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Abstract 
 
This paper presents an integrated system for advanced structural analysis and 
seismic performance evaluation of three-dimensional steel frameworks with rigid or 
flexible connections. The non-linear inelastic static analysis employed uses the 
accuracy of the fibre-finite element approach for inelastic frame analysis and 
addresses its efficiency and modelling shortcomings through the use of only one 
element to model each physical member of the frame. The proposed model has been 
implemented in a matrix structural-analysis computer program that also accounts for 
geometric nonlinearity and semi-rigid connections. The proposed software is 
presented as an efficient, reliable tool ready to be implemented into design practice 
for advanced analysis and pushover analysis of spatial frame structures. 
 
Keywords: plastic zone analysis, semi-rigid space frameworks, large deflections, 
advanced analysis, pushover analysis. 
 
 
1  Introduction 
 
With the rapid advancement of computer technology, research works are currently in 
full swing to develop advanced nonlinear inelastic analysis methods and integrate 
them into the new and more rational advanced analysis and design procedures [1-5]. 
Reliable nonlinear analysis tools are, for instance, essential in performance-based 
earthquake engineering, and advanced analysis methodologies, that involves 
accurate predictions of inelastic limit states up or beyond to structural collapse. The 
need for accurate yet computational efficient tools for the nonlinear inelastic 
analysis of real large-scale 3D steel frameworks forms the main motivation behind 
of this work. Essentially, nonlinear inelastic analysis employed herein uses the 
accuracy of the fiber elements approach for inelastic frame analysis and address its 
efficiency and modelling shortcomings both to element level, through the use of 
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only one element to model each physical member of the frame, and to cross-
sectional level through the use of path integral approach to numerical integration of 
the cross-sectional nonlinear characteristics. The computer program developed here 
fully integrates a 3D eigen analysis and a 3D non-linear inelastic analysis, based on 
fiber member model, in conjunction with advanced performance evaluation 
functions, following an approach outlined in the next sections. 
 
 
2 Formulation of the proposed analysis method 
 
The following assumptions are adopted in the formulation of analytical model: (1) 
plane section remain plane after flexural deformation; warping and cross-section 
distortion are not considered; (2) torsional buckling do not occur; (3) small strain but 
arbitrarily large displacements and rotations are considered; (4) the connection 
element is of zero length. The proposed approach is based on the most refined type 
of second order inelastic analysis, distributed plasticity model, where elasto-plastic 
behaviour is modelled accounting for spread-of plasticity effect in sections and 
along the element and employs modelling of structures with only one line element 
per member, which reduces the number of degree of freedom involved and the 
computational time. The above assumptions allow the formulation details to be 
considered on two distinct levels, namely, the cross-sectional level and the member 
longitudinal axis level. Thus the nonlinear response of a beam-column element can 
be computed as a weighted sum of the response of a discrete number of cross-
sections (i.e. stations) that are located at the numerical integration scheme points. 
 
2.1 Cross-section analysis 
 
The cross-section stiffness may be modelled by explicit integration of stresses and 
strains over the cross-section area (e.g., as micro model formulation) or through 
calibrated parametric equations that represent force-generalized strain curvature 
response (e.g. macro model formulation). 
 

 
Figure 1: (a) Micro model formulation: fiber cross-section analysis; (b) Macro 

model formulation: proposed force-strain relationships. 
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2.1.1   Micro model formulation 
 
Gradual plastification through the cross-section subjected to combined action of 
axial force and bi-axial bending moments is described through basic equilibrium, 
compatibility and material nonlinear constitutive equations. In this way, the states of 
strain, stress and yield stress are monitored explicitly during each step of the 
analysis, the arbitrary cross-sectional shape and the effect of material imperfections 
such as residual stresses are accurately included in the analysis. Inverse Ramberg-
Osgood stress-strain relationships both in tension and in compression are assumed 
(Eq.1): 
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where σy and εy represents the yield stress and yield strain respectively. In this way, 
via shape parameter (n) either elastic-perfect plastic or gradual yielding may be 
included in the analysis. The magnitude and distribution of residual stresses in hot-
rolled members depend on the type of cross section and manufacturing processes 
and different patterns are proposed. In the US, the residual stress is considered 
constant in the web although, when the depth of a wide flange section is large, it 
varies more or less parabolically. Another possible residual stress pattern in the web 
is the one simplified by a linear variation as used in European calibration frames 
(Fig.1a).  
 
