
Abstract

A computationally efficient beam element is presented for the finite element (FE) anal-

ysis of framed structures with multiple concentrated damages. The proposed model

is able to account for any number and location of cracks, whose macroscopic effects

are simulated with a set of longitudinal, rotational and transverse elastic springs at the

position of each singularity, which in turn can be mathematically represented with pos-

itive (physically consistent) Dirac’s deltas in the corresponding flexibility functions.

The commercial finite element (FE) code SAP2000 is used to validate the proposed

approach for both static and dynamic loads. Interestingly, a very similar multi-cracked

beam (MCB) element has been recently formulated by other researchers, who have in-

dependently exploited negative (physically inconsistent) Dirac’s deltas in the stiffness

functions to model the concentrated damage, getting however the same discontinuous

shape functions for the FE formulation. Although derived and tested within the linear

range, the proposed approach lends itself to be easily extended to include a non-linear

constitutive law for the concentrated damages.

Keywords: cracked beams, Euler-Bernoulli beam theory, damaged structures, finite

element analysis, Timoshenko beam theory.

1 Introduction

Presence of cracks in framed structures may substantially change their static and dy-

namic response, reducing the performance and eventually causing the failure. Broadly

speaking, the approaches available in the literature to model cracks in beams and

columns can be classified into three main categories: local stiffness reduction (LSR),

discrete spring (DS) equivalent models, and more sophisticated formulations adopting

methods and concepts of Fracture Mechanics [1].
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Figure 1: The bending stiffness EI for the LSR (left) and DS (right) models

The LSR can be considered as the simplest method to build a finite element (FE)

model of a damaged beam, as it simply requires to mesh the beam with a sufficient

number of beam elements and to reduce the relevant stiffness component (e.g. the

flexural stiffness) of the element at the position where the crack occurs (see Figure 1

(left)) [2, 3, 4]. To be efficient, this approach requires a fine mesh, and the problem

arises of quantifying the stiffness reduction in each FE to match the global effects of

the actual crack.

In the DS model, on the contrary, the damage is lumped at a single point, as the

beam is ideally divided at the position of the damage in two regions. The new ele-

ments so obtained are articulated at the location of the crack, and the residual stiffness

is simulated by axial, rotational and shear springs. For slender beams in bending,

however, the presence of cracks affects mainly the flexural stiffness EI , and therefore

the DS model just consists of joining the elements on the two sides of the crack with

a hinge (i.e. axial and shear flexibility are not considered), which are then coupled

with a rotational spring, whose stiffness is related to the intensity of the damage (see

Figure 1 (right)): that is, the severer the damage, the softer is the spring. The main

shortcoming with the DS model is that, if a conventional beam element is used, two

additional FE nodes must be placed at the location of each crack, i.e. one node on each

side of the crack. This could be particularly cumbersome if the DS model is used for

the purposes of damage identification, as it would require re-meshing the beam during

the identification process.

Alternatively, the use of 2D or 3D FE models may produce very detailed and ac-

curate results, but such computationally intensive approaches are more appropriate to

tackle problems of crack initiation and/or propagation, while global analysis of framed

structures and crack detection in beams and columns can be carried out by less sophis-

ticated FE models. As a matter of fact, the DS model often provides the best trade-off

between accuracy and computational effort for these applications.

Motivated by these considerations, many formulations have been developed for the

DS model, including the “rigidity modelling” by Biondi and Caddemi [5, 6], in which

the singularities in the flexural stiffness, corresponding to concentrated damages, are

introduced as negative impulses (i.e. Dirac’s delta functions with negative sign). Al-

though expedient, this mathematical representation is not consistent with the definite-

positive nature of the flexural stiffness, delivering however exact closed-form solutions

for the static analysis of multi-cracked slender beams in bending. Aimed at overcom-

ing this intrinsic theoretical flaw, Palmeri and Cicirello [7] have recently presented a

(physically consistent) dual representation of cracks, i.e. a “flexibility modelling”, in

which Dirac’s delta functions with positive sign are introduced in the bending flexibil-
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ity of the beam, i.e. the inverse of its flexural stiffness; they also extended the model

to cope with Timoshenko beams, to take into account the contribution of the shear

deformations in the uncracked regions of the member.

A further distinction in the formulations available in the technical literature for the

DS model can be made between “always open” and “breathing” cracks [1, 8, 9, 10].

The first representation is mainly used for static problems, but it can be adopted for

dynamic loadings as well, provided that the static deflection in the damaged members

is larger than the vibration amplitude. This model is particularly useful for frames

behaving elastically and experiencing small displacements, as the structural response

of the damaged system remains linear. If the crack opens and closes as the direction of

the dynamic input reverses, a bi-linear breathing model is more appropriate, leading to

complicated non-linear phenomena (e.g. [11, 12]). Both representations have been ex-

tensively studied and applied within different schemes of structural health monitoring,

aimed at identifying presence, location and severity of concentrated damage in framed

structures (e.g. References [13] to [18]. In this context, the size of the finite element

(FE) model for the structural frame under investigation plays an important role, as

ideally it should be as small as possible. Indeed, the vast majority of the identification

algorithms proceed iteratively until convergence, and therefore any little saving in the

computational cost for a single analysis may result in a significant advantage on the

whole process. Moreover, as already pointed out above, traditional damage detection

approaches may require FE re-meshing throughout the identification process, which

inevitably causes an additional increase in the computational effort.

