
Abstract

A quasi two-dimensional periodic B-Si-B sandwich structure reveals surprising prop-

erties, including high-temperature superconductivity at 145 K0 [3]. This effect can

be interpreted as superconductivity-gap (SC-gap) enhancing resulting from hybridisa-

tion of Bloch-functions of the weakly interacting Boron’s doped upper and low plates

of the sandwich, resulting in the restructuring of systems of spectral band/gaps, sim-

ilarly to [1]. In this paper we suggest a soft model of a two-dimensional periodic

lattice and a quasi two-dimensional periodic sandwich and calculate the typical dis-

persion function of the objects based on a rational approximation of the corresponding

Dirichlet-to-Neumann maps (DN-maps ). The rational approximations are interpreted

as DN -maps of the corresponding fitted solvable models, which reveal some inter-

esting physical properties such as Landau-Zener enhancing of the SC gap which may

imply the high temperature superconductivity phenomenon.

Keywords: periodic structures, Dirichlet-to-Neumann map, fitted zero-range model.

1 Dispersion equation of a quasi-2D the periodic lat-

tice in the resonance area

Bloch waves with real quasi-momentum play a role of eigenfunctions of continuous

spectrum of the periodic lattice. In the case of a one-dimensional periodic lattice

they are obtained as linear combinations of standard solutions of the Cauchy problem

for the corresponding 1D Schrödinger equation −u′′ + q(x)u = λu, q(x+ a) = q(x).
The quasi-momentum exponential eipa ≡ µ and the corresponding dispersion function

λ = λ(p) are found from the quadratic equation µ+µ−1 = Tr T containing the trace of
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the transfer-matrix T . The Cauchy problem approach to calculation of the dispersion

function fails in the case of 2D Schrödinger equation, because the Cauchy problem

for the 2D Schrödinger equation is ill-posed. Vice versa, the approach based on the

boundary problem is efficient, see [2, 4] for 2D Schrödinger equation −∆u+q(x)u =
λu, q(x1 +m1a1, x2 +m2a2) = q(x), m1,m2 = 0,±1,±2, . . . . In [2] we presented

the corresponding approach based on Dirichlet-to-Neumann map on the period Ω,

DN : u
∣

∣

∂Ω
−→ ∂u

∂n

∣

∣

∂Ω
. The role of basic solutions of the boundary problem for

the 2D Schrödinger equation on a square lattice with the period Ω ≡ (0, a) × (0, a)
play the solutions Ψl of the special boundary problem, obtained as extension from the

“active” part Γ of the boundary ∂Ω of the period , where the exchange of the electrons

between two neighboring periods is maximal. In the case when the active zone Γ
is well localized on the side of the square period Ω, and the electron’s density on

the period is supported by a proper sub-domain Ωin we can consider the Schrödinger

equation on Ωin imposing zero boundary conditions on ∂Ωin\Γ and quasi-periodic

matching conditions on Γ. Thus we can substitute the original period Ω by the “

romboidal” period Ωin with contacts Γ, see Fig. 1. For periodic lattices composed of “

romboidal” periods, with relatively small contact zones Γ, spectral characteristics can

be calculated via analytic perturbation procedure based on rational approximation of

the corresponding DN-map. The matrix elements of the DN-map are obtained from

the Green formula, based on extension of an orthogonal basis {ψl} ⊂ L2(Γ) on the

“romboidal” period as solutions of the boundary problem:

−∆Ψl + q(x)Ψl = λΨl, Ψl

∣

∣

∣

∣

Γ

= ψl, Ψl

∣

∣

∣

∣

∂Ω\Γ

= 0, (1)

see for instance [6]:

〈DNψΓ
l , ψ

Γ
m〉 =

∫

Ω

[

∇Ψ̄l∇Ψm + qΨ̄l Ψm − λΨ̄l Ψm

]

dΩ. (2)

This serves, together with a similar formula for the inverse ND = DN−1, a base for

practical calculation of the dispersion and the Bloch functions, see [4]. In the case of

the square period (0, a) × (0, a) the boundary bases {Ψl} are selected on the contacts

Γi
α ⊂ ∂Ωi

α, i = 1, 2, α = 0, a, ∪i,αΓi
α = Γ ⊂ ∂Ω , see for instance Fig. 1 below. Then

the DN-map is represented by the block-matrix

DN = {DN α,α′} , {α, α′} = {0, a} ,

with blocks mapping the data ~ua ≡
(

u
∣

∣

Γ1
a

, u
∣

∣

Γ2
a

)

, ~u0 =
(

u
∣

∣

Γ1

0

, u
∣

∣

Γ2

0

)

into

∂~ua

∂n
≡

(

∂u

∂n

∣

∣

Γ1
a

,
∂u

∂n

∣

∣

Γ2
a

)

,
∂~u0

∂n
≡

(

∂u

∂n

∣

∣

Γ1

0

,
∂u

∂n

∣

∣

Γ2

0

)

.

