found in the litera-

ture. The five structural optimization test problems in which design variables assume

discrete values and the objective is to minimize both the structure’s weight and max-

imum displacement of its nodes. Finally, two different performance metrics, namely

the hypervolume and the empirical attainment function, are used to indicate the best

performing algorithm.

Keywords: ant colony, multi-objective, structural optimization, constraint.

1 Introduction

Optimization techniques are fundamental tools in structural design, indicating promis-

ing ways in which a designer or a decision maker can extract good performance from

the available resources. Due to the increasing competitiveness in industry and conse-

quently, of the quality of its products (according to a set of measures), the design and

analysis of novel optimization techniques in general, and nature inspired techniques

in particular, are being widely explored.

Nature inspired metaheuristics can help overcome the challenges of the structural

optimization problems, such as multiple objectives, discrete valued design variables,

low regularity of the objective function(s), the large number of non-linear implicit

constraints, and expensive and/or unreliable gradients. In fact, besides the constraint
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in the stress of the bars, the problem of optimization of a framed structure can be

formulated considering multiple and conflicting objective functions, for example the

weight of the structure and the displacement of its nodes. Also, the design variables

are often to be chosen from a list of commercially available sizes leading to a discrete

search space. Thus, the use of nature inspired techniques becomes attractive.

Most classical methods to solve multi-objective problems are based on reducing

the multiple objectives to a single one by aggregating them, usually by a linear com-

bination. These classical techniques have serious drawbacks, as they require a pri-

ori information about the problem (weights or thresholds). Moreover, many runs are

needed in order to obtain different solutions, since just one is obtained in each run of

the classical methods.

In a typical multi-objective optimization situation, there is a set of alternatives that

are superior to the remainder when all the objectives are considered. This set of the so

called non-dominated solutions is the Pareto optimum set, and provides many options

to the decision-maker.

Among the metaheuristics, ant colony algorithms are probabilistic techniques in-

spired by the collective behavior of ants which are used for solving a wide range of

optimization problems, specially those which can be reduced to finding good paths

through graphs. In the case of multi-objective problems, the ant colony optimiza-

tion (ACO) techniques considered here deal with the objectives using one pheromone

matrix per objective, and combining them to build the solutions.

Using nature inspired metaheuristics, such as ACO, one way to handle constraints

is penalizing the objective function(s) according to the level of constraint violation.

However, to generate an unique performance measure combining these values is not

an easy task. Here the penalty coefficients are automatically calculated by using the

adaptive penalty technique (APM) proposed in [1].

Combining all those ideas, we propose here a multi-objective ant colony (MOACO)

approach, equipped with APM, to solve discrete and multi-objective structural opti-

mization problems.

The computational experiments include five structural optimization problems, na-

mely 10-, 25-, 60-, 72-, and 942-bar trusses, in which the structure’s weight and the

maximum displacement of its nodes (both to be minimized) are the objective func-

tions. The results are discussed and the proposed techniques are compared using two

multi-objective performance metrics, namely the hypervolume and the empirical at-

tainment function.

2 Multi-objective Optimization Problems

In single-objective optimization one has to find a unique solution that minimizes or

maximizes an objective function subject to given constraints. On the other hand, in

multi-objective optimization (MOO) several objectives have to be simultaneously op-
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timized. Thus, without loss of generality, this type of problem can be formulated as

minimize f(x) = [f1(x), f2(x), ..., fk(x)]
subject to x = (x1, x2, ..., xn) ∈ S

(1)

where S is the feasible set, f(x) is an objective vector with k(≥ 2) objective functions

to be minimized and x is the vector of decision variables, which is a feasible solution if

x ∈ S. The image of the feasible set, denoted by Z(= f(S)), is known as the feasible

objective set. The elements of Z are the objective functions with z = (z1, z2, ..., zk)
T ,

where zi = fi(x) for all i = 1, ..., k are objective values. Frequently these objectives

are conflicting and possibly non-commensurable. In such cases, usually there is no

single optimal solution, but a set of alternatives that outperform the remainders when

all objectives are considered.