Aimed at addressing these issues, an analytical and numerical study has been car-

ried out to develop an efficient two-node multi-cracked beam (MCB) element for the

FE analysis of framed structures with concentrated damages, whose key feature is the

capacity to account for any number and location of cracks without increasing the size

of the problem in comparison with the corresponding undamaged structure.

It is worth mentioning here that similar approaches have been recently pursued

by other authors, whose studies differ in the analytical formulations adopted to get

the closed-form expressions for stiffness matrix, load vector and mass matrix. In the

MCB element proposed by Skrinar [19], cubic splines are used to represent the field of

transverse displacements in each uncracked region of the beam, while the additional

kinematic and static unknowns arising at each crack have been eliminated with the

help of compatibility and equilibrium equations combined with the Hooke’s law for

the rotational springs simulating the cracks. However, this study has only considered

slender Euler-Bernoulli beams in bending and masses lumped at the two nodes of the

resulting MCB element, which may limit its applicability.

The formulation proposed by Caddemi et al. [20] is more comprehensive, as it

includes the shear deformations (i.e. the Timoshenko beam theory has been adopted),

and rotational and transverse springs are considered at the position of each crack.

They have employed the (physically inconsistent) “rigidity modelling” of concentrated

damage to derive the exact closed-form expressions for the deformed shape of the two-

node MCB element subjected to unitary nodal settlements, which in turn have been
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used to derive the stiffness matrix and consistent mass matrix.

In this paper, a very similar approach, independently pursued by the authors us-

ing the dual representation of cracks proposed by Palmeri and Cicirello [7], will be

presented and numerically validated. The main differences in comparison with the

formulation developed by Caddemi et al. [20] are: i) the axial damage is included in

the MCB element, so that it is possible to consider for each crack a set of axial, rota-

tional and shear springs, i.e. the beam is fully articulated at the position of the cracks,

allowing relative longitudinal, rotational and transverse movements; ii) the (physi-

cally consistent) “flexibility modelling” of concentrated damage is resorted to; and

iii) our analyses are limited to planar frames, while 3D frames have been considered

by Caddemi et al. [20].

The paper aims to demonstrate the improved efficiency of the two-node MCB el-

ement with respect to the LSR model. To do this, the results of static analyses are

validated against those provided by the commercial FE code SAP2000. It is shown

that, independently of the number of cracks, the proposed MCB element is able to

deliver, for both Euler-Bernoulli and Timoshenko kinematic models, the same exact

solutions with just a single FE for each beam and column in the framed structure,

while the LSR model only gives an approximate solution (whose accuracy depends on

the size of the mesh) and SAP2000 needs an additional node at the position of each

crack. Both lumped and consistent mass matrices have been also tested for the modal

analyses. It is shown that using lumped masses with the proposed MCB element al-

lows recovering the same eigenproperties given by SAP2000, provided that the same

mesh is adopted, i.e. with two FE nodes at each crack location; while using the consis-

tent mass matrix increases the accuracy, as the eigenproperties so obtained converge

more rapidly to the exact solution, with the additional advantage that the FE mesh is

totally independent of the position of the cracks.

2 Exact closed-form solutions for beams with multiple

cracks under axial and transverse loads

Aimed at defining the shape functions for the proposed MCB element, the flexibility

modelling recently proposed by Palmeri and Cicirello [7] for a concentrated flexural

damage (i.e. a crack-induced lumped rotation) has been extended to include axial and

shear lumped deformations at the position of the crack, and has been then used to de-

rive the exact closed-form solutions for multi-cracked beams subjected to both axial

and transverse loads. For the sake of brevity, the mathematical derivation is omitted

in this Section (interested readers can find the details for the case of flexural damage

in Reference [7]), and we only present herein the adopted expressions for the axial,

bending and shear flexibility functions in presence of n cracks (Equations (1) to (3)),

along with the resulting fields of kinematic quantities (i.e. displacements and rota-

tions, given by Equations (4), (7) and (8)) and static quantities (i.e. the internal forces,

given by Equations (6), (11), (12)), which have been obtained by solving the pertinent
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differential equations ruling the response of the multi-cracked beam under axial and

transverse loads. Both flexibility functions and response functions are offered in a

dimensionless form, in which the Young’s modulus E and the length of the beam L
are taken as dimensional reference variables of the static problem, and they are there-

fore dimensionless functions (denoted with the over-tilde) of the dimensionless spatial

coordinate ξ = x/L, spanning from 0 to 1.