The 0-components of the Bloch function can be eliminated based on the quasi-periodic

conditions ~u0 = µ−1~ua, ∂~u0

∂n
= −µ−1 ∂~ua

∂n
, which imply the following linear homoge-

neous system for vector-functions
(

~ua,
∂~ua

∂n

)

.
(

∂~ua

∂n

−µ−1 ∂~ua

∂n

)

=

(

DN aa DN a0

DN 0a DN 00

) (

~ua

µ−1 ~ua

)

. (3)
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A nontrivial solution of the equation (3) exists if and only if zero is an eigenvalue of

the relevant operator:

[

µDN 00µ
−1 + µDN 0a + DN a0µ

−1 + DN aa

]

~ua = 0. (4)

Then the dispersion function is obtained as a connection between the energy λ and

the quasi-momentum ~p = (p1, p2) or the quasi-momentum exponentials µ = diag

(µ1, µ2) ≡ (eip1a, eip2a) defined by the condition (4) for the quasi-periodic solutions

of the corresponding Schrödinger equation, see [2]. The “quadratic equation” (4) is, in

fact, an infinite-dimensional linear system. Neither elementary tools of linear algebra ,

nor the straightforward computing are sufficient to construct a solution of this system.

Fortunately the spectral problems on the physically meaningful square periodic

lattices correspond to effectively narrow conductivity channels ωi
α, α = 0, a; i = 1, 2,

or “covalent bonds” connecting neighboring periods. According to analysis presented

in [5] for the Helmholtz resonator with narrow channels connecting the outer and

the inner spaces, the channel actually filters the signals exiting from the inner space

or entering the inner space of the resonator. The connecting channel transmits the

part of the signal filtered to the cross-section subspace N of the oscillating modes

in the channel, but weakens the component of the signal in the orthogonal subspace

N⊥, corresponding to the exponentially growing or decreasing modes. In this paper

we achieve essential simplification of the original transmission problem via imposing

partial matching condition ( quasi-periodic matching condition- in actual case) in the

contact subspace N and partial zero condition on N⊥. Correspondingly we use the

“partial” DN-map of the model Schrödinger equation with Dirichlet zero boundary

condition on the complementary subspace L2(Γ) ⊖ N ≡ N⊥ and partial Dirichlet

boundary condition in the contact space N

−△ u+ qu = λu, P⊥
N u

∣

∣

∣

∣

Γ

= 0, PNu

∣

∣

∣

∣

Γ

= uN
Γ ∈ N (5)

is obtained via framing of the standard DN-map by projections PN onto the contact

space N .

DNN ≡ PNDNPN .

Actually selection of an appropriate contact space defines the main free parameter of

our model. In real physical situations the contact space may be associated with cross-

section subspaces of electron’s conductivity channels or the covalent bonds, see more

comments below. But once the contact subspace is selected, the dispersion equation

of the model is obtained in the same form (4) via substitution of the standard DN- map

by the corresponding finite-dimensional “partial” DN map

[

µDNN
00µ

−1 + DNN
aa + DNN

a0µ
−1 + µDNN

0a

]

~ua ≡ D(λ, µ)~ua = 0. (6)

The ultimate equation (6), contrary to (4), is a finite-dimensional one, which allows to

obtain the dispersion equation for the model periodic quasi-2D lattice in explicit form.

Selecting appropriate contacts Γ and the contact spaces N allows to substitute the

original periodic Schrödinger problem by a soluble zero-range model with spectral
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properties as close to the original system, as required on a given temperature interval,

for given temperature.

We guess that the contact zones and contact spaces can be interpreted as a mathe-

matical notions for description of covalent bonds and conductivity channels in quan-

tum chemistry. Both mathematically and physically they are bridging orbitals of

neighboring periods of the lattice. If the contact zones are relatively small, we say

that the corresponding periods are “romboidal” see a simplest example below , Fig. 1.

For low temperature there exist, generically, only one resonance eigenvalue λD
1 ≈ ΛF

(Fermi level) of the Dirichlet problem on a “romboidal” period, and the cross-section

of the branch of the hybrid wave -function bridging the unperturbed orbitals ϕD
1 of

neighboring periods has a simplest possible structure, characterized by a 1D con-

tact space N1 = N1
0 = N1

a , N
2 = N2

0 = N2
a on each contact zone Γ1,2

0 , Γ1,2
a ,

N1 ⊕N2 = N .

Figure 1: “Romboidal” period. Contact sections Γi
τ , i = 1, 2, τ = 0, a

In fact all physically essential details of the electron’s dynamics are developed on a

resonance area in the spectral domain - on the temperature interval near to the Fermi

level
[

ΛF − 2mκTh̄−2,ΛF + 2mκTh̄−2
]

. Hence, in attempt to further simplification

of the original spectral problem we can substitute the DN-map on the resonance area

by an appropriate rational approximation . In the simplest case it can be represented

as a sum of a one-dimensional polar term and a correcting term

DNN ≈ PN
∂ϕD

1

∂n
〉 〈PN

∂ϕD
1

∂n

λ− λ1
+ PNBPN ≡ D(λ, µ) = A

Q

λ− λ1

+B, (7)

with a 1D orthogonal projection Q = eq〉 〈eq, |eq|L2(Γ) = 1, and the corresponding

normalizing coefficient A = |PN
∂ϕD

1

∂n

∣

∣

∣

∣

Γ

|2L2(Γ). Taking into account that dim N1 = dim

N2 = 1, we represent PNDNPN by a 2× 2 matrix with respect to the decomposition
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of N =
∑

i=1,2N(Γi
0) =

∑

i=1,2N(Γi
a). Then elimination of the variable PN ∂v

∂n

∣

∣

∣

∣

Γa

gives a (finite-dimensional !) equation for PN v

∣

∣

∣

∣

Γa

similar to one above, see (4)