Assuming a problem in which all objectives should be minimized, a solution x ∈ S
dominates another solution x

′ ∈ S (written as x ≺ x
′), when

fi(x) ≤ fi(x
′) ∀i ∈ {1, ..., k} and ∃j ∈ {1, ..., k} : fj(x) < fj(x

′) (2)

i.e., the solution x is no worse than x
′ in all objectives and better in at least one. Thus,

all possible pairwise solutions can be compared in order to find which solutions are

non-dominated. Finally, the set of non-dominated solutions is called Pareto-optimal

set and the corresponding image in the objective space defines the Pareto front, giving

the best collection of solutions found for the problem.

3 Multi-objective Structural Optimization Problem

The multi-objective structural optimization problem solved here consists in finding a

set of discrete cross-sectional areas A = {A1, A2, ..., AN} which minimizes both the

total weight w(A) of a given structure and the maximum displacement d(A) of its

nodes, subject to stress constraints. The problem can be expressed as minimizing

w(A) =
N

∑

k=1

γAkLk (3)

d(A) = max(|ui,l|), with 1 ≤ i ≤M, 1 ≤ l ≤ NL (4)

subject to the (normalized) stress constraints

|sj,l|

sadm

− 1 ≤ 0, 1 ≤ j ≤ N, 1 ≤ l ≤ NL, (5)

where N is the total number of bars in the truss structure, M is the number of trans-

lational degrees of freedom, γ is the specific weight of the material, Lk is the length

of the k-th bar, NL is the number of load cases applied to the structure, ui is the nodal

displacement of the i-th translational degree of freedom, sj is the stress of the j-th bar,

and sadm is the allowable stress for the material.
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Although the function w(A) from Eq. (3) is simple, d(A) (Eq. 4) and the con-

straints are complex implicit functions of the design variables A. They require the

solution of the equilibrium equations of the discrete model

K(A)ul = fl, 1 ≤ l ≤ NL, (6)

where K is the symmetric and positive definite stiffness matrix of the structure, and

ul and fl are, respectively, the vector of nodal displacements and the vector of nodal

forces for the l-th load condition. For each load condition, the system (Eq. 6) is solved

for the displacement field and the stress in the j-th bar is then calculated according to

Hooke’s Law as

sj,l = Eδ(ul), (7)

where E is the Young’s modulus and δ is the unit change in length of the bar.

4 Ant Colony Optimization

Ant Colony Optimization is a metaheuristic inspired by the behavior of real ant colonies

[2, 3]. In this technique artificial ants collaborate while exploring the search space in

order to find good solution for the problem. ACO algorithms are essentially construc-

tive, as ants build solutions by adding solution components to an initially empty so-

lution until the solution is complete. While moving, artificial ants deposit pheromone

on the “edges crossed” marking a path that may be followed by other members of the

colony, which then reinforce the pheromone on that path. This self-organizing behav-

ior results in a self-reinforcing process that leads to the formation of a path marked by

high pheromone concentration. Less used paths tend to have a diminishing pheromone

level due to evaporation.

The movement of the ants is guided by (i) a heuristic information (η), that repre-

sents a priori information about the problem instance; and (ii) a pheromone trail (τ ),

that encodes a memory about the ant colony search process which is continuously

updated by the ants. These values are used by the ant’s heuristic rule to decide (prob-

abilistically) the next node to be visited. When all ants have generated their solutions,

the pheromone trail is updated according to the quality of the corresponding candidate

solutions: the components of good solutions are reinforced (positive feedback) and a

certain level of pheromone evaporation is applied to all edges.

A pseudo-code for a standard ACO metaheuristic is given by Algorithm 1. In

ConstructAntSolution(), ants create a solution path according to the decision policy,

which is composed by the pheromone trail and the heuristic information associated

with the problem. After constructing a complete path, it is possible to apply a local

search procedure in order to improve the solution obtained. Then, the pheromone trails

are updated in UpdateGlobalPheromone(), considering the quality of the candidate

solutions generated as well as a certain level of pheromone evaporation. The cycle

is repeated until the termination criteria are met, when the algorithm returns the best

solution found.
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Algorithm 1: Pseudo-code for a standard ACO metaheuristic.