2.1.1.1  Elasto-plastic flexural rigidity of cross-section 
 
Considering the cross-section subjected to the action of the external bending 
moments (Mx0, My0) about each global axes and axial force (N0) as shown in Figure 1a. 
Under the above assumptions the resultant strain distribution corresponding to the 
curvatures about global axes [ ]yx ΦΦ=Φ  and the axial strain u can be expressed 
in point [ ]yx=r  in a linear form as: 
                                           00 εεε ++=+Φ+Φ+= T

yx uzyu Φr                    (2) 
where ε0 is the initial deformation produced by residual stresses. The equilibrium is 
satisfied when the external forces (N0, Mx0, My0) are equal to the internal ones. These 
conditions can be represented mathematically in terms of the following nonlinear 
system of equations as: 
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in which yxu φφ ,,  represent the unknowns. The above system can be solved 
numerically using, for instance, the load-controlled Newton method and taking into 
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account the fact that the stresses are implicit functions of the axial strain and 
curvatures through the resultant strain distribution given by the Eq. (2). In this way, 
for given bending moments and axial force we can obtain the strain distribution and 
the location and inclination of the neutral axis. This system can be rewritten in terms 
of non-linear system of equations in the following general form: 
 

                                                           
( ) 0ffXF =−= extint

                                              (4) 
 
where [ ]Tyx φφε0=X , the external and internal loading vectors can then be 
represented by: 
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The Eqns. (4) are solved numerically using the Newton-Raphson method, and 
results in three recurrence relationships to obtain the unknowns u and Φ and then 
flexural EI and axial EA rigidity modulus can be computed. According to the 
Newton iterative method, the iterative changes of unknowns vector X can be written 
as: 
 

                                                           
( ) ( ) 0,

11 ≥′−=
−+ kkkkk XFXFXX

                                 (6) 
 
where F’ represents the Jacobian (or tangent cross-section stiffness matrix) of the 
nonlinear system (4) and can be expressed as: 
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Explicitly the expressions of the Jacobian’s coefficients are given in Eqs. 8. 
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These coefficients are expressed in terms of the tangent modulus of elasticity 
Et=dσ/dε. The convergence criterion is expressed as a ratio of the norm of the out-
of-balance force vector to the norm of the total applied load. So the solution is 
assumed to have converged if: 
 

                                                        TOL
extextT

T
≤

ff

FF                                            (9)   

where TOL is the specified computational tolerance, usually taken as 1E-5. Based on 
Green’s integration formula according to which the domain integrals appearing in 
the evaluation of internal resultant efforts and tangent stiffness matrix coefficients of 
the section can be evaluated in terms of boundary integral. This approach is 
extremely rapid because stress integrals need only be evaluated at a small number of 
points on the section boundary and rapid convergence is assured by the inclusion of 
exactly determined tangent stiffnesses and, of great importance, it is assure 
convergence for any load case. Tangent flexural rigidities for major and minor axis 
bending under conditions of constant axial load are evaluated by inverting the cross-
section tangent stiffness matrix, imposing the condition of constant axial load to 
obtain a flexural flexibility matrix and inverting this to find the tangent flexural 
rigidities, about each principal axis, at constant axial load: 
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where stiffness coefficients kij are given in Eqs. (8). The tangent axial rigidity is 
computed as s

A
Tt dAEEA

s

∫= . 

2.1.1.2  Determination of the plastic interaction diagrams 
 
A particularly important feature of the present method is represented by the capacity 
to determine directly the ultimate axial force and bending moments in order to check 
that they fulfil the ultimate limit state condition. The cross-section subjected to bi-
axial bending moments and axial force, reaches its failure limit state when the strain 
in the extreme steel fiber, attains the ultimate value. Consequently, at ultimate 
strength capacity the equilibrium is satisfied when the external forces are equal to 
the internal ones and in the most compressed or tensioned point the ultimate strain is 
attained. These conditions can be represented mathematically in terms of the 
following nonlinear system of equations as:
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in which N, Mx, My, yxu φφ ,,  represent the unknowns, the surface integral is extended 
over steel area (As). In Eqs. (11) the first three relations represent the basic equations 
of equilibrium for the axial load N and the biaxial bending moments Mx,, My 
respectively, given in terms of the stress resultants. The last equation represents the 
ultimate strength capacity condition in which ( )yxcx φφ ,  and ( )yxcy φφ ,  represent the 
coordinates of the point in which this condition is imposed. The coordinates of the 
“constrained” point can be always determined for each inclination of the neutral axis 
defined by the parameters φx and φy, and εu represents the ultimate strain. Under the 
above assumptions, the problem of the ultimate strength analysis of steel cross-
sections can be formulated as:  
 
Given a strain distribution corresponding to a failure condition, find the ultimate 
resistances N, Mx, My so as to fulfil the basic equations of equilibrium and the 
following linear constraints: 
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where  N0, Mx0, My0 represent the given  axial force and bending moments. 
 