2.1 Flexibility functions

According to the flexibility modelling [7], the presence of a concentrated damage

at the generic abscissa ξ = ξ̄ results in a positive impulse in the flexibility func-

tions, which in turn can be mathematically represented with a Dirac’s delta func-

tion δ(ξ − ξ̄) centred at the position of the damage. It follows that, if n cracks

occur in the beam, axial flexibility ẼA(ξ)
−1

= E L2/EA(ξL) , flexural flexibility

ẼI(ξ)
−1

= E L4/EI(ξL) and shear flexibility G̃As(ξ)
−1

= E L2/GAs(ξL) take

the dimensionless expressions:

ẼA(ξ)
−1

= A0

[
1 +

n∑

j=1

αj δ(ξ − ξ̄j)

]
; (1)

ẼI(ξ)
−1

= B0

[
1 +

n∑

j=1

βj δ(ξ − ξ̄j)

]
; (2)

G̃As(ξ)
−1

= S0

[
1 +

n∑

j=1

γj δ(ξ − ξ̄j)

]
, (3)

where ξ̄j is the dimensionless abscissa at the jth crack position, while A0 = L2/A ,

B0 = L4/I and S0 = 2 κ (1 + ν) L2/A are dimensionless constants, A and I being

the cross-sectional area and its principal second moment orthogonal to the bending

plane, respectively, while κ is the shear correction factor and ν is the Poisson’s ratio;

moreover, the dimensionless parameters αj , βj and γj define the intensity of the jth

impulses in the three flexibility functions, which in turn are related to severity of

the corresponding longitudinal, rotational and transverse damages, i.e. the severer

the damage, the higher are the impulses (while the condition αj = βj = γj = 0
corresponds to absence of damage at ξ = ξ̄j).

Figure 2 displays a n-cracked prismatic beam element, with unitary length in the

dimensionless system of reference, with discontinuities shown at ξ = ξ̄1 and ξ = ξ̄n,

where the first and the nth damage are located. The two ends of the MCB element

are denoted with nodes 0 and 1, and each cross section of the member possesses three

degrees of freedom, i.e. the two axial and transverse translations, ũa(ξ) and ũt(ξ), and

the in-plane rotation, ϕ̃(ξ), whose positive directions are shown in Figure 2.
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1

Figure 2: Sketch of the two-node MCB element

2.2 Axial load

Let us consider first the case in which the dimensionless axial load q̃a(ξ) is distributed

along a n-cracked beam. The exact closed-form solution in terms of the resulting field

of dimensionless axial displacements ũa(ξ) = ua(ξ L)/L has been derived, and can

be expressed as:

ũa(ξ) = A0

[
C1 ξ + C2 − q̃ [2]

a (ξ) +
n∑

j=1

αj

(
−q̃ [1]

a (ξ̄j) + C1

)
H(ξ − ξ̄j)

]
, (4)

in which the superscripted expression [i] denotes the ith primitive function, while

H(ξ − ξ̄j) = δ [1](ξ − ξ̄j) is the Heaviside’s unit step function applied at ξ = ξ̄j;

moreover, C1 and C2 are two integration constants, whose values can be evaluated

once the boundary conditions (BCs) are enforced.

The first derivative of the axial displacement gives the axial deformation of the

centroidal fibre:

ε̃a(ξ) = ũ ′

a(ξ) = A0

[
C1 − q̃ [1]

a (ξ) +
n∑

j=1

αj

(
−q̃ [1]

a (ξ̄j) + C1

)
δ(ξ − ξ̄j)

]
, (5)

where the symbol ′ stands for the spatial derivative with respect to the dimension-

less abscissa ξ, i.e. (·)′ = d (·)/dξ . It is worth emphasising here that the presence

of a crack at the position ξ = ξ̄j results in a finite jump in terms of axial displace-

ments, represented by the Heaviside’s unit step function H(ξ − ξ̄j) in Equation (4),

and in an impulse in terms of the axial strain, represented by the Dirac’s delta function

δ(ξ − ξ̄j) in Equation (5). These singularities disappear in the dimensionless normal

force Ñ(ξ) = N(ξ L)/(E L2) , as any concentration of stress at ξ = ξ̄j is then aver-

aged over the whole cross section:

Ñ(ξ) = ẼA(ξ) ε̃a(ξ) = C1 − q̃ [1]
a (ξ) . (6)

2.3 Transverse load

Let us consider now the case in which the dimensionless transverse load q̃t(ξ) is ap-

plied on the same n-cracked beam, and the Timoshenko beam theory is adopted for
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the kinematics of the uncracked portions of the beam. The resulting field of the di-

mensionless transverse displacements ũt(ξ) = ut(ξ L)/L can be decomposed in pure-

bending (i.e. Euler-Bernoulli) contribution, ũb(ξ), and a pure-shearing contribution,

ũs(ξ), which are ruled by coupled differential equations.

By extending the formulation presented by Palmeri and Cicirello [7] to include the

presence of a transverse spring at the position of the generic concentrated damage (see

Equation (3)), the exact closed-form solution for this problem has been derived, and

can be expressed in the form:

ũt(ξ) = B0

[
1

6
C3 ξ3 +

1

2
C4 ξ2 + C5 ξ + C6 − q̃

[4]
t (ξ)

+
n∑

j=1

βj

(
q̃

[2]
t (ξ̄j) + C3 ξ̄j + C4

)
(ξ − ξ̄j) H(ξ − ξ̄j)

]

− S0

[
C3 ξ + q̃

[2]
t (ξ) +

n∑

j=1

γj

(
C3 + q̃

[1]
t (ξ̄j)

)
H(ξ − ξ̄j)

]
,

(7)

where C3, C4, C5 and C6 are four integration constants, to be determined by imposing

the relevant BCs.