Initialize pheromone trails τ and heuristic information η ;1

while termination criteria not met do2

ConstructAntSolution();3

ApplyLocalSearch(); // (optional)4

UpdateGlobalPheromone();5

Return the best solution;6

5 The Proposed Ant Colony Algorithms

In the last years, ACO algorithms have been proposed for solving combinatorial and

multi-objective optimization problems. A review of multi-objective ACO (MOACO)

algorithms can be found in [4].

A pseudo-code for a standard MOACO algorithm is given by Algorithm 2, where

K is the number of objectives. The algorithm starts generating the pheromone trails,

heuristic information, and an empty Pareto set. Besides the steps described for the

single objective case, MOACO includes UpdateParetoSet(), which updates P with the

newly created solutions, keeping only the non-dominated ones. Also, it is important to

highlight that here multiple pheromones, corresponding to each objective, are updated

and are combined to guide the construction of the solutions.

Algorithm 2: Pseudo-code of a standard MOACO algorithm.

Initialize pheromone trails τ (τ k) and heuristic information η (ηk) ;1

Initialize an empty Pareto set P ;2

while termination criteria not met do3

ConstructAntSolution();4

ApplyLocalSearch(); // (optional)5

UpdateParetoSet();6

UpdateGlobalPheromone();7

Return the Pareto set P;8

In this work, two ant colony algorithms are proposed to solve the discrete and

multiple objective structural optimization problems. The first one, named MOAS,

was elaborated based on the Ant System (AS) algorithm [5, 6, 7], while the second

one, named MOACS, based on the Ant Colony System (ACS) algorithm [8, 9].

5.1 The MOAS algorithm

As mentioned earlier, the MOAS is based on the AS algorithm, which has to be

adapted to solve multi-objective optimization problems. For the bi-objective problems

dealt with in this work, two pheromone matrices τ 1
ij and τ 2

ij are used, each one asso-
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ciated with the objectives: the structure’s weight, and the maximum displacement of

its nodes, respectively. In this way, τ k
ij is the k-th pheromone matrix entry associated

with the i-th design variable and the j-th cross-section area. The heuristic information

is associated with the cross-sections areas of the structure and is given by ηj = Amax

Aj
,

where Amax is the maximum cross-section area available and Aj is the j-th candidate

cross-section area.

In MOAS, the ant h chooses the cross-section area j for the design variable i ac-

cording to the following probabilistic rule:

ph
ij =

[τ 1
ij]

λα1 [τ 2
ij]

(1−λ)α2 [ηj]
λβ

∑

j[τ
1
ij]

λα1 [τ 2
ij]

(1−λ)α2 [ηj]λβ
, ∀j, (8)

where α1, α2 and β are parameters that balance the influence of the pheromone and the

heuristic information, respectively. In order to emphasize differently each objective

when different solutions are constructed, λ is calculated for each ant h ∈ {1, ...,m} as

λ = (h− 1)/(m− 1). Thus, the first ant (λ = 0) considers only the second objective,

while only the first objective contributes for the decision of the m-th ant (λ = 1).

When all solutions (paths) are created, the Pareto set is updated.

The next step is to update the pheromone matrices, using the solutions stored in the

Pareto set. As in AS, the pheromone update step starts by evaporating all pheromone

trails on both matrices, as

τ 1
ij ← (1− ρ1)τ

1
ij, τ 2

ij ← (1− ρ2)τ
2
ij, (9)

where ρ1 and ρ2 are the pheromone evaporation factors. In the sequence, the solutions

in the Pareto set are allowed to update the pheromone matrices, as follows

τ 1
ij ← τ 1

ij +
wmin

f1(s)
, τ 2

ij ← τ 2
ij +

dmin

f2(s)
, (10)

where wmin and dmin are, respectively, the minimum possible weight for the structure

and the minimum displacement. The objective functions f1(s) and f2(s), correspond-

ing to the solution s, are calculated via the APM method.

Finally, when the termination criteria are met, the algorithm returns the Pareto set.