 
Corresponding to the linear constraint (12) we can define a point on the failure 
surface as: (I) when the constraints (12a) are injected in the nonlinear system (11), a 
point on the failure surface is defined computing the axial resistance N associated 
with a failure criterion and for a fixed value of bending moments (Mx0, My0); (II) 
when constraints (12b) are used, the point on the failure surface is defined for a 
fixed axial load (N0) and a given bending moment’s ratio. The failure diagrams 
correspond to maximum strains attained at the outer compressed or tensioned point 
of the steel section (i.e. εu equal to the strain at failure). For each inclination of the 
neutral axis defined by the parameters φx and φy the farthest point on the compressed 
or tensioned side is determined (i.e. the point with co-ordinates xc, yc). Assuming 
that the failure condition is achieved in this point, the resulting strain distribution 
corresponding to the curvatures φx and φy can be expressed in linear form as in 
Eq.(2). Then, substituting the strain distribution given by the Eq. (2) in the basic 
equations of equilibrium, the unknown u together with the failure constraint 
equation can be eliminated from the nonlinear system (11). Thus, the nonlinear 
system of equations (11) is reduced to an only three basic equations of equilibrium 
and together with one of the linear constraints (Eq. 12), forms a determined 
nonlinear system of equations, and the solutions can be obtained iteratively 
following the procedure described in [6].  
 
 
 
 
2.1.2   Macro model formulation 
 
In this approach the gradual plastification of the cross section of each member are 
accounted for by smooth force-generalized strain curves, experimentally or 
numerically calibrated. In the present elasto-plastic frame analysis approach, gradual 
plastification through the cross-section subjected to combined action of axial force 
and biaxial bending moments may be described by moment-curvature-thrust (M-Φ-
N), and moment-axial deformation-thrust (M-ε-N) curves that are calibrated by 
numerical tests. In order to take into account more explicitly the effect of residual 
stresses of the cross-sections we propose another smooth force-strain curve to model 
the gradual-plastification. The proposed relations modify the force-strain relations 
proposed by the Albermani [7] in order to simulate a nonlinear variation of the 
cross-section axial and flexural rigidity. The behaviour of a cross-section subjected 
to the combined action of axial force and bending moments is expressed in a set of 
equations relating the bending moments (axial forces) and the flexural (axial) 
rigidity for a certain value of axial force:  
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where: 

TK - represents the tangent axial or flexural rigidity about either strong or weak 
flexural axis; 

0K - represents the constant reference flexural/axial rigidity; 
F  - represents the cross-sectional generalized force (axial or bending moment with 
respect to either strong or weak cross-sectional axis); 

yieldF  -  represents the generalized force (axial or bending moment) at first yield  

pF -  represents the full plastification force; 
p  -  represents a strain-hardening parameter, for p=0 the strain-hardening effect is 

neglected; 
α  -  represents a shape parameter to express the nonlinear variations of the tangent 
flexural/axial rigidity of cross-section; for α=1 we find the Albermani equations.  
The shape parameters p and α are determined throughout numerical calibrations. 
The effects of the combined action of axial force (N) and bi-axial bending moments 
(My, Mz) and as well the effect of residual stresses are taken into account in the 
expressions of the first yielding (Fyield) and full plastification (Fp) generalized forces. 
For instance, the full plastification bending moment is obtained from the full 
plastification surface equation for a given values of bending moments and axial 
force, whereas the first yielding bending moment is expressed as: 
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where σy represents the yield stress, σr represents the maximum value of residual 
stress,  A the area of the cross-section, and Wel represents the elastic section modulus 
of the cross-section with respect to strong or weak flexural axes. For α =1, as is 
proposed by Albermani, a linear stiffness degradation is considered. However, for 
steel cross-sections, where the effects of residual stresses are significantly on the 
inelastic behavior, a nonlinear stiffness degradation is required to represents 
adequately the partial plastification effects associated with bending and axial forces. 
The effect of axial forces on the plastic moments capacity of sections is considered 
by standard strength interaction curves. 