A
[

µQN
0a + µQN

00µ
−1 +QN

aa + µQN
a0µ

−1
]

~ua+

(λ− λD
1 )

[

µBN
0a + µBN

00µ
−1 +BN

aa +BN
a0µ

−1
]

~ua =
[

ADQ(λ, p) + (λ− λD
1 )DB(λ, p)

]

~ua = 0, (8)

with µ = (µ1, µ2) = (eip1a, eip2a). The determinant condition of existence of a non-

trivial solution of the ultimate equation (1) with partial quasi-periodic matching condi-

tions gives the dispersion equation λ = λ(p1, p2) for the corresponding model periodic

lattice LN :

detD(λ, µ) = 0.

In the case of a single resonance eigenvalue, on the resonance area on the spectral

domain near the Fermi level, we obtain, with use of the above rational approximation

(8 ), the determinant condition for λ = λ(p), µs = eips , s = 1, 2 :

det
[

ADQ(p) + (λ− λD
1 )DB(λ, p)

]

= 0. (9)

For small temperature one can substitute DB(λ, p) by the value of it at the Fermi level

λD
1 ≈ ΛF , which implies the approximate determinant condition

det
[

ADQ(p) + (λ− λD
1 )DB(λD

1 , p)
]

= 0, (10)

which defines the shape of the dispersion function on the resonance area in terms of

the corresponding resonance parameters: the resonance eigenfunction of the Dirich-

let Schrödinger operator on the period and the resonance eigenvalue, as well as an

averaged effect of others neighboring eigenvalues represented by the correcting term

B. Naturally our approach can be easily modified in case of a few eigenvalues on

the resonance area and improved via taking into account a polynomial approximation

of the correcting term. A major modification would arise when the contact area and

contact spaces are extended. We guess that this important work should be not done

in a general case, but for lattices composed of special materials. Our approach easily

admits the corresponding modification. In particular it can be used as a tool of design

of artificial periodic structures, with prescribed transport properties. In particular, for

mathematical design of sandwich structures.

2 Dirichlet-to-Neumann approach to calculation of the

dispersion function of a quasi-2D sandwich

The recent discovery of quasi-relativistic behavior of terms in man-made bi-layer peri-

odic quasi-2D sandwich structures, see [5], suggests that the weak interaction of two-

dimensional periodic lattices can be used as a source of various artificial structures
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with interesting and useful transport properties. Study of the Landau-Zener transfor-

mation , see [7], in the 2D case requires new analytic machinery, since the 1D tech-

nique, based on the transfer-matrix, fails because the Cauchy problem for Schrödinger

equation on a square period is ill-posed. We consider a periodic 2D sandwich based

on Dirichlet-to-Neumann technique developed in previous section.

Figure 2: Two-storied period of the periodic quasi-2D sandwich lattice (1). Landau-

Zener 2D phenomenon as a blowup of crossing of two surfaces (2). Blowup of a light

cone can’t be obtained as a 2D Landau-Zener effect (3)

Consider 2-storied period, see Fig 2, with the partial quasi-periodic boundary con-

ditions on the vertical walls Γu,d
i,α , i = 1, 2, α = 0, a, with the contact subspaces N1,2,

zero boundary conditions on the upper and lower lids Γh,Γ−h and a bilateral potential

barrier Γud
b , emulating the layer of pure Silicon in B-Si-B sandwich, squeezed between

two Boron’s doped Silicon plates Σu,Σd , see [3].

Selecting the contact subspace Nb on the barrier and denoting by nd,u
b the outer

normals on both sides Γud
b of the barrier, we impose the boundary condition on Γb on

a jump of the normal derivative ∂V u

∂nu

∣

∣

∣

∣

Γu
b

+ ∂V d

∂nd

∣

∣

∣

∣

Γd
b

≡
[

∂V
∂n

]

∣

∣

∣

∣

Γb

PNb

[

∂V u

∂nu

∣

∣

∣

∣

Γu
b

+
∂V d

∂nd

∣

∣

∣

∣

Γd
b

]

+ βVb = 0, or

[

∂V

∂n

] ∣

∣

∣

∣

Γb

+ βVb = 0, (11)

under continuity condition imposed on the value of the Nb projection PNb
V u

∣

∣

∣

∣

Γu
b

of the

wave-function on the barrier.

Vb = PNb
V d

∣

∣

∣

∣

Γd
b

= PNb
V u

∣

∣

∣

∣

Γu
b

, (12)

Once the magnitude of the tunneling constant β is fixed, we could consider the DN-

map of the two-storied period with the joint vertical walls Γi,α = Γu
i,α ∪ Γd

i,α, and
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Ni = Nu
i ∪ Nd

i . Then the dispersion equation for the 2D sandwich is obtained based

on the previous formulae (6,8).