5.2 The MOACS algorithm

The MOACS algorithm differs from MOAS in two main points: (i) it explores the

search space using a more aggressive action choice rule; and (ii) it updates the pheromone

trails each time an ant crosses an arc (i, j), by removing some pheromone from that

arc, in order to increase the exploration of alternative choices. In MOACS, the ant

can choose the next cross-section area j according to the so called pseudo-random

proportional rule, given by

j =

{

arg max∀j{[τ
1
ij]

λα1 [τ 2
ij]

(1−λ)α2 [ηj]
λβ}, if q ≤ q0

Eq. (8) otherwise,
(11)
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where q is a random value uniformly distributed in [0, 1] and q0 ∈ [0, 1] is a user

defined parameter. Notice that an ant chooses with probability q0 the best value as

indicated in the pheromone matrices and heuristic information, intensifying the search,

and performs a diversification in the search space with probability (1− q0).

The update of the local pheromone, performed every time an ant chooses a new

cross-section area, is given by

τ 1
ij ← (1− ξ)τ 1

ij + ξτ0, τ 2
ij ← (1− ξ)τ 2

ij + ξτ0, (12)

where ξ ∈ (0, 1) is the local pheromone evaporation rate and τ0 is the initial pheromone

value. After all solutions are created, the Pareto set is updated and its elements are

used to update the global pheromone as

τ 1
ij ← (1− ρ1)τ

1
ij + ρ1

wmin

f1(s)
, τ 2

ij ← (1− ρ2)τ
2
ij + ρ2

dmin

f2(s)
(13)

Finally, the algorithm returns the Pareto set.

5.3 Adaptive Penalty Method

Introducing a penalty function is a common way to handle the constraints when using

nature inspired techniques for optimization. However, the penalty coefficients are

highly problem dependent and need to be tuned for each application. The adaptive

penalty method (APM) proposed in [1] aims at alleviating the user from the task of

defining those values. The technique automatically sets those values using feedback

from the search process. The idea is to observe how each constraint is being violated

and set a higher penalty coefficient to those constraints which seem to be more difficult

to satisfy. The quantities included in the definition of the penalty values are the average

value of the objective function of the solutions and the average violation of the j-th

constraint, both for a given set of solutions.

Considering each objective separately and assuming their minimization subject to

m constraints, the quality of a given solution can be written as [10]

F (x) =

{

f(x), if x is feasible

f(x) +
∑m

j=1 kjvj(x), otherwise
(14)

f(x) =

{

f(x), if f(x) > 〈f(x)〉
〈f(x)〉, otherwise

(15)

The penalty coefficient kj corresponding to the j−th constraint is defined at every

iteration of the MOAS and MOACS algorithms by

kj = |〈f(x)〉|
〈vj(x)〉

∑m

l=1 [〈vl(x)〉]2
, (16)

where 〈f(x)〉 is the average fitness in the current population and 〈vl(x)〉 is the violation

of the l-th constraint averaged over the current population.
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6 Computational Experiments

Five multi-objective structural engineering problems from the literature, namely the

10-, 25-, 60-, 72-, and 942-bar trusses, are used to assess the performance of the

proposed techniques. These structures are illustrated (not to scale) by Figures 1 and

2.
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Figure 1: Illustration of some truss structures of the computational experiments.

Each algorithm was executed 100 times, with m = 50 ants and 1000 iterations,

for all test-problems. The results obtained by the proposed techniques are displayed

in figures, containing the Pareto front, the (normalized) hypervolume, and the attain-

ment surfaces. Although no work was found solving exactly the same test-problems,

we collected reference solutions from the literature, for each one. These results are

indicated by a point-shaped “x” and correspond to (i) the weight of the structures as

presented in [11], for the 10-, 25-, 60-, and 72-bar trusses, and in [12], for the 942-

8



Figure 2: Illustration of the 942-bar truss structure.
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bar truss; and (ii) the maximum displacements allowed in the single-objective cases,

where the displacement of the nodes are constraints of the problem.

Some preliminary experiments were performed to find reasonable values for the

user defined parameters. The parameters chosen for MOAS were: α1 = 1, α2 = 1,

β = 2, ρ1 = 0.2, and ρ2 = 0.1. For the MOACS, the parameters settings are: α1 = 2,

α2 = 1, β = 1, ρ1 = 0.1, ρ2 = 0.2, q0 = 0.2, and ξ = 0.1. The initial values of

the pheromone matrices, indicated by the literature, were τ0 = m for the MOAS and

τ0 = 1.0/m for the MOACS.