The spatial derivative of Equation (7) with respect to the dimensionless abscissa

ξ gives the slope function of the beam, which takes into account both bending and

shearing contributions, while taking the derivative of the sole bending term (i.e. the

first two lines in the r.h.s. of Equation (7)) delivers the rotation of the cross section,

with opposite sign to take into account the adopted system of reference (see Figure 2),

that is:

ϕ̃(ξ) = −ũ ′

b(ξ) = −B0

[
1

2
C3 ξ2 + C4 ξ + C5 + q̃

[3]
t (ξ)

+
n∑

j=1

βj

(
q̃

[2]
t (ξ̄j) + C3 ξ̄j + C4

)
H(ξ − ξ̄j)

]
.

(8)

The dimensionless bending curvature of the beam is obtained by taking the spatial

derivative of the Equation (8) with respect to the dimensionless abscissa ξ:

χ̃(ξ) = ϕ̃ ′(ξ) = −B0

[
C3 ξ + C4 + q̃

[2]
t (ξ)

+
n∑

j=1

βj

(
q̃

[2]
t (ξ̄j) + C3 ξ̄j + C4

)
δ(ξ − ξ̄j)

]
,

(9)

while the average shearing strain is given by:

Γ̃(ξ) = ũ ′

t(ξ)+ ϕ̃(ξ) = −S0

[
C3 + q̃

[2]
t (ξ)+

n∑

j=1

γj

(
C3 + q̃

[1]
t (ξ̄j)

)
δ(ξ− ξ̄j)

]
. (10)
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Figure 3: Dimensionless internal forces at the two end nodes of the MCB element

Interestingly, like in the case of the axial load, the two measures of the deformation

introduced for the transverse load, i.e. the dimensionless bending curvature of Equa-

tion (9) and the average shearing strain of Equation (10), show impulsive terms at the

position of the generic crack, which are proportional to the corresponding dimension-

less measures βj and γj of the severity of the damage. These impulses disappear in

the expressions of the associated internal forces, i.e. the dimensionless bending mo-

ment bending moment M̃(ξ) = M(ξ L)/(E L3) , positive if sagging, and shear force

Ṽ (ξ) = V (ξ L)/(E L2) , respectively:

M̃(ξ) = ẼI(ξ) χ̃(ξ) = −C3 ξ − C4 − q̃
[2]
t (ξ) ; (11)

Ṽ (ξ) = G̃As(ξ) Γ̃(ξ) = −C3 − q̃
[1]
t (ξ) = M̃ ′(ξ) . (12)

Figure 3 illustrates the positive sign convention for the dimensional internal forces

Ñ(ξ), Ṽ (ξ) and M̃(ξ) at the position of the two end nodes 0 (at ξ = 0) and 1 (at

ξ = 1), which will be used in the next Section to derive the elements of stiffness

matrix and equivalent load vector.

3 Multi-cracked beam (MCB) element

The closed-form exact solutions for a beam with n cracks under axial and transverse

loads, as presented in the previous Section, allows the direct definition of the (6 × 6)

dimensionless stiffness matrix K̃ by evaluating the dimensionless internal forces at the

two end nodes due to a unit settlement imposed to a single nodal degree of freedom

(DoF) per time, while the other BCs are zeroed and the beam is unloaded, i.e. q̃a(ξ) =
0 and q̃t(ξ) = 0. For illustration purposes, Figure 4 shows the deformed shape of a

multi-cracked beam due to a unit transverse settlement at the end node 1, with finite

jumps in the transverse displacement and rotation at the position of the cracks.

The generalised Hooke’s law, F̃u = K̃ · ũ, has been therefore exploited, in which

F̃u is the array of the nodal forces (expressed in a global system of reference):

F̃u =
{
−Ñ(0),−Ṽ (0),−M̃(0), Ñ(1), Ṽ (1), M̃(1)

}⊤

; (13)

and ũ is the array of the corresponding DoFs:

ũ = {ũa(0), ũt(0), ϕ̃(0), ũa(1), ũt(1), ϕ̃(1)}⊤ , (14)
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Figure 4: Deformed shape for a unit transverse settlement

the superscripted symbol ⊤ meaning the transpose operator. In this way, each column

of the stiffness matrix K̃ is given by the array F̃u computed for a unit settlement of the

associated DoF, e.g. the shear forces and bending moments represented within Figure

4 are the elements of the fifth column (ũt(1) = 1) of the sought matrix K̃.

Moreover, the axial displacement function ũa(ξ) and the transverse displacement

function ũt(ξ) so computed can be adopted as shape functions to evaluate the dimen-

sionless mass matrix M̃.

The array F̃q of the equivalent nodal forces for a generic distribution of actual

loads q̃a(ξ) and q̃t(ξ) acting on the MCB element can be determined with the help

of the same closed-form exact solutions reported in the previous Section, by taking

zeroed BCs and evaluating the corresponding internal forces at the two end nodes:

F̃q =
{

Ñ(0), Ṽ (0), M̃(0),−Ñ(1),−Ṽ (1),−M̃(1)
}⊤

, (15)

in which the signs in the r.h.s. are opposite with respect to Equation (13) because of

the action-reaction principle.