It is interesting to observe the behavior of the dispersion surfaces in dependance

of the tunneling parameter β. To do that we consider the relative DN-maps of the

upper and the lower storeys Ωu,Ωd of the whole 2-storied period Ω of the sand-

wich. Denote by Nu
i , N

d
i , Nb the contact subspaces associated with the corresponding

walls Γu
α,i,Γ

u
α,i,Γb and byNu,⊥

i , Nd,⊥
i , N⊥

b the relevant orthogonal complements in the

spaces of square-integrable functions on the walls.

DN u =





DN u
aa DN u

a0 DN u
ab

DN u
0a DN u

00 DN u
0b

DN u
ba DN u

b0 DN u
bb



 , (13)

with 2 × 2 block

DN u =

(

DN u
aa DN u

a0

DN u
0a DN u

00

)

and 2 × 1, 1 × 2 and 1 × 1 blocks

DN u
α,b =

(

DN u
ab

DN u
0b

)

, DN u
b,a = (DN u

ba;DN u
b0) , DN u

bb = P u
b DN u

bb,

squeezed by projections onto appropriate contact spaces. Similar representation is

valid for DN d. The joint DN-map DN 2D of the period with continuity condition in

the contact space Nb on Γb : PNb
V

∣

∣

∣

∣

Γu
b

= PNb
V

∣

∣

∣

∣

Γd
b

and the tunneling condition on the

barrier
[

PNb

∂V

∂n

]

+ βPNb
V

∣

∣

∣

∣

Γb

= 0,

is given by the block-matrix acting on the vector
(

V u
a , V

u
0 , Vb, V

d
0 , V

d
a

)

, with 2D com-

ponents

V u
a ≡ (V u

a1, V
u
a2), V

u
0 ≡ (V u

01, V
u
02),

V d
a ≡ (V d

a1, V
u
a2), V

d
0 ≡ (V d

01, V
d
02)

and 1D component Vb.

DN 2D =













DN u
aa DN u

a0 DN u
ab 0 0

DN u
0a DN u

00 DN u
0b 0 0

DN u
ba DN u

b0

[

DN u
bb + DN d

bb

]

DN d
b0 DN u

ba

0 0 DN d
0b DN d

00 DN d
0a

0 0 DN d
ab DN d

a0 DN d
aa













. (14)

Due to partial zero condition on the walls and the lids with selected entrance sub-

spaces Nu
1 , N

u
2 , N

d
1 , N

d
2 , Nb of the open channels , the components of the boundary

vectors are selected from these subspaces and the matrix elements are framed by pro-

jections onto Nu
1 , N

u
2 , N

d
1 , N

d
2 , Nb. We omit the projections in the formula (14) for the
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DN-map. The quasi-periodic boundary conditions are represented, with the diagonal

matrices µu = [µu
1 , µ

u
2 ] and µd = [µd

1, µ
d
2] on the boundary vectors, as

DN 2D













V u
a

µ−1
u V u

a

Vb

µ−1
d V d

a

V d
a













=















∂V u
a

∂n

−µ−1
u

∂V u
a

∂n

−β Vb

−µ−1
d

∂V d
a

∂n
∂V d

a

∂n















(15)

The roles of independent variables in this equation are played by the vectors V u
a =

(V u
a1, V

u
a2) ∈ Nu

1 ⊕Nu
2 , V d

a = (V d
a1, V

d
a2) ∈ Nd

1⊕Nd
2 and

∂V u
a

∂n
= (

∂V u
a1

∂n
,

∂V u
a2

∂n
) ∈ Nu

1 ⊕Nu
2

and
∂V d

a

∂n
= (

∂V d
a1

∂n
,

∂V d
a2

∂n
) ∈ Nu

1 ⊕ Nu
2 and vector Vb ∈ Nb. The vectors

∂V u
a

∂n
, ∂V d

a

∂n
enter

only into the right side of the equation (15) and can be easily eliminated, resulting in a

homogeneous finite-dimensional linear system, which has a non-trivial solution under

appropriate determinant condition. We prefer more explicit condition of existence of

a non-trivial solution. Via multiplication of the first pair of equations of the system

(15) by the 2× 2 matrix

(

1 0
0 µu

)

and the last pair of equations by the 2× 2 matrix
(

1 0
0 µd

)

, and subsequent adding the pairs, the terms with normal derivatives are

eliminated,so that the system is reduced to three equations with respect to the variables
~V u, Vb, ~V

u





Du Du
b 0

[Du
b ]

+ DN u
bb + DN d

bb + βI
[

Dd
b

]+

0 Dd
b Dd









~V u

Vb

~V d



 = 0. (16)

Here we are using the notations:

Du ≡ DN u
aa + DN u

a0µ
−1
u + µu DN u

0a + µuDN u
00µ

−1
u ,

Dd ≡ DN d
aa + DN d

a0 µ
−1
d + µd DN d

0a + µdDN d
00 µ

−1
d .