6.1 Performance Assessment

Performance analysis in multi-objective optimization is a difficult task, because dif-

ferent aspects of the set of solutions should be considered. Zitzler et al [13] describes

three distinct goals that should be taken into account when assessing the quality of

the non-dominated solutions set: (i) the solutions should be as close as possible to the

Pareto-optimal set (when it is known); (ii) a wide range of distinct solutions should

be presented; and (iii) the solutions should be well distributed along the obtained non-

dominated front. The inclusion of these desirable aspects makes the assessment itself

a multi-objective problem.

Many quality measures or performance metrics, are used for comparing solutions

sets, in order to assist the search for the best one. A list of performance metrics can

be found in [14, 15]. In [15] the metrics are classified as: (i) metrics that evaluate

closeness to the Pareto-optimal front; (ii) metrics evaluating diversity among non-

dominated solutions; and (iii) metrics that evaluate both closeness and diversity. Here,

the Hypervolume metric [16] and the Empirical Attainment Function (EAF) [17] are

used to analyze the results of the computational experiments. They were chosen be-

cause of their capacity in evaluating closeness and diversity in a combined sense.

6.1.1 Hypervolume

The hypervolume metric (HV ) calculates the hypervolume of a multi-dimensional

region (in the objective space) formed by a set of solutions A and a reference point,

in order to calculate the “size” of the region dominated by the set A. A convenient

reference point needs to be chosen so as not to induce misleading results. Notice that

higher values are preferable.

6.1.2 Empirical Attainment Function

The empirical attainment function gives the probability distribution of an outcome set

generated by a stochastic algorithm using the notion of goal-attainment. In this sense,

the attainment function indicates the chances that an arbitrary point in the objective

space is attained by (dominated by or equal to) the outcome of a single run of a par-

ticular algorithm.
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EAF express the multiple runs of an algorithm in terms of the k%-attainment set,

by means of the line separating the objective space attained by k% of the runs. For

instance, the median attainment surface indicates the region attained by 50% of the

runs, while the worst attainment surface delimits the region attained by all runs (100%-

attainment surface). It is easy to see that the best attainment surface indicates the

region covered by the non-dominated solutions including the solutions obtained in all

independent runs. Finally, notice that the best attainment surface is bounded by the

region attained by at least one run and the solution vectors attained by any run.

6.2 The 10-bar Truss Design

The problem presented in this section is the 10-bar truss (see Figure 1a). For this test-

problem, the material has γ = 0.1 lb/in3, and E = 104 ksi. Vertical downward loads

of 100 kips are applied at nodes 2 and 4, and the stress in each member is limited

to ± 25 ksi. The values of the cross-sectional areas (in2) are chosen from the set:

1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63,

3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50,

13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, and 33.50;

resulting in 42 options.

The results obtained by the proposed techniques for this test-problem, as well

as a reference point, are presented in Figure 3. The reference point considered is

(5562.355, 2), which are, respectively, the weight obtained by the DUVDE+APM al-

gorithm in [11], and the maximum allowed displacement in the mono-objective case.

By checking the Pareto front of both algorithms, one can conclude that MOACS is

slightly better than MOAS. The EAFs plots, shown in Figures 3a and 3b, show that

MOACS seems to be more stable, since the distance between the best and the worst

surface is shorter than in MOAS. This indicates that the MOACS was able to generate

solutions close to each other considering all runs, while the solutions found by MOAS

are more spread out towards the best front. The EAFs associated with the outcomes

of the algorithms (Figure 3d) demonstrated that MOACS generates solutions near the

best attainment surface, considering the results obtained by both algorithms, indicating

the best performance of MOACS. Finally, the value of the hypervolume achieved by

the MOACS results is larger than that calculated for MOAS, reinforcing the previous

conclusions.