 
2.2 Flexibility based derivations. Member analysis 
 
Flexibility-based method is used to formulate the distributed plasticity model of a 
3D frame element (12 DOF) under the above assumptions. An element is 
represented by several cross sections (i.e. stations) that are located at the numerical 
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integration scheme points (Figure 2a). The spread of inelastic zones within an 
element is captured considering the variable section flexural EIy and EIz and axial 
EA rigidity along the member length, depending on the bending moments and axial 
force level, cross-sectional shape and nonlinear constitutive relationships as already 
described.  Figure 2b shows the deformed shape of a 3D beam-column element in 
local system attached to the initially straight center line, with the rigid body modes 
removed. Non-linear analysis by the stiffness method requires incremental loading, 
i.e. the inelastic behaviour is approximated by a series of elastic analysis. The 
element incremental flexibility matrix fr which relates the end displacements to the 
actions rsΔ  can be derived directly from energetic principles. Assuming elastic 
behaviour within a load increment, and no coupling of axial and flexural responses 
at the section level, the increment of the strain energy WΔ can be written as follows, 
including the additional shear and torsional deformations, Fig. 2: 
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in which the bending moments and shear forces are given by the following 
equations, supposing that the element is subjected to uniform distributed loads qy(z) : 
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Using the second theorem of Castigliano the relationship between incremental 
deformations and efforts can be readily calculated and partitioned as follows:  
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or in a condensed form: 
 

rrrr δsfu +Δ⋅=Δ                                (18) 
 

where fr represents the incremental flexibility matrix of the beam-column element 
without rigid body modes, and in which the matrices fi (i=1,2) have the following 
expressions: 
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and rδ is a term resulting from loading actions. To produce the deformational-
stiffness relation, the Equation (18) is inverted, resulting the following 
deformational-stiffness equation: 

       rrrr quks −Δ⋅=Δ                      (20) 

where the vector rq is the equivalent load vector, whereas kr represents the 
instantaneous element stiffness matrix of the beam-column element without rigid 
body modes, determined by matrix inversion of the flexural matrix fr: 
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Figure 2: (a) Beam column element with 12 DOF; (b) Beam column element with 
rigid body modes removed. 

 
The resulting element stiffness matrix is a 6x6 matrix. To include rigid body modes, 
the stiffness matrix is pre- and post multiplied by a transformation matrix to result in 
the required 12 x12 matrix.  
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2.2   The second order effects on element tangent stiffness matrix 
 
The geometrical nonlinear effects for each element are taken into account in the 
present analysis, in a beam column approach, by the use of the inelastic stability 
stiffness functions and updating at each load increment the length, axial force and 
the flexural rigidity about of each principal axes of the element. This way minimizes 
modelling and solution time, generally only one or two elements are needed per 
member. The element force fields are described by the second order transfer matrix 
as function of the nodal element forces [5]. 
 
 
 
2.3 The effect of plastic surface on element tangent stiffness matrix 
   
If the state of forces at any cross-section along the beam column element equals or 
exceeds the plastic section capacity, the flexural stiffness at the respective location 
approaches zero. Once the member forces get to the full plastic surface, and strain-
hardening is neglected, they are assumed to move on the plastic surface at the 
following loading step (Fig.3). Therefore, when the axial force of a member 
increases at the following loading step, the incremental force-displacement 
relationships at the element level has to be modified such that the loading result in 
motion along the interaction surfaces and the plastic strength surface requirement of 
the full plastified sections is always satisfied. We assume the general case when 
limit surfaces are not linear; these surfaces can be regarded to be incrementally 
linear. In this way, for the fully plastified cross-sections, the relationship between 
incremental axial forces and bending moments can be linearized as well. 
Considering the member in Fig.2 and that at the end of the member at node i the 
forces (N, My, Mz) get to the full plastic surface the incremental bending moments 

iyMΔ , izMΔ and the incremental axial force NΔ  are linearly related as (Fig.3): 
    

 

 

 

 

 

 

 

                         
 

 

Figure 3: The effect of plastic surface on element tangent stiffness matrix. 
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where: 