Du
b ≡ DN u

ab + µu DN u
0b, [Du

b ]
+ ≡ DN u

ba + DN u
b0 µ

−1
u ,

Dd
b ≡ DN d

ab + µuDN d
0b,

[

Dd
b

]+ ≡ DN u
ba + DN u

b0 µ
−1
d .

Via elimination of ~V u, ~V d based on the first and third equations

~V u = −[Du]−1Du
b Vb, ~V

d = −[Dd]−1[Dd
b ]

−1 Vb,

we obtain a homogeneous equation for Vb

[Du
b ]

+ [Du]−1Du
b Vb +

[

Dd
b

]+
[Dd]−1Dd

b Vb =
[

DN u
bb + DN d

bb + βI
]

Vb. (17)
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This is a scalar equation, if the original Schrödinger equation disregards the spin of

electron, hence Vb is scalar. But if the spin is taken into account, then Vb is the spinor,

and (17) is a vector (spinor) equation.

In the resonance area, on the temperature interval near the Fermi level, we are able

to substitute the DN-map by the rational approximation

DN u,d = Au,d Qu,d

λ− λu,d
1

+Bu,d (18)

and, correspondingly, the matrices Du,Dd,Du
b ,D

d
b by the corresponding rational ap-

proximation (18)

Du ≈ AuµQ
u
0a + µQu

00µ
−1 +Qu

aa + µQu
a0µ

−1

λ− λu
1

+
[

µBu
0a + µBu

00µ
−1 +Bu

aa +Bu
a0µ

−1
]

≡

≡ Au
Du

Q(λ, µ)

(λ− λu
1)

+ Du
B(λ, µ). (19)

Dd ≈ AdµQ
d
0a + µQd

00µ
−1 +Qd

aa + µQd
a0µ

−1

λ− λd
1

+
[

µBd
0a + µBd

00µ
−1 +Bd

aa +Bd
a0µ

−1
]

≡

≡ Ad
Dd

Q(λ, µ)

(λ− λd
1)

+ Dd
B(λ, µ), (20)

Du
b ≈ AuQ

u
ab + µuQu

0b

λ− λu
1

+Bu
ab + µuBu

0b ≡ Au Qu
b

λ− λu
1

+ Bu
b , (21)

Dd
b ≈ AdQ

d
ab + µdQd

0b

λ− λd
1

+Bd
ab + µdBd

0b ≡ Ad Qd
b

λ− λd
1

+ Bd
b . (22)

The substitution of the rational approximations (19,20,21,22) yields an approxi-

mate dispersion equation of the sandwich on the resonance spectral domain (on the

temperature interval near the Fermi level). Neglecting (λ−λ1)Bb compared with Qb,

but still keeping all terms in the denominators u, d:

Q = ADQ(λ, µ) + (λ− λ1)DB(λ, µ)

we obtain an approximate dispersion equation of the sandwich in the resonance do-

main:
|Au|2

(λ− λu
1)

2
[Qu

b ]
+ I

Du
Qu

bVb +
|Ad|2

(λ− λd
1)

2

[

Qd
b

]+ I

Dd
Qd

bVb =

[

Au
bb

Qu
bb

λ− λu
1

+ Ad
bb

Qd
bb

λ− λd
1

+Bu
bb +Bd

bb + β

]

Vb. (23)

The inverse [D]−1
is easily calculated because dim N1 = dim N2 = 1:

[Du]−1 =

(

D22 −D12

−D21 D11

)

detDu
≡ R

detDu
.

9



In spinless theory this yields a scalar dispersion equation with the coefficients

[

Q
u,d
b

]+ Ru,d

Q
u,d
b

≡ Fu,d :

|Au|2 Fu

(λ− λu
1)

2 detDu
+ |Ad|2 Fd

(λ− λu
1)

2 detDu
=

Au
bb

Qu
bb

λ− λu
1

+ Ad
bb

Qd
bb

λ− λd
1

+Bu
bb +Bd

bb + β.

For large β (weak connection between the upper and lower plates of the sandwich)

the dispersion equation describes the transformation of the intersection of terms (λ−
λu

1)
2 detDu = (λ − λd

1)
2 detDd = 0 into quasi-intersection. Vice versa, taking into

account spin, we obtain a similar vector equation, with 2×2 matrix coefficients Fu,Fd

and singular coefficients. This may exhibit pure crossing shape even for β → ∞. For

instance, the 2D equation

[

Qu
b (µ)

AuQu + (λ− λ1)Qu
B

+
Qd

b(µ)

AdQd + (λ− λ1)Qd
B

]

~V = β~V

with mutually orthogonal projections Qu,d
b , Qu

b + Qd
b = I , equivalent λu

1 = λd
1 = λ1

and one-dimensional blocs Qu, Qu
B, Q

d, Qd
B ,- reveals pure crossing shape of the terms

for any large β.

More interesting physical picture arises when the barrier possess resonance prop-

erties, taken into account by the energy-dependence of the coefficient β, see [4]. The

resonance properties may be caused by the size quantization on the space-charge re-

gion near the surface of the emitter, see for instance [9].