6.3 The 25-bar Truss Design

Here the 25-bar truss structure (Figure 1b) is used as test-problem. In this case, the

material has γ = 0.1 lb/in3, E = 104 ksi, and the constraints require that the maximum

stresses in the members remain in the interval [−40, 40] ksi. The design variables are

to be chosen from the set (in2): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1,

1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4.
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(a) EAF from MOAS results.
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(b) EAF from MOACS results.
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Figure 3: Results for the 10-bar truss. The final Pareto fronts lead to HV = 0.9727
for MOAS and HV = 1 for MOACS.

Finally, the loading data for the current structure and the design variables, linked in

eight groups, are detailed in the Table 1 and Table 2, respectively.

Figure 4 presents the results obtained by the proposed techniques when applied to

the 25-bar truss problem. The reference point is (485.90, 0.35), which are, respec-

tively, the weight obtained by DUVDE+APM technique in [11], and the maximum

displacement allowed in the mono-objective view of the problem.

It can be observed that the Pareto front of both algorithms are very close, making

it hard to distinguish the performance of the contenders. The same can be said, by

examining the EAF plots (Figures 4a and 4b) where it is possible to perceive stability

in both algorithms. Although both algorithms seems to perform similarly to this test-

problem, the hypervolume metric points out that MOACS performs better than MOAS.

12



Node Fx Fy Fz

1 1 −10.0 −10.0
2 0 −10.0 −10.0
3 0.5 0 0

6 0.6 0 0

Table 1: Loading data (kips) - 25-bar truss.

Group Connectivities

A1 1-2

A2 1-4, 2-3, 1-5, 2-6

A3 2-5, 2-4, 1-3, 1-6

A4 3-6, 4-5

A5 3-4, 5-6

A6 3-10, 6-7, 4-9, 5-8

A7 3-8, 4-7, 6-9, 5-10

A8 3-7, 4-8, 5-9, 6-10

Table 2: Member grouping - 25-bar truss.
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(a) EAF from MOAS results.
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(b) EAF from MOACS results.
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(c) Final Pareto front.
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(d) EAFs plots for MOAS and MOACS.

Figure 4: Results for the 25-bar truss. The final Pareto fronts lead to HV = 0.9741
for MOAS and HV = 1 for MOACS.
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6.4 The 60-bar Trussed Ring

This test-problem involves the 60-bar trussed ring structure, depicted in Figure 1c (not

to scale), under three load cases as given in Table 3. The outer radius of the ring is

100 in. and the inner radius is 90 in. The material has E = 104 ksi and γ = 0.1 lb/in3.

There are 180 constrains which refer to allowable stress (σi = 60 ksi, i = 1 to 60). The

grouping of the cross-sectional areas in 25 design variables, to be chosen from the set

{0.5, 0.6, . . . , 4.8, 4.9}, is listed in Table 4.

Node Fx Fy

Load case 1

1 −10.0 0

7 9.0 0

Load case 2

15 −8.0 3.0

18 −8.0 3.0

Load case 3

22 −20.0 10.0

Table 3: Loading data (kips) - 60-bar truss.

Group Bars Group Bars

A1 49 to 60 A14 25, 37

A2 1, 13 A15 26, 38

A3 2, 14 A16 27, 39

A4 3, 15 A17 28, 40

A5 4, 16 A18 29, 41

A6 5, 17 A19 30, 42

A7 6, 18 A20 31, 43

A8 7, 19 A21 32, 44

A9 8, 20 A22 33, 45

A10 9, 21 A23 34, 46

A11 10, 22 A24 35, 47

A12 11, 23 A25 36, 48

A13 12, 24

Table 4: Member grouping - 60-bar truss.

The results found by the proposed techniques for the test-problem involving the 60-

bar truss structure is presented in Figure 5. Here the reference point is (309.44, 1.75),
formed by the weigh obtained by DUVDE+APM algorithm in [11] and the minimum

displacement allowed in the mono-objective version of the problem, for all load cases.

It is important to highlight that the design variables were chosen in a continuous search

space in [11], while only some discrete possibilities are allowed here.