Since the axial and transverse components are decoupled, the respective formula-

tions can be treated separately, by using the same approach. Due to the limitations in

the length of the paper, however, only the formulation for the axial component will be

developed in the following Subsections.

3.1 Axial stiffness matrix

The relationship between axial displacements and forces for the MCB under consid-

eration can be posed in the form:

F̃u(a) = K̃(a) · ũ(a) , (16)

where the (2×1) arrays F̃(a) =
{
−Ñ(0), Ñ(1)

}⊤
and ũ(a) =

{
ũa(0), ũa(1)

}⊤
collect

the relevant elements of F̃u and ũ given by Equations (13) and (14), respectively, while

the elements of the (2 × 2) matrix K̃(a) correspond to the elements of the matrix K̃

associated with the axial component, that is:
[
K̃a

]
(r+2)/3,(s+2)/3

=
[
K̃

]
r,s

, (17)
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in which the notation [·]r,s means the element of the matrix within square brackets

taken from rth row and sth column, and the condition {r, s} ⊆ {1, 4} must be sat-

isfied, meaning that first and fourth rows and columns of the stiffness matrix K̃ are

those associated with the axial component.

By following the procedure summarised above, the first column of the matrix K̃(a),

obtained for s = 1, can be obtained by taking the values of the dimensionless normal

force Ñ (1)(0) and Ñ (1)(1) at the two end nodes 0 and 1 for the BCs ũ
(1)
a (0) = 1 and

ũ
(1)
a (1) = 0 and zeroed axial load q̃a(ξ) = 0, while the transverse component is ne-

glected. It is therefore possible to evaluate the values of the two integration constants

C
(1)
1 and C

(1)
2 appearing in the r.h.s. of Equation (4), which in turn allow calculating

the dimensional normal force through Equation (6). It can be easily verified that for

this case:

Ñ (1)(0) = Ñ (1)(1) = −
[
K̃

]
1,1

=
[
K̃

]
4,1

= −A−1
0 (1 + a0)

−1 , (18)

where the superscripted notation (1) means that the first DoF in the array ũ of Equation

(14) is being considered, and the new dimensionless quantity a0 =
∑n

j=1 αj is an

overall measure of the additional axial flexibility due to the presence of the n cracks.

Similarly, for the second column of the matrix K̃(a), obtained for s = 4 and having

reversed BCs, one obtains:

Ñ (4)(0) = Ñ (4)(1) = −
[
K̃

]
4,1

=
[
K̃

]
4,4

= A−1
0 (1 + a0)

−1 . (19)

The results of Equations (18) and (19) allow thus building the stiffness matrix K̃(a):

K̃a = A−1
0 (1 + a0)

−1

[
1 −1
−1 1

]
. (20)

It is worth nothing that for a0 = 0, Equation (20) gives the (2 × 2) dimensionless

stiffness matrix of an undamaged uniaxial bar.

3.2 Uniform axial load

In order to provide an example of how the array of the equivalent nodal forces can be

computed, the case of a uniformly distributed axial loads is considered in this Sub-

section. The same procedure adopted for the stiffness matrix can be applied, with the

only difference that this time the BCs are all zeroed, i.e. ũa(0) = 0 and ũa(1) = 0,

and q̃a(ξ) = q̃a. After some algebra, the values of the normal force at the two end

nodes can be expressed as:

Ñ(0) = q̃a

1 + 2 a1

2 (1 + a0)
; Ñ(1) = −q̃a

1 + 2 (a0 − a1)

2 (1 + a0)
, (21)

where a1 =
∑n

j=1 αj ξ̄j represents the dimensionless first moment of the coefficients

of damage intensity αj taken with respect to the left end node 0.
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3.3 Axial mass matrix

To perform the FE analysis a of a multi-cracked beam subjected to dynamic load-

ing, the dimensionless mass matrix M̃, consistent with the dimensionless stiffness

matrix K̃, is highly desirable. However, little attention has been paid in the past to

this issue, and the approximation of lumped masses has been generally adopted (e.g.

Reference [19]), therefore neglecting the effects of the damaged cross sections on the

inertial forces experienced by the MCB element. Indeed, when the approximation

with lumped masses is resorted to, the mass of the whole FE is concentrated at the

two end nodes, like in the uncracked beam, despite the fact that the damage on the

member can significantly alter the distribution of the inertial forces. It will be shown

in the next Section that the implementation of the lumped mass matrix in conjunction

with a MCB element reduces (and potentially nullifies) most of the computational ad-

vantage of such formulation for applications of Structural Dynamics, as more FEs are

required to capture the eigenproperties (modal shapes and modal frequencies) of the

cracked beam.

To the best of our knowledge, Caddemi et al. [20] have been the first researchers to

address this issue, as they have used a MCB element with a consistent mass matrix to

carry out the modal analysis of a 3D linear elastic frame with damage concentrated at

various locations. Although their mathematical derivation involves the rigidity mod-

elling to represent the concentrated damage in the MCB element [5, 6], the proposed

approach, based on the alternative (and physically consistent) flexibility modelling

[7], delivers the same results.