3 Straightforward calculation of the dispersion equa-

tion for a 2D lattice and a sandwich

The semi-analytic approach to calculation of the dispersion of the 2D periodic lat-

tice or sandwich opens a way to numerous interesting spectral problems for one-body

Schrödinger operator. Some of them are sketched above, for a fitted solvable model

constructed for given contacts and contact subspaces. One of most important ques-

tions is one about selection of the contact domains Γi
σ on the sides the period and

selection of the contact subspaces N1, N2. We calculate the dispersion as a function

of the modulo |p| of the quasi-momentum, depending on the direction ν of the quasi-

momentum, based on general finite-dimensional equation for the dispersion function

λ(p) = λ(|p|, ν). Consider a typical example of a 2D lattice generated by a non-

dimensional Schrödinger operator with real periodic potential obtained via restriction

of Yukawa potential on the romboidal period framed by the arcs of circles radius 0.05
centered on the corners of the square 1.1× 1.1 and by the central intervals Γi

α length δ
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on the sides of the period. We choose the contacts Γi
α in form of intervals 0 < γ < δi

centered at the mid-points 0i
α of the corresponding sides of the square period and span

the contact spaces by
√

2/δi sin lπγ/δi and use the basic equation (6) . The direc-

tion of vector ν is defined by the angle ϕ = 0, 150, 300, 450 between the orth e1 and

ν. For strong Yukawa potential the dispersion function λ(|p|) with 3D contact spaces

l = 1, 2, 3 on the on the contacts is calculated for selected angles and is represented by

(3) based on straightforward computing for the corresponding DN-map. Our numer-

Figure 3: The sections of the dispersion surface of the periodic Schrödinger operator

on a at the corners of the square period.

ical experiments showed that beginning from dim N = 3 the shape of the dispersion

function in the domain of low energy reveals clear features of stability, which gives

a good reason to assume that the finite dimension of the contact subspace already al-

lows to construct a realistic soluble model of the Schrödinger operator with Yukawa

potential on the above square lattice.
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Interesting resonance properties are revealed by Heine-Abarenkov potential con-

structed on a period as a potential well surrounded by the thick wall. The Dirichlet

problem on the ”romboidal ” period for the corresponding Schrödinger operator has

a single simple isolated eigenvalue, the DN-map has a corresponding polar term and

a regular correcting term. The rational approximation of the corresponding DN-map

framed by the projections on the corresponding 1D contact spacesN1, N2 , spanned by
√

2/δi sin lπγ/δi, l = 1, for low temperature on the corresponding small temperature

interval centered at the lowest resonance eigenvalue λ1 has a form

A
Q

λ− λ1

+B = A1

(

Qaa Qa0

Q0a Q00

)

λ− λ1

+

(

Baa Ba0

B0a B00

)

with an one-dimensional projection orthogonal projection Q and a constant Hermitian

matrix. We select

Qaa =
1

2

(

ν1〉 〈ν1 0
0 0

)

;Qa0 =
1

2

(

0 ν1〉 〈ν2

0 0

)

: (24)

Q0a =
1

2

(

0 0
ν2〉 〈ν1 0

)

;Q00 = e0〉 〈e0 =
1

2

(

0 0
0 ν2〉 〈ν2

)

, (25)

see Fig. 4. The regular term B depends on the upper eigenvalues and eigenfunctions .

We consider an example selecting the regular term as

B =

(

Baa Ba0

B0a 0

)

,

where

B00 =

(

0 0
0 0

)

, Baa ==

(

1 0
0 0

)

Ba0 = ba0

(

0 ν1〉 〈ν2

ν2〉 〈ν1 0

)

, B0a = b0a

(

0 ν2〉 〈ν1

ν1〉 〈ν2 0

)

,

Elimination of the variables u′0, u
′
a, u0 as suggested in (8), gives an equation for the

2-vector ua:

A

λ− λD
1

[

µQN
0a + µQN

00µ
−1 +QN

aa + µQN
a0µ

−1
]

~ua+

[

µBN
0a + µBN

00µ
−1 +BN

aa +BN
a0µ

−1
]

~ua ≡
[

ADQ(λ, p)

λ− λD
1

+ DB(λ, p)

]

~ua = 0. (26)

The corresponding equation (26) has a nontrivial solution ~ua if the determinant of the

corresponding 2 × 2 matrix

ADQ + (λ− λD
1 )DB(λ, p)
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Figure 4: Sections of the dispersion surface of an abstract model emulating Heine-

Abarenkov potential with the lower resonance eigenvalue λ1 = 1 (punctured line).

vanishes. This condition yields the dispersion equation λ = λ(~p), with the quasi-

momentum ~p defined by the quasi-momentum exponentials µ = diag (µ1, µ2) = diag

(eip1 , eip2).