The Pareto front of both algorithms are somewhat similar, making it hard to define

the best performing one for this test-problem. The MOAS technique performed better

toward the weight objective, while MOACS performs better toward the maximum

displacement objective. One can have the same conclusion by checking the EAFs of

the outcomes (Figure 5d). The EAF plots, shown in Figures 5a and 5b, indicate that

MOACS is more stable than MOAS, since the median surface is closer to the best and

worst surface than in MOAS. For this test-problem, the hypervolume indicates that

MOAS performs better than MOACS.
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(a) EAF from MOAS results.
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(b) EAF from MOACS results.
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(c) Final Pareto front.
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(d) EAFs plots for MOAS and MOACS.

Figure 5: Results for the 60-bar truss. The final Pareto fronts lead to HV = 1 for

MOAS and HV = 0.9616 for MOACS.

6.5 The 72-bar Truss

The 72-bar truss structure, illustrated in Figure 1d, composes the current test-problem,

in which the design variables are linked in sixteen groups detailed in the Table 6, the

material has γ = 0.1 lb/in3, E = 104 ksi, and is submitted to two load cases (see

Table 5). The stress in each bar is restricted to the range [−25, 25] ksi while the the

cross-sectional areas are chosen from the set {0.1, 0.2, . . . , 2.4, 2.5}.

The reference point for the 72-bar truss structure test-problem was set to (379.667,
0.25), which are the weight found by DUVDE+APM algorithm in [11] and the max-

imum allowed displacement, verifying all load cases. Notice that, similarly to the

60-bar truss structure, the reference solves a continuous variation of this test-problem
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Node Fx Fy Fz

Load case 1

1 5 5 −5

Load case 2

1 0 0 −5
2 0 0 −5
3 0 0 −5
4 0 0 −5

Table 5: Loading data (kips) - 72-bar truss.

Group Members

A1 1, 2, 3, 4

A2 5, 6, 7, 8, 9, 10, 11, 12

A3 13, 14, 15, 16

A4 17,18

A5 19, 20, 21, 22

A6 23, 24, 25, 26, 27, 28, 29, 30

A7 31, 32, 33, 34

A8 35,36

A9 37, 38, 39, 40

A10 41, 42, 43, 44, 45, 46, 47, 48

A11 49, 50, 51, 52

A12 53,54

A13 55, 56, 57, 58

A14 59, 60, 61, 62, 63, 64, 65, 66

A15 67, 68, 69, 70

A16 71,72

Table 6: Member grouping - 72-bar truss.

while here a small set of values are allowed. The results found for the 72-bar truss

problem in the experiments are shown in Figure 6.

The Pareto fronts indicate that both have the same performance toward the refer-

ence point. However, the solutions found by MOACS are preferable because of the

(larger) number of non-dominated results. Also, examining the EAF plots, presented

in Figure 6d, it is possible to verify that MOACS attains more regions closer to the best

surface against MOAS. Finally, the results obtained by MOAS generate only 95.08%
of the hypervolume calculated for the values found by MOACS.

6.6 The 942-bar Truss Design

The symmetry of the tower around the x and y-axes is employed to group the 942 truss

members into 59 independent size variables, as illustrated in Figure 2. The tower, de-

scribed in [18], is subject to a single loading condition consisting of both horizontal

and vertical loads, as follows: (i) the vertical loads in the z direction are −3.0 kips,

−6.0 kips and −9.0 kips at each node in the first, second and third sections, respec-

tively; (ii) the lateral loads in the y direction are 1.0 kips at all nodes of the tower; and

(iii) the lateral loads in the x direction are 1.5 kips and 1.0 kips at each node on the left

and right sides of the tower, respectively. Here, the design variables are integer values

in the interval with lower and upper bounds equal to 1.0 in2 and 200 in2, respectively.

The constraints of this problem include a stress limitation of 25.0 ksi, both in tension

and compression, for all members. The modulus of elasticity is E = 104ksi and the

density is γ = 0.1 lb/in3. This problem has been previously studied in [18, 19, 20],
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(a) EAF from MOAS results.

200 400 600 800 1000 1200 1400 1600 1800

Weight (lb)

0
.2

0
.4

0
.6

0
.8

1
1

.2

D
is

p
la

c
e

m
e

n
t 
(i
n

)

ACS108

best

median

worst

reference

(b) EAF from MOACS results.
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(c) Final Pareto front.
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(d) EAFs plots for MOAS and MOACS.

