
Abstract

A study of free vibrations of shear flexible isotropic and laminated composite plates

with the Carrera’s unified formulation is presented. The analysis is based on collo-

cation with a Deslaurier Dubuc interpolating basis to produce highly accurate results.

The high order collocation method presented in this paper proved to be very accurate

for this type of problems and the numerical efficiency is as good as other numerical

schemes, such as finite element solutions.

Keywords: collocation, wavelets, vibrations, composites, plates.

1 Introduction

This paper deals with the free vibration analysis of composite plates by a wavelet

collocation method [1, 2]. The unified formulation by Carrera [3, 4, 5, 6] is used to

model the kinematics of the laminated plate deformations.

The analysis of static deformations and free vibration of shear-flexible plates by

numerical techniques, was performed by [20, 10, 22], using the differential quadra-

ture method. In [9, 31, 27]) the finite element method was used with success. More

recently the analysis of isotropic and laminated plates by Kansa’s non-symmetric ra-

dial basis function collocation method was performed by Ferreira [13, 19, 76, 78, 77,

87, 14, 16].

The method employed for the numerical solution is a collocation method based on

Deslaurier-Dubuc interpolating basis in hierarchical form [35].
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2 Interpolating Wavelets

The Deslaurier-Dubuc fundamental function [36] of order N = 2L + 1 is defined as

the autocorrelation of Daubechies scaling functions, φL [37], as follows:

ϑ(x) =

∫

R

φL(y)φL(y − x) dy (1)

The scaling function φL satisfies the following properties:

1. supp φL = [0, 2L+ 1].

2. φL ∈ WR/2,∞ for some R > 0 (R is proportional to L): |(ds/dxs)φL| ≤ C, for

all integers s, with com 0 ≤ s ≤ R/2;

3. φL is orthogonal to all its integer translates:
∫
φL(x)φL(x− k) dx = δ0k

4. All polynomials up to orderL can be exactly represented as a linear combination

of function φL and all its integer translates.

As a consequence of the above properties, function ϑ satisfies:

1. supp ϑ = [−N,N ], and ϑ ∈WR,∞;

2. Due to the orthogonality of the translates of φL, the function ϑ presents the

follwing interpolating property:

ϑ(n) =

∫

R

φL(y)φL(y − n) dy = δn0. (2)

3. All polynomials up to order N can be exactly represented as a linear combina-

tion of function ϑ and all its integer translates.

Based on the fundamental function ϑ it is possible to build the complete wavelet

system on R. As described in detail in [1], tensor products will lead to wavelet systems

on R
d.

Following the ideas and techniques described in [38, 39], it is the possible to build

a Deslaurier-Dubuc wavelet system on the interval [0, 1]. As described in [34] for

j ≥ j0 = [log2(N/2)] + 1 we define

ϑjk = ϑ(2jx− k) +
−1∑

n=−N+1

ankϑ(2jx− n), k = 0, .., L (3)

ϑjk = ϑ(2jx− k), k = L+ 1, ..., 2j − L− 1, (4)

ϑjk = ϑ(2jx− k) +
2j+N−1∑

n=2j+1

bnkϑ(2jx− n), k = 2j − L, .., 2j , (5)
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where the coefficients ank and bnk are defined by:

ank = l1jk(n2−j), bnk = l2jk(n2−j), (6)

and where l1jk and l2jk represent Lagrange interpolation polynomials of degree L, de-

fined by:

l1jk =
L∏

i=0

i6=k

x− i2−j

k2−j − i2−j
, l2jk =

2j∏

i=2j−L
i6=k

x− i2−j

k2−j − i2−j
. (7)

An interpolating multiresolution analysis (MRA) on the interval [0, 1] is defined by

a set of closed subspaces Vj = span < ϑjk, k = 0, .., 2j > ⊂ L2(0, 1). By using

tensor products it is then possible to define a multiresolution on the square [0, 1]2. The

two dimensional scaling functions ϑj,k, k = (k1, k2) ∈ Gj = {0, .., 2j}2 are defined

by

ϑj,k = ϑjk1
⊗ ϑjk2

(8)

The subspace Vj is the defined by:

Vj = span < ϑj,k, k = (k1, k2) ∈ {0, .., 2j}2 > (9)

It is easy to define an interpolation operator Lj : C0([0, 1]2) → Vj

Ljf =
∑

k∈Gj

f(k/2j)θj,k. (10)

The wavelet basis for the complement space Wj = (Lj+1 − Lj)Vj+1 is composed by

the functions

ψ
(1,0)
j,k = ϑj+1,2k1−1 ⊗ ϑj,2k2

(11)