In the case when the Heine-Abarenkov potential well is deep enough, there are

several eigenvalues with eigenfunctions localized in the well. In particular, there is

an eigenfunction symmetric with respect to reflection in the line connecting the mid

points of Γ1
0,Γ

1
a and antisymmetric with respect to reflection in the line connecting the

mid-points of Γ2
0,Γ

2
a, or vice versa. The corresponding eigenvalue is non- degenerated

if the potential is not symmetric with respect to the change of the variables 1 →
2, 2 → 1. The corresponding DN-map is characterized by the polar term AQ with the

projection

Q =
1

2









ν1〉 〈ν1 0 −ν1〉 〈ν1 0
0 0 0 −ν1〉 〈ν1

−ν1〉 〈ν1 0 0
0 −ν1〉 〈ν1 0 ν1〉 〈ν1









If the correcting term is selected as above, we obtain the dispersion curves in various

direction as shown one Fig. 5:
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Figure 5: Sections of the dispersion surface of the abstract model emulating Heine-

Abarenkov potential with resonance eigenvalue λ2 > λ1.

Our aim in previous section was to construct a convenient semi-analytic bridge

between the structure of orbitals on the period in the resonance spectral domain and

the shape of the dispersion surface in the resonance domain. The ”analytic” part of the

bridge was already constructed, ending by the formula (23), assuming that the one-

pole rational approximation (28) for the DN-map on the 2D lattice or sandwich (18)

on the resonance spectral domain is selected. The examples considered in this section

show typical behavior of the dispersion in the resonance domain. In fact our proposal

has a softer nature ( in the sense of V. Arnold), due to the freedom of selection of the

rational approximation ( probably a multi-pole- approximation) for the real material

lattice or sandwich on the resonance domain,

DN ≈
∑

s≤m

As

Qs

λ− λs

+ Pm(λ), (27)

the choice of the contacts/contact subspaces and temperature (interval of energies) We

guess that this problem, though looks as a mathematical one, lies outside of mathe-

matics, - on the border with quantum chemistry, with it’s specific system of notions

(covalent bonds, etc...) and methods.

According to our previous analysis the derivation of the dispersion equation of the

sandwich composed of two 2D periodic lattices separated by a weakly transparent

barrier includes the 2D dispersion of the layers Du,Dd as basic details. Contrary to

14



above analysis of a 2D lattice we base on the DN-maps DN u,DN d of the upper and

lower parts of the two-storied period. Besides the components (28), connecting the

Dirichlet data on Γi
α, i = 1, 2;α = a, 0 the DN-map of the upper/lower half of the

period includes the components connecting the Dirichlet data on Γb with Neumann

data on Γi
α and vice versa, subject to filtering by the appropriate contact subspace Nb.

Assuming that the temperature is low , we considered in (13) the 2 × 1 , 1 × 2 and

1 × 1 blocks substituted by the corresponding rational approximations, based on our

previous assumption

DN b ≈









PN
∂ϕD

1

∂n

∣

∣

∣

∣

Γa

PN
∂ϕD

1

∂n

∣

∣

∣

∣

Γ0









〉 〈PNb

∂ϕD
1

∂n

∣

∣

∣

∣

Γb

λ− λ1
+Bb

(

ea
b

e0b

)

≡ Db(λ, µ) = Ab

Qb

λ− λ1

+ ~Bb.

(28)

Here due to (24, 25)









PN
∂ϕ1

∂n

∣

∣

∣

∣

Γa

PN
∂ϕ1

∂n

∣

∣

∣

∣

Γ0









〉〈PNb

∂ϕD
1

∂n
=
Ab√

2

[

ν1

∣

∣

∣

∣

Γa

+ ν2

∣

∣

∣

∣

Γ0

]

〉〈νb, (29)

with a new fitting parameterAu,d
b for vertical blocs of the upper and lower half-periods.

The horizontal blocs are connected with the vertical blocs as Hermitian adjoins. The

central block is one-dimensional and contains four fitting parameters as Qu,d

λ−λ
u,d
1

+Bu,d
bb ,

see (17). Then substitution into (23) the expressions for blocks obtained via elimina-

tion all variables except Vb yields a scalar homogeneous equation, which can be used

as an equation for the dispersion function depending explicitly on the fitting parame-

ters. We postpone the discussion of this technicalities to an oncoming publication.

4 Derivation of the DN-map on the resonance spectral

domain from the relevant ND map.

Calculation of the relative DN-map in the resonance domain is complicated due to

instability of the solution of the boundary problem (1) for the values of the spectral

parameter close to the Fermi level ΛF ≈ λD
1 . In the simplest case of a single resonance

eigenvalue λD
1 ≡ λ1 the polar term of the DN-map ( and hence one of the relative DN-

map) is calculated in terms of the resonance eigenfunction, see (28), but, to calculate

the regular term B we have to use the duality

DNN ×NDN = IN = NDN ×DNN (30)

of the relative DN -map DNN and the relative ND-map NDN defined by the partial

Dirichlet (31) and Neumann (31) boundary problems with the corresponding data from
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the contact subspace N

−∆Ψ + q(x)Ψ = λΨ, Ψ

∣

∣

∣

∣

Γ

= ψΓ ∈ N, Ψ

∣

∣

∣

∣

∂Ω\Γ

= 0, ψΓ
DNN−→ ∂Ψ

∂n

∣

∣

∣

∣

Γ

. (31)

[−∆ + q(x) − λ]Ψ = 0,Φ

∣

∣

∣

∣

∂Ω\Γ

= 0,
∂Φ

∂n

∣

∣

∣

∣

Γ

= ρ ∈ N, ρΓ
NDN−→ Φ

∣

∣

∣

∣

Γ

. (32)