Figure 6: Results for the 72-bar truss. The final Pareto fronts lead to HV = 0.9508
for MOAS and HV = 1 for MOACS.

where more detailed information is allowed.

The results obtained for the 942-bar truss problem are presented in Figure 7. For

this test-problem, the reference point was set to (142295.75, 15), which are the best

weight found by a GA algorithm in [12] and allowed displacement for the mono-

objective case of this test-problem.

The generation of better solutions among the non-dominated solutions and closer

to the reference point indicates that MOAS performed much better than MOACS for

this test-problem. Also, the solutions found by MOAS attain more regions closer to

the best attainment surface, as presented in Figure 7d. However, MOACS shows to be

more stable in the independent runs, as one can see in Figures 7a and 7b. Finally, it is

possible to highlight the difference between the hypervolumes for this test-problem,
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(a) EAF from MOAS results.

2e+05 6e+05 1e+06 1.4e+06 1.8e+06 2.2e+06 2.6e+06

Weight (lb)

5
1

0
1

5
2

0

D
is

p
la

c
e

m
e

n
t 
(i
n

)

ACS109

best

median

worst

reference

(b) EAF from MOACS results.
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(c) Final Pareto front.
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(d) EAFs plots for MOAS and MOACS.

Figure 7: Results for the 942-bar truss. The final Pareto fronts lead to HV = 1 for

MOAS and HV = 0.7189 for MOACS.

where MOACS found solutions generating a HV which is only 71.89% of the obtained

by the results found by MOAS.

7 Concluding Remarks

In this paper two variants of an ant colony approach were proposed to solve discrete

and multi-objective structural optimization problems. The techniques proposed were

combined with an adaptive penalty method used for dealing with the constraints of

the model. From the experiments performed one can see that the MOACS presents a

more stable behaviour in the independent runs over the MOAS. In all test problems,
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specially in the 10-, 20- and 72-bar problems, the algorithms were capable of gener-

ating a large surface (diversity among the non-dominated solution) very close to the

reference point (proximity to the ideal solution), suggesting their good performance

in view of the qualities expected for non-dominated solution sets.
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[3] M. Dorigo, T. Stützle, Ant Colony Optimization, The MIT Press, Cambridge,

Massachusetts, 2004, ISBN 0-262-04219-3.

[4] J.S. Angelo, H.J.C. Barbosa, Ant Colony Optimization: methods and applica-

tions, Chapter Ant Colony Optimization Algorithms for Multiobjective Prob-

lems, InTech, 2011.

[5] M. Dorigo, V. Maniezzo, A. Colorni, “Positive feedback as a search strategy”,

Technical report, Dipartimento di Elettronica e Informatica, Politecnico de Mi-

lano, 1991.

[6] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis, Dipar-

timento di Elettronica, Politecnico di Milano, Milan, Italy, 1992.

[7] M. Dorigo, V. Maniezzo, A. Colorni, “The Ant System: Optimization by a

colony of cooperating agents”, in IEEE Trans. on Systems, Man, and Cybernetics

- Part B, Volume 26, pages 29–41, 1996.

[8] M. Dorigo, L.M. Gambardella, “Ant Colonies for The Traveling Salesman Prob-

lem”, Bio Systems, 43(2): 73–81, 1997.

[9] M. Dorigo, L.M. Gambardella, “Ant Colony System: A cooperative learning ap-

proach to the traveling salesman problem”, IEEE Trans. on Evolutionary Com-

putation, 1(1): 53–66, 1997.

[10] H.J.C. Barbosa, A.C.C. Lemonge, “An Adaptive Penalty Scheme for Genetic

Algorithms in Structural Optimization”, International Journal for Numerical

Methods in Engineering, 59: 703–736, 2004.

[11] E.K. Silva, H.J.C. Barbosa, A.C.C. Lemonge, “An adaptive constraint handling

techinique for differential evolution with dynamic use of variants in engineering

optimization”, Optimization and Engineering, 12: 31–54, 2011.

19
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