In order to evaluate the consistent mass matrix for the problem in hand, the same

deformed shapes derived by assigning unit settlements at the two end nodes of the

MCB element have been used, meaning that the same set of shape functions discretise

both potential and kinetic energy of the FE. For the axial component, the dimension-

less (2 × 2) consistent mass matrix can be evaluated as:

M̃a = A−1
0

∫ 1

0

h̃a(ξ) · h̃a(ξ)
⊤ dξ , (22)

where the mass density of the material ρ has been selected as third dimensional refer-

ence variable of the problem, and therefore it does not appear in the above expression,

while h̃a(ξ) =
{
ũ

(1)
a (ξ), ũ

(4)
a (ξ)

}⊤
is the (2 × 1) array collecting the dimensionless

functions representing the axial displacements in the MCB for unit axial settlements

at end nodes 0 and 1.

If follows from Equation (22) that for evaluating the generic element of the mass

matrix M̃a, the following integral must be computed:

[
M̃a

]
r,s

= A−1
0

∫ 1

0

ũ (r)
a (ξ) ũ (s)

a (ξ) dξ , (23)

with {r, s} ⊆ {1, 4}, and for this purpose each shape function ũa in the r.h.s. of

Equation (23) can be decomposed into the superposition of a continuous part, fa,
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obtained when all the coefficients αj are zeroed and therefore the beam is assumed to

be uncracked, and n additional terms, ga,j , each one contributing for ξ ≥ ξ̄j . That is,

for the rth axial shape function, one can write:

ũ (r)
a (ξ) = A0

(
f (r)

a (ξ) +
n∑

j=1

g
(r)
a,j(ξ)

)
, (24)

where (see Equation (4)):

f (r)
a (ξ) = C

(r)
1 ξ + C

(r)
2 ; (25)

g
(r)
a,j(ξ) = αj C

(r)
1 H(ξ − ξ̄j) . (26)

Substitution of Equation (24) into Equation (23) leads to:

[
M̃a

]
r,s

= A0

∫ 1

0

(
f (r)

a (ξ) f (s)
a (ξ) +

n∑

j=1

f (r)
a (ξ) g

(s)
a,j(ξ)

+
n∑

j=1

f (s)
a (ξ) g

(r)
a,j(ξ) +

n∑

j=1

n∑

k=1

g
(r)
a,j(ξ) g

(s)
a,k(ξ)

)
dξ ,

(27)

and each term in the r.h.s. can be evaluated in closed-form:

∫ 1

0

f (r)
a (ξ) f (s)

a (ξ) dξ =
1

3
C

(r)
1 C

(s)
1 +

1

2

(
C

(r)
2 C

(s)
1 + C

(r)
1 C

(s)
2

)
+ C

(r)
2 C

(s)
2 ; (28)

∫ 1

0

f (r)
a (ξ) g

(s)
a,j(ξ) dξ = αj C

(s)
1

(
C

(r)
1

1 − ξ̄2
j

2
+ C

(r)
2 (1 − ξ̄j)

)
; (29)

∫ 1

0

g
(r)
a,j(ξ) g

(s)
a,k(ξ) dξ = αj αk C

(r)
1 C

(s)
1 ξ̄j,k (1 − ξ̄j,k) , (30)

with ξ̄i,k = max
{
ξ̄j , ξ̄k

}
.

3.4 Transverse component

The same approach presented in the previous three Subsections for the axial displace-

ment ũa(ξ) can be adopted for the transverse displacement ũt(ξ). The expressions

of the stiffness coefficients, equivalent nodal forces and consistent mass coefficients

become more complicated because: i) the transverse deflection of the beam is the

superposition of its pure-bending component, ũb(ξ), and pure-shearing component,

ũs(ξ); ii) the field of pure-bending displacements ũb(ξ) is ruled by a fourth-order dif-

ferential equation, as opposite to the second-order differential equation for ũa(ξ), and

therefore four integrations constants appear in the solution (see Equation (7)).

Interestingly, it can be shown that while for the axial component the dimensionless

stiffness coefficients of the MCB element depends on the constants A0 (normalised

12



axial flexibility of the uncracked member) and a0 (total additional flexibility arising

from the n cracks at different locations), the dimensionless stiffness coefficients for

transverse component depends on B0 and S0 (i.e. the dimensionless constants playing

the same role as A0 for the pure-bending and pure-shearing deflection), along with

the additional dimensionless quantities bm =
∑n

j=1 βj ξ̄m, with m ∈ {0, 1, 2}, and

c0 =
∑n

j=1 γj .

4 Numerical applications

In this Section, the performance of the proposed MCB element has been tested by

means of two numerical applications, namely: i) a slender (Euler-Bernoulli) cantilever

beam with two cracks (n = 2) subjected to concentrated and uniform distributed loads,

inducing both axial and transverse displacements (Section 4.1); ii) a planar frame with

two cracks and subjected to both vertical and lateral loads (Section 4.2), in which the

contribution of the shear deformations have been also taken into account (Timoshenko

beam theory).