ψ
(0,1)
j,k = ϑj,2k1

⊗ ϑj+1,2k2−1 (12)

ψ
(1,1)
j,k = ϑj+1,2k1−1 ⊗ ϑj+1,2k2−1 (13)

and a hierarchical basis for Vj can be assembled as

{ϑj0,k, k = (k1, k2) ∈ {0, .., 2j0}2

j−1⋃

m=j0

{ψ
(1,0)
m,k , ψ

(0,1)
m,k , ψ

(1,1)
m,k , k = (k1, k2) ∈ {0, .., 2m}

(14)

The grid points corresponding to the scaling functions and the wavelets are defined

by:

ζj,k = (k12
−j, k22

−j). (15)

For the sake of simplicity we will use the following compact notation: given λ =
(η, j,k) with η ∈ Ξ = {0, 1}2\{0, 0}, j ≥ j0, and k such that ξη

j,k ∈ [0, 1]2, we define

ψλ = ψη
j,k, ξλ = ξη

j,k. (16)
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Any continuous function f ∈ C0([0, 1]2) can be expanded in the form

f =
∑

k∈{0,..,2j0}2

βj0kϑj0k +
∑

λ∈Λ

αλψλ, (17)

where

Λ = {(η, j,k), η ∈ Ξ, j ≥ j0,k such that ξη
j,k ∈ [0, 1]2} (18)

denotes the set of compact indexes.

It can be shown [34] that the scaling functions are responsible for representing f at

a given level of resolution and the wavelets define the detail that is necessary to add

to switch from one level of resolution to the following. Consequently, the value of the

wavelet coefficents, αλ, allow for the identification of the region of the domain where

details are important, which correspond to the regions where the discretization should

be improved.

3 Collocation technique

This section briefly describes the collocation method based on Deslaurier-Dubuc inter-

polating wavelets. We consider here an uniform discretization, though the collocation

method that we present does not a priori require the uniformity of the grid and can

easily be adapted to the case of non uniform grids of dyadic points. For any j ≥ j0,

let the dyadic grid Gj be defined by

Gj := {ζj,k, k ∈ {0, · · · , 2j}2}. (19)

In order to take into account the boundary conditions, the grid Gj is subdivided

into a set of interior nodes and sets of Neumann and Dirichlet boundary nodes. It is

then possible to write:

Gj = G
(i)
j ∪G

(N)
j ∪G

(D)
j

with

G
(i)
j = Gj∩]0, 1[2, G

(N)
j = Gj ∩ Γσ, G

(D)
j = Gj ∩ Γu.

Problem (P) can be discretized as follows:

Find u ∈ Vj such that

Auh(p) = f(p) for all nodes p ∈ G
(i)
j (20)

uh(p) = g(xλ) for all nodes p ∈ G
(D)
j (21)

Buh(p) = t(p) for all nodes p ∈ G
(N)
j (22)
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4 The Unified Formulation

The unified formulation (UF) proposed by Carrera [3, 4, 5, 6], also known as CUF, is a

powerful framework for the analysis of beams, plates and shells. This formulation has

been applied in several finite element analyses, either using the Principle of Virtual

Displacements, or by using the Reissner’s Mixed Variational theorem. The stiffness

matrix components, the external force terms or the inertia terms can be obtained di-

rectly with this UF, irrespective of the shear deformation theory being considered.

In this section the Carrera’s unified formulation [3, 4, 5, 6] is briefly reviewed. It

is shown how to obtain the fundamental nuclei, which allows the derivation of the

equations of motion and boundary conditions, in weak form for the finite element

analysis; and in strong form for the present RBF collocation.

4.1 Governing equations and boundary conditions in the frame-

work of Unified Formulation

Although one can use the UF for a one-layer, isotropic plate, a multi-layered plate

with Nl layers is considered. The Principle of Virtual Displacements (PVD) for the

pure-mechanical case reads:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk

pC + δǫknG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

δLk
e (23)

where Ωk and Ak are the integration domains in plane (x,y) and z direction, re-

spectively. Here, k indicates the layer and T the transpose of a vector, and δLk
e is the

external virtual work for the kth layer. G means geometrical relations and C constitu-

tive equations.