                                                        
*

*

NNN

MMM tot

−=Δ

−=Δ            (23) 

and in which M* represents the ultimate total bending moment associated to given 
value of axial force N and N* represents the ultimate axial force for given value of 
total bending moment α21 tgMM ztot += . When the fiber cross-section analysis is 
applied the ultimate efforts (M* and N*) are determined using the numerical 
procedure described at section 2.1.12.  Consequently the basic nodal element forces 
for the beam column element can be expressed in matrix form as: 
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               (24) 

or symbolically in condensed matrix form: 

                                                         )14()45()15( ˆ xxcxr sTs Δ=Δ                   (25) 

where the transformation matrix Tc introduce the correlation between nodal forces 
such that the plastic strength surface requirement at section “i” is not violated by the 
change of member forces after the full plastic strength of cross-section is reached 
(Fig.3). Denoting rsΔ , uΔ and rqΔ as finite changes in the force vector, displacement 
vector and fixed-end force vector, respectively, the incremental force-displacement 
relationship for the element including the equivalent nodal loads can be expressed 
as: 

rrr quks Δ+Δ=Δ                          (26) 

and which inverted gives: 

   rrrr qfusf Δ+Δ=Δ                          (27) 
 
where fr represents the flexibility matrix of the element. Both stiffness kr and 
flexibility fr=kr

-1 matrices include the effects of material and geometrical nonlinear 
effects as described in above sections. We mention just that the rows and columns 
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associated to the torsional degree of freedom have been removed in the matrix 
representation in the equations (26) and (27). 

Substituting Eq.(25) for rsΔ into Eq.(27) gives: 

rrcr qfusTf Δ+Δ=Δˆ                          (28) 

Multiply both members of Eq.(28) with T
cT and solving for ŝΔ we obtain: 

               ( ) ( ) rr
T

ccr
T

c
T

ccr
T

c qfTTfTuTTfTs Δ+Δ=Δ
−− 11

ˆ      (29) 

The equations (27) and (29) can now be combined by realizing that the basic force-
displacement relationship is given by: 
 

    ( ) ( ) rr
T

ccr
T

cc
T

ccr
T

ccr qfTTfTTuTTfTTs Δ+Δ=Δ
−− 11                  (30) 

 

or symbolically in condensed matrix form: 
 

                                                       rpeprr quks Δ+Δ=Δ ,                              (31) 

where epr ,k and rpqΔ represents the stiffness matrix and equivalent nodal loads 
vector for the element when a full plastified cross section forms at the i-th end  of 
the element: 

            ( ) T
ccr

T
ccepr TTfTTk

1
,

−
=                     (32) 

         ( ) rr
T

ccr
T

ccrp qfTTfTTq Δ=Δ
−1                    (33) 

Following a similar approach we can obtain the elasto-plastic stiffness matrix and 
equivalent nodal loads for the cases when a full plastified sections forms at j-th end 
of the member or at both ends.  

 
 
2.4 The effects of joint flexibility  
 
The behaviour of the connection element in each principal bending direction (major 
and minor axis flexibility) is represented by a rotational dimensionless spring 
attached to the member ends (Figure 4). We assume no coupling between different 
rotational degree of freedom at the connection. The present formulation can model 
both major and minor axis flexibility. 
 
 
 

 
 
 

Figure 4: Beam-column element with semi-rigid connections. 
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The effects of semi-rigid connections are included in the analysis adopting the 
mathematical model developed in [5]. The stiffness matrix and equivalent nodal 
loads vector, considering the effects of flexible connections can be determined as: 

          
( )

( ) 1
)44()44()44()14()14()14(

)44(
1

)44()44()44()44()44(

−

−

+Δ−Δ=Δ

+−=

xscxrxrxeqxeqxsem

xrxscxrxrxrxsem

kkkqqq

kkkkkk
        (34) 

where kr represents the stiffness matrix of the rigid ended element including the 
effects of material and geometrical nonlinearities, Δqeq represents the equivalent 
nodal loads for rigid ended element, ksc represents the stiffness matrix of the semi-
rigid connections that can be expressed as ),,,( jzizjyiysc RRRRdiag=k in which Ri, 
Rj are the instantaneous connection stiffness about both major (z) and minor (y) axis 
flexibility. If the connection behaviour is nonlinear, the connection model adopted in 
accordance with experimental model proposed in [8] can be used. 
 