In each example, the response analysis of the objective structure to the given static

loads has been carried out by implementing the proposed MCB element within a MAT-

LAB FE code, and it has been verified that the results so obtained with a single FE per

member coincide with those delivered by the commercial FE code SAP2000 when

at the position of each crack two additional nodes are introduced and connected by

axial and/or rotational and/or transverse spring simulating the residual stiffness of the

damaged section. The exact static response of these two DS models have been also

compared with the approximate one computed by implementing the LSR model with

an increasing number of elements per member. In both examples, the static analy-

sis has been followed by a dynamic (modal) analysis of the nude objective structure,

looking at the convergence of different FE models in terms of the first few modal fre-

quencies of vibration, which has once again demonstrated the improved performance

of the proposed MCB element.

4.1 Slender cantilever beam

In the first application, a slender cantilever beam of length L = 1.00 m has been stud-

ied. The beam is made of steel, with Young’s modulus E = 210 GPa and Poisson’s

ratio ν = 0.30, and the cross section is a solid square with dimensions of 50 × 50
mm. As shown within Figure 5, two cracks are assumed at the abscissas x = 0.15 L
and x = 0.80 L; the first crack is modelled with a longitudinal spring of stiffness

Ka = 5, 250 kN/mm in series with a rotational spring Kr = 1, 094 kN × m, corre-

sponding to the dimensionless damage parameters α1 = β1 = 0.1, while the second

crack simply consists of a rotational spring, having the same stiffness Kr and therefore

the same dimensionless parameter β2 = 0.1.

In a first stage, the static analysis of the cantilever beam has been carried out. Three

13



Figure 5: Multi-cracked cantilever beam (first example)

loads have been considered in this case (see Figure 5): a uniformly distributed load

q = 3.0
√

2 kN/m, forming an angle of 45◦ with the longitudinal axis of the beam;

a first point force F1 = 20.0
√

2 kN, inclined by 45◦ and applied at the midspan

position; a second point force F2 = 7.0 kN, applied upward at the free end.

The results in terms of dimensionless displacements and rotation at the free end of

the cantilever beam are compared in Table 1 for three different methods of analysis,

showing that the DS model with the proposed MCB formulation and just 1 FE is

in perfect agreement with the conventional DS model built with SAP2000, which

however requires 3 FEs; while the LSR model with 5 FEs is still affected by significant

inaccuracies, i.e. the transverse deflection at the free end is overestimated by about

30%, and the slope at the same point is underestimated by about 20%.

This aspect has ben further investigated, and Figure 6 shows the convergence of the

LSR model (dashed line) to the exact solution (solid line) as the number Ne of FEs

used to discretise the multi-cracked beam increases. The same two response parame-

ters have been considered, and it can be observed that in both cases the convergence

is oscillatory, as the exact solution can be either underestimated or overestimated by

the LSR model, depending on the adopted mesh. Interestingly, more than 50 FEs are

required for the LSR model to deliver accurate results, the reason being that the as-

sumption of concentrated damage means that the increase in the flexibility of the beam

is distributed over a very small region, and a conventional FE formulation can achieve

this only with a very fine mesh. On the contrary, the proposed MCB element gives the

exact results independently of the number of element used in the mesh.

Figure 7(a) and 7(b) displays the deformed shape (left column) and the slope func-

tion (right column) of the cantilever beam as computed with 5 FEs (top row) and 15

ũa(1) ũt(1) ϕ̃(1)

DS Proposed (1 FE) -1.9514×10−5 -2.5561×10−3 3.8457×10−3

DS SAP2000 (3 FEs) -1.9514×10−5 -2.5561×10−3 3.8457×10−3

LSR Model (5 FEs) -1.9486×10−5 -3.2741×10−3 3.1086×10−3

Table 1: Deflection and rotation at the free end of the cantilever beam (first example)
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Figure 6: Convergence in terms of transverse deflection (a) and rotation (b) at the free

end (first example)

FEs (bottom row). In these graphs, the DS model (solid lines), implemented with the

proposed MCB element, represents the exact solution, as increasing the number Ne

of FEs just reduces the sampling interval, but does not change the values at a given

abscissa, e.g. deflection and rotation at the free end do not vary with the meshing size.

On the contrary, the approximate solution computed with the LSR model improves

with the number of FEs.

In a second stage, the modal analysis of the same multi-cracked slender beam has

been carried out. The attention has been focussed on the transverse vibration of the

beam, for which Caddemi and Caliò [21] have recently provided the exact closed-

form solutions in terms of eigenproperties, i.e. modal frequencies and modal shapes,

by adopting the Euler-Bernoulli beam theory.

Table 2 compares the exact values of the first five modal frequencies with those

computed with 5 FEs and four different approximate models, namely: the DS model

with the proposed MCB element and both consistent and lumped mass matrices; the

DS model implemented in the commercial FE software SAP2000; the LSR model
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Figure 7: Fields of transverse displacements (a) and rotations (b) when 5 (top) and 15

(bottom) FEs are used to discretise the beam (first example)
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1st mode 2nd mode 2 3rd mode 4th mode 5th mode

Exact [21] 37.31 253.56 682.06 1279.14 2115.28

DS Consistent 37.31 253.73 684.08 1290.97 2154.85

DS Lumped 36.67 236.28 590.99 1082.04 1687.81

DS SAP2000 36.67 236.28 590.99 1082.04 1687.81

LSR Model 35.95 226.20 605.20 1127.16 1694.44

Table 2: Modal frequencies [Hz] of the cantilever beam discretised with 5 elements