Due to the uniqueness theorem for the Schrödinger equation, the eigenvalues of the

relative Dirichlet and Neumann problems never coincide. Hence we may assume that

the partial Neumann problem has a unique solution for the values of energy λ on the

temperature interval centered at the Fermi level. Hereafter we deal only with the rela-

tive DN and ND maps at the Fermi level. Correspondingly we omit the lower indices

N in the notations. We also use an orthogonal decomposition of the unit operator

IN ≡ I in the contact subspace I = Q⊕Q⊥, and consider the relevant matrix repre-

sentations of DN , ND in the resonance domain near the Fermi level. Then, with use

of the notations Bq,⊥ ≡ QBQ⊥, Bq,q = QBQ, B⊥,⊥ ≡ Q⊥BQ⊥, B⊥,q ≡ Q⊥BQ,

and similar notations for the matrix elements of the partial ND-map, we represent the

duality equation as
(

A
λ−λ1

+Bq,q Bq,⊥

B⊥,q B⊥,⊥

) (

NDq,q NDq,⊥

ND⊥,q ND⊥,⊥

)

=

(

Q 0
0 Q⊥

)

.

(

NDq,q NDq,⊥

ND⊥,q ND⊥,⊥

) (

A
λ−λ1

+Bq,q Bq,⊥

B⊥,q B⊥,⊥

)

=

(

Q 0
0 Q⊥

)

. (33)

Based on regularity of the ND and B on the resonance domain we derive from above

duality equations, that the elements of the ND-map have zeros at the resonance eigen-

value λ1, or, other words, the limits of the ratio’s below at λ→ λ1

NDq,⊥

λ− λ1

≡ Rq,⊥(λ),
ND⊥,q

λ− λ1

≡ R⊥,q(λ),
NDq,q

λ− λ1

≡ Rq,q(λ),

A
NDq,q

λ− λ1

≡ ARq,q + (λ− λ1) [Rq,qBq,q +Rq,⊥B⊥,q] = Q,

exist, the corresponding functions R are regular functions of energy on the resonance

domain. Using notations introduced above we derive from the duality equations

B⊥,⊥ND⊥,⊥

∣

∣

∣

∣

λ=λ1

= Q⊥, B⊥,qRq,q +B⊥,⊥R⊥,q

∣

∣

∣

∣

λ=λ1

= 0, (34)

and

ARq,q + (λ− λ1)[Rq,qBq,q +Rq,⊥B⊥,q] = Q,

which implies
Q− ARqq

λ− λ1

= Rq,qBq,q +Rq,⊥B⊥,q. (35)

These equations define the behavior of the regular B on the resonance domain. In

particular, while ND⊥,⊥ is invertible, the matrix elements of B(λ1) can be computed

based on spectral data ϕ1, λ1 and ND.
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5 Conclusion: towards theoretical analysis of HTSC in

B-Si-B sandwich.

The transformation of the crossing of the 2D terms into quasi-crossings - the Landau-

Zener phenomenon - is similar to the 1D version discussed in [1] with the standard and

flat bands overlapping. It was shown there that in the corresponding one-dimensional

model the spectral gap δLZ , arising due to Landau-Zener gap, causes an essential en-

hancement of the superconductivity gap and hence high-temperature stability of the

superconductivity phenomenon. Involvement of the flat band guarantees a high den-

sity of states, which permits experimental confirmation of HTSC.

Figure 6: Enhancing of the superconductivity gap arising from a simple and flat band

overlapping: transformation of the band’s crossing (1) into the quasi-crossing (2) (1D

schematic figure).

In [3] high-temperature superconductivity was observed in a B-Si-B sandwich. The

authors interpreted it as a Josephson effect due to the interaction between the Bloch

functions of the upper and lower plates of the sandwich, defined by the boundary

condition on the barrier Γb, see Fig. 7.

Figure 7: Additional spectral gaps arising from the 2D Landau-Zener phenomenon:

transformation of the crossing of the dispersion surfaces into the quasi-crossing(2)

(The 2D section of the 3D gutter).

In [3] additional electrodes were also used to manipulate the positions of the sub-

bands in the barrier, and the stable high-temperature conductivity effect was observed.
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Our above analysis is aimed on explanation observations presented in [3] in the case

of quasi 2D sandwiches.

We hope that the explanation may arise as an application of the ideas [1] to the

quasi-2D sandwich. Indeed the substitution of the flat band by the standard band does

not destroy the Landau-Zener phenomenon, hence it is not essential for the theoretical

interpretation of the superconductivity observed: the Landau-Zener gap arose due to

the quasi-2D sandwich structure with a resonance barrier. On the other hand the DN

approach to calculation of the dispersion function of the sandwich allows to substitute

the 1D model in [1] by the 2D sandwich. An essential detail of the program is estima-

tion of the density of states for the quasi-2D B-Si-B sandwich and the estimation of

the critical temperature. We hope that it can be done based on the methods suggested

above and postpone the relevant computing and analysis for an oncoming publication.
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