 
2.5 Geometry updating and analysis algorithm 
 
In order to trace the equilibrium path, for proportionally and non-proportionally 
applied loads, the proposed model has been implemented in a simple incremental 
and incremental- iterative matrix structural-analysis program. In the simple 
incremental method, the simple Euler stepping algorithm is used in conjunction with 
constant work-load increments. In the incremental-iterative approach, at each load 
increment a modified constant arc-length method is applied to compute the complete 
nonlinear load-deformation path. Using an updated Lagrangian formulation (UL) the 
nonlinear geometrical effects are considered updating the element forces and 
geometry configurations at each load increment. The natural deformation approach 
(NDA) in conjunction with the geometrical “rigid body qualified” stiffness matrix 
[9] is adopted for the element force recovery and the web plane vector approach is 
effectively used to update the frame element coordinates [5].  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5: NEFCAD screen-shots. 
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3 Computer program description 
 
Based on the analysis algorithm just described, an object-oriented computer 
program, NEFCAD, has been developed to study the combined effects of material, 
geometric and semi-rigid connection nonlinear behaviour on the load-versus-
deflection response for spatial framed structures. It combines the structural analysis 
routine with a graphic routine to display the final results (Figure 4). The 
computational engine was written in Compaq Visual Fortran. The graphic interface 
was created using Microsoft Visual Basic 6. Dynamic Link Libraries (DLL) are used 
to communicate between the interface and engine. The computer program includes 
modules that provide for several kinds of analyses: linear static and eigen analysis; 
advanced nonlinear inelastic analysis. All these modules feature powerful and 
completely integrated design modules for steel frameworks, available from within 
the same interface used to create and analyze the model. 

 
 
 

 
 

Figure 6: (a) Portal frame description; (b) Lateral load-displacement curves; (c) 
Percentages of section area yielded; (d) Spread of plastic zones. 
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4 Computational examples 
 
4.1  Example 1: Portal frame 
 
The portal frame in Figure 6a, which was first analysed by Vogel [10], has been 
considered one of the most sensitive to spreading of plasticity effects. The frame 
was analysed using the proposed model in two different ways. Firstly, the elasto-
plastic behaviour is modelled accounting for spread-of-plasticity and residual stress 
effects in sections and along the member length through basic equilibrium, 
compatibility and material nonlinear constitutive equations σ-ε, in any section by an 
iterative process (e.g. micro model approach). Ramberg-Osgood stress-strain 
relationships with shape parameter n=30 and two residual stress patterns (EC3-Type 
1 and AISC-LRFD-Type 2) have been considered. Secondly, in each section, the 
proposed analytical force-strain relationships are used computing the variable 
flexural EI and axial EA rigidity. The plastic zone developments are represented in 
the Figures 6c and 6d. Percentages of section-areas yielded and spread of plastic 
zones in the characteristic cross-sections are represented. In Figure 6b the 
comparable lateral-load displacement curves are represented for both models. As it 
can be seen, using the proposed force-strain analytical curve (α=2, p=0.001) the 
elasto-plastic behaviour can be calibrated to model the explicit plastic zone analysis. 
 
4.2  Example 2: Six story steel space frame 
 
The Orbison’s six story rigid space frame (Figure 7a), studied previously by other 
researchers [1, 2] was used in the verification study. The effects of rigid and semi-
rigid connections, with either linear or nonlinear behaviour, of the space frame has 
been investigated. In the case of semi-rigid beam-columns connections, the beam 
connections were top and seat angles having the following characteristics: (1) at the 
beam framing about the major-axis of column the fixity factor g=0.86, ultimate 
moment Mu=300kNm, shape parameter n=1.57, (2) at the beam framing about the 
minor-axis of column, the fixity factor g=0.86, ultimate moment Mu=200 kNm, 
shape parameter n=0.86 [8]. The yield strength of all members is 250 MPa, Young´s 
modulus is E=206850 MPa and shear modulus G=79293 MPa. The frame is 
subjected to the combined action of gravity and lateral loads acting in the Y-
direction. Uniform floor pressure is 9.6 kN/m2 and the wind loads are simulated by 
point loads of 53.376 kN in the Y direction at every beam-column joints. One 
element with seven integration points (NG=7) has been used to model each column 
and beam; gradual plastification through the cross-section is modelled using the 
proposed inelastic force strain relationships with the shape parameters α=2 and 
p=0.001 and by explicit integration of stresses and strains over the cross-section 
using Ramberg-Osgood stress-strain relationships with shape parameter n=30. 
Residual stress patterns according to EC3 have been considered. Comparing the 
nonlinear response obtained by the proposed approach with the explicit fiber-
element approach of Jiang et.al. [2] an excellent agreement can be observed (Figure 
8). However the proposed analysis implies only one element per physical member 
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whereas Jiang’s method require nine elements per member in frame modelling to 
achieve the same accuracy and convergence. 
                  