The steps to obtain the governing equations are:

• Substitution of the geometrical relations (subscript G)

• Substitution of the appropriate constitutive equations (subscript C)

• Introduction of the unified formulation

Stresses and strains are separated into in-plane and through-the-thickness compo-

nents, denoted respectively by the subscripts p and n. The mechanical strains in the

kth layer can be related to the displacement field uk = {uk
x, u

k
y, u

k
z} via the geometri-

cal relations:

ǫkpG = [ǫxx, ǫyy, γxy]
kT = Dk

pu
k , (24)

ǫknG = [γxz, γyz, ǫzz]
kT = (Dk

np + Dk
nz) uk ,
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wherein the differential operator arrays are defined as follows:

Dk
p =




∂x 0 0
0 ∂y 0
∂y ∂x 0



 , Dk
np =




0 0 ∂x

0 0 ∂y

0 0 0



 , Dk
nz =




∂z 0 0
0 ∂z 0
0 0 ∂z



 ,

(25)

The 3D constitutive equations are given as:

σk
pC = Ck

pp ǫ
k
pG + Ck

pn ǫ
k
nG

σk
nC = Ck

np ǫ
k
pG + Ck

nn ǫ
k
nG

(26)

with

Ck
pp =




C11 C12 C16

C12 C22 C26

C16 C26 C66



 Ck
pn =




0 0 C13

0 0 C23

0 0 C36





Ck
np =




0 0 0
0 0 0
C13 C23 C36



 Ck
nn =




C55 C45 0
C45 C44 0
0 0 C33





(27)

According to the unified formulation by Carrera, the three displacement compo-

nents ux, uy and uz and their relative variations can be modelled as:

(ux, uy, uz) = Fτ (uxτ , uyτ , uzτ ) (δux, δuy, δuz) = Fs (δuxs, δuys, δuzs) (28)

with Taylor expansions from first up to 4th order: F0 = z0 = 1, F1 = z1 = z, . . .,
FN = zN , . . ., F4 = z4 if an Equivalent Single Layer (ESL) approach is used.

Substituting the geometrical relations, the constitutive equations and the unified

formulation into the variational statement PVD, for the kth layer, one has:

∫

Ωk

∫

Ak

[
(Dk

p Fsδu
k
s)

T (Ck
ppD

k
p Fτu

k
τ + Ck

pn(Dk
nΩ + Dk

nz)Fτu
k
τ )

+ ((Dk
nΩ + Dk

nz)Fsδu
k
s)

T (Ck
npD

k
p Fτu

k
τ + Ck

nn(Dk
nΩ + Dk

nz)Fτu
k
τ )

]
dΩkdz = δLk

e

(29)

At this point, the formula of integration by parts is applied:

∫

Ωk

(
(DΩ)δak

)T
akdΩk = −

∫

Ωk

δakT (
(DT

Ω)ak
)
dΩk+

∫

Γk

δakT (
(IΩ)ak

)
dΓk (30)

where the IΩ matrix is obtained applying the Divergence theorem:

∫

Ω

∂ψ

∂xi

dυ =

∮

Γ

niψds (31)
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In (31) ni are the components of the normal n̂ to the boundary along the direction

i. After integration by parts, the governing equations and boundary conditions for the

plate in the mechanical case are obtained:
∫

Ωk

∫

Ak

( δuk
s)

T
[((

− Dk
p

)T (
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz

)

+
(
− Dk

nΩ + Dk
nz

)T (
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz

+

∫

Ωk

∫

Ak

( δuk
s)

T
[(

IkT
p

(
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)

+ IkT
np

(
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
))

FτFsu
k
τ

]
dxdydz =

∫

Ωk

δukT
s Fsp

k
udΩk .

(32)

where Ik
p and Ik

np depend on the boundary geometry:

Ik
p =




nx 0 0
0 ny 0
ny nx 0



 , Ik
np =




0 0 nx

0 0 ny

0 0 0



 . (33)

The normal to the boundary of domain Ω is:

n̂ =

[
nx

ny

]
=

[
cos(ϕx)
cos(ϕy)

]
(34)

where ϕx and ϕy are the angles between the normal n̂ and the direction x and y
respectively.

The governing equations for a multi-layered plate subjected to mechanical loadings

are:

δuk
s

T
: Kkτs

uu uk
τ = Pk

uτ (35)

where the fundamental nucleus Kkτs
uu is obtained as:

Kkτs
uu =

[(
− Dk

p

)T (
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz

)

+
(
− Dk

nΩ + Dk
nz

)T (
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
)]

FτFs

(36)

and the corresponding Neumann-type boundary conditions on Γk are:

Πkτs
d uk

τ = Πkτs
d ūk

τ , (37)

where:

Πkτs
d =

[
IkT
p

(
Ck

pp(D
k
p) + Ck

pn(Dk
nΩ + Dk

nz)
)
+

IkT
np

(
Ck

np(D
k
p) + Ck

nn(Dk
nΩ + Dk

nz)
)]