(first example)

1 2 3 4 5 6 7 8 9 10

10
2

10
3

F
re

q
u
en

cy
 [

H
z]

 

 

Ne

DS Lumped

DS Consistent

DS Theoretical

LSR Lumped

Figure 8: Frequencies convergence diagram (first example)

with lumped masses. The results of the proposed MCB element with consistent mass

matrix are in excellent agreement with the exact results (that is, the inaccuracy is

virtually negligible in the first mode of vibration, and is less than 2% in the fifth

mode), while using the lumped mass matrix affects significantly the accuracy (the

first modal frequency is underestimated by about 2%, while the inaccuracy in the fifth

modal frequency is as large as 20%). The FE analysis carried out with SAP2000

delivers exactly the same results as the proposed MCB element with lumped mass

matrix, as the same mesh has been adopted for validation purposes. Interestingly, the

same level of inaccuracy is shown by the LSR model with lumped masses, which

therefore appears as a very crude approximation for dynamic applications.

This is confirmed by the semi-log convergence diagram of Figure 8, showing that

the DS model with the proposed MCB element and consistent mass matrix (solid lines)

is able to accurately estimate the first n modal frequencies with just n FEs. All the

other models, adopting lumped masses, are less efficient and require at least 2 n FEs

to provide an accurate estimation of the nth modal frequencies.
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Figure 9: Multi-cracked portal frame (second example)

4.2 Portal frame

A similar trend of results has been observed for the static and dynamic analysis of the

portal frame with sloping beam shown within Figure 9. The frame is L = 4 m wide,

while the first column AB is 4 m tall and the second column CD has half the height;

the slope of the top beam is 1:4, and the fixed end D of the second column is raised by

1 m. The material properties are the same as in the previous example; the cross section

of column AB and beam BC is a solid rectangle, 50 mm wide and 150 mm deep,

while the cross section of the column CD has twice the width, and in both cases the

shear correction factor is κ = 1.2. The frame has two concentrated damages: the first

one, modelled as a rotational spring of stiffness Kr = 71, 624 kN × m (corresponding

to β1 = 0.01), occurs on the top beam at the abscissa x = 0.40 L, taken from the left

end B; the second damage is represented by a shear spring of stiffness Ks = 50.48
kN/mm and occurs at mid-height of the second column.

The static analysis has been carried out with the two loads shown in Figure ref-

fig:Example2, namely a lateral uniform load q = 10 kN/m distributed on the first

column and a point force F = q × L = 40 kN at the cracked section on the top beam.

The semi-log Figure 10 shows the convergence of the LSR model while increasing the

number Ne of FEs used per each member. Like in the case of the cantilever beam stud-

ied in the previous Subsection, the convergence is slow and quite irregular, particularly

for Ne < 50.

The modal analysis of the nude portal frame has been also performed, confirming

the superior performance of the proposed MCB element with consistent mass matrix.

The semi-log Figure 11 shows that with Ne = 2 (i.e. two FEs per member and six

in total) the proposed model (solid lines) accurately predicts the first three modal fre-

quencies, while with Ne = 2 (i.e. three FEs per member and nine in total), the analysis

converges also for the fourth and fifth modal frequency. More FEs are needed for two

models with lumped masses, showing also in this circumstance a slower convergence.
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Figure 10: Convergence in terms of horizontal displacement (a) and rotation (b) at

node B (second example)

5 Conclusions

A two-node MCB (multi-cracked beam) element for the static and dynamic analysis

of planar framed structures with concentrated damages has been presented and numer-

ically tested. The proposed model follows the DS (discrete spring) representation of

(linear elastic) always-open cracks, in which the beam is fully articulated at the po-

sition of each crack, and a set of axial, rotational and transverse elastic springs takes

into account the residual stiffness of the damaged section, while axial, bending and

shear deformations are considered in the undamaged regions of the beam between

two consecutive singularities (i.e. the end nodes and the cracked sections).

The (physically consistent) flexibility modelling of the concentrated damage has

been adopted to derive the exact closed-form expressions for the deformed shape and
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Figure 11: Convergence diagram.
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internal forces of a beam with n cracks of arbitrary severity and position, subjected to

static axial and transverse loading. By exploiting the generalised Hooke’s law and the

action-reaction principle, these results have been used to determine the dimensionless

stiffness matrix and array of equivalent nodal forces. The consistent mass matrix has

been also computed, by adopting the same shape functions to represent the inertial

forces on the MCB element.

Unlike the conventional DS models, which require the beam to be split at the posi-

tion of each crack, with two FE nodes added to both sides of each crack, the proposed

MCB element embeds the effects of the concentrated damages without enlarging the

size of the FE model. It follows that the exact static solution is retrieved independently

of the mesh, while a faster convergence is achieved for the dynamic problems. This has

been confirmed with two numerical examples, which also demonstrate the improved

performance of the proposed MCB element in comparison with the approximate LSR

(local stiffness reduction) approach, very often used for problems of damage detec-

tion.

It must be stressed that the proposed MCB element is equivalent to the analogous

FE formulation recently proposed by other researchers (see Reference [20]), which

however have used the (physically inconsistent) rigidity modelling of the concentrated

damage.
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