 
Figure 7:  Six-story steel space frame: (a) Perspective view; (b) Flexural rigidities 

distribution-micro model formulation (c) Flexural rigidities distribution-macro 
model formulation; 

 

 
 

Figure 8: (a) Load-displacement curves at Y-dirrection of node A; (b) load-
displacement curves at X dirrection of node A. 

 
Figure 7 b, c shows the distribution of the flexural rigidities (1-EIt/EI0) along the 
member lengths at the ultimate load factor in the case of modelling the elasto-plastic 
behaviour at fibre level (micro model formulation) and at section level (macro 
model formaulation) respectivelly. The load displacement curves of rigid and semi-
rigid connections (with linear or nonlinear behaviour), are compared in Figure 9. As 
it can be seen, semi-rigid connection is a very crucial element, and must be 
considered in a valuable advanced analysis method. This frame, subjected to three 
ground motions is considered further as a case study for seismic performance 
assessment. Three levels of ground motions, with the intention of checking different 
performance objectives have been considered. Ground motion is defined with the 
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Type I for elastic response spectrum and ground type A was assumed in analysis and 
a 5% damped response spectrum for every peak ground acceleration is assumed 
(Eurocode 8). 
 

 
Figure 9: Load-displacement curves at Y-dirrection of node A: influence of semi-

rigid connections. 

           
 

Figure 10: (a) Push-over curve and target displacements; (b) distribution of flexural 
rigidities at collapse. 

 
The frame is subjected to the non-proportional action of gravity loads and lateral 
seismic loads. Uniform floor pressure is 9.6 kN/m2 and represents the first sequence 
of loading. The seismic loads are simulated by point loads in the X direction at every 
beam-column joints using the 3D modal load pattern corresponding to first mode in 
longitudinal direction (Fig. 10a). The nonlinear analysis of this frame was conducted 
using the proposed explicit fiber beam-column element. The pushover curve of 
control node A at the top of the frame is shown in Figure 10. In order to compute the 
displacement demands, idealize the pushover curve as a bilinear elasto-perfectly 
plastic force displacement relationship represent the next step of pushover analysis. 
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Pushover curves and the corresponding SDOF capacity diagram for longitudinal 
direction is depicted in Figure 10a. Also the corresponding target displacements for 
three earthquake intensities PGA = 0.15 g, PGA = 0.30 g and 0.6 g are placed on the 
MDOF pushover curve. Figure 10b shows the variation of the flexural rigidities (1-
EIt/EI0) along the member lengths at collapse. Running on a laptop computer with 
2GHz processor, the proposed fiber analysis was performed in approximately 3 
minutes. 
 
 
5 Conclusions 
 
A reliable and robust nonlinear inelastic analysis method for semi-rigid space frames 
has been developed. The proposed model is based on the most refined type of 
second order inelastic analysis, the plastic zone analysis. The proposed analysis can 
practically account for all key factors influencing steel space frame behaviour: 
gradual and distributed yielding associated with biaxial bending and axial force, 
shear deformations, local and global second order effects, and nonlinear behaviour 
of semi-rigid connections, with computational efficiency, and the necessary degree 
of accuracy, usually only one element per member is necessary to analyse. 
Furthermore, distributed loads acting along the member length can be directly input 
into the analysis without the need to divide a member into several elements. The 
model has been implemented in an incremental-iterative matrix structural analysis 
program and allows proportionally and non-proportionally loading, and has been 
verified by comparing the predicted results with the established results available 
from the literature. The studies show that the proposed analysis compares very well 
to finite fibre element solution with much less computational effort. The proposed 
software is presented as an efficient, reliable tool ready to be implemented into 
design practice for advanced analysis and pushover analysis of spatial frame 
structures. However, a fundamental assumption made for pushover analysis is that 
first mode dominates, and that the higher mode effects are not significant. Future 
work is envisaged considering the effect the time variant distribution of inertial 
forces experienced by the structure. 
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