FτFs

(38)

and Pk
uτ are variationally consistent loads with applied pressure.
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4.2 Fundamental nuclei

The fundamental nuclei in explicit form are then obtained as:

Kkτs
uu11

=(−∂τ
x∂

s
xC11 − ∂τ

x∂
s
yC16 + ∂τ

z ∂
s
zC55 − ∂τ

y∂
s
xC16 − ∂τ

y∂
s
yC66)FτFs

Kkτs
uu12

=(−∂τ
x∂

s
yC12 − ∂τ

x∂
s
xC16 + ∂τ

z ∂
s
zC45 − ∂τ

y∂
s
yC26 − ∂τ

y∂
s
xC66)FτFs

Kkτs
uu13

=(−∂τ
x∂

s
zC13 − ∂τ

y∂
s
zC36 + ∂τ

z ∂
s
yC45 + ∂τ

z ∂
s
xC55)FτFs

Kkτs
uu21

=(−∂τ
y∂

s
xC12 − ∂τ

y∂
s
yC26 + ∂τ

z ∂
s
zC45 − ∂τ

x∂
s
xC16 − ∂τ

x∂
s
yC66)FτFs

Kkτs
uu22

=(−∂τ
y∂

s
yC22 − ∂τ

y∂
s
xC26 + ∂τ

z ∂
s
zC44 − ∂τ

x∂
s
yC26 − ∂τ

x∂
s
xC66)FτFs

Kkτs
uu23

=(−∂τ
y∂

s
zC23 − ∂τ

x∂
s
zC36 + ∂τ

z ∂
s
yC44 + ∂τ

z ∂
s
xC45)FτFs

Kkτs
uu31

=(∂τ
z ∂

s
xC13 + ∂τ

z ∂
s
yC36 − ∂τ

y∂
s
zC45 − ∂τ

x∂
s
zC55)FτFs

Kkτs
uu32

=(∂τ
z ∂

s
yC23 + ∂τ

z ∂
s
xC36 − ∂τ

y∂
s
zC44 − ∂τ

x∂
s
zC45)FτFs

Kkτs
uu33

=(∂τ
z ∂

s
zC33 − ∂τ

y∂
s
yC44 − ∂τ

y∂
s
xC45 − ∂τ

x∂
s
yC45 − ∂τ

x∂
s
xC55)FτFs

(39)

Πkτs
11 =(nx∂

s
xC11 + nx∂

s
yC16 + ny∂

s
xC16 + ny∂

s
yC66)FτFs

Πkτs
12 =(nx∂

s
yC12 + nx∂

s
xC16 + ny∂

s
yC26 + ny∂

s
xC66)FτFs

Πkτs
13 =(nx∂

s
zC13 + ny∂

s
zC36)FτFs

Πkτs
21 =(ny∂

s
xC12 + ny∂

s
yC26 + nx∂

s
xC16 + nx∂

s
yC66)FτFs

Πkτs
22 =(ny∂

s
yC22 + ny∂

s
xC26 + nx∂

s
yC26 + nx∂

s
xC66)FτFs

Πkτs
23 =(ny∂

s
zC23 + nx∂

s
zC36)FτFs

Πkτs
31 =(ny∂

s
zC45 + nx∂

s
zC55)FτFs

Πkτs
32 =(ny∂

s
zC44 + nx∂

s
zC45)FτFs

Πkτs
33 =(ny∂

s
yC44 + ny∂

s
xC45 + nx∂

s
yC45 + nx∂

s
xC55)FτFs

(40)

4.3 Dynamic governing equations

The PVD for the dynamic case is expressed as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫkpG

T
σk

pC + δǫknG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

∫

Ωk

∫

Ak

ρkδukT ükdΩkdz +

Nl∑

k=1

δLk
e

(41)

where ρk is the mass density of the k-th layer and double dots denote acceleration.

By substituting the geometrical relations, the constitutive equations and the unified

formulation, we obtain the following governing equations:

δuk
s

T
: Kkτs

uu uk
τ = −Mkτsük

τ + Pk
uτ (42)

In the case of free vibrations one has:

δuk
s

T
: Kkτs

uu uk
τ = −Mkτsük

τ (43)
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where Mkτs is the fundamental nucleus for the inertial term. The explicit form of

that is:

Mkτs
11 = ρkFτFs; Mkτs

12 = 0; Mkτs
13 = 0 (44)

Mkτs
21 = 0; Mkτs

22 = ρkFτFs; Mkτs
23 = 0 (45)

Mkτs
31 = 0; Mkτs

32 = 0; Mkτs
33 = ρkFτFs (46)

The geometrical and mechanical boundary conditions are the same of the static

case.

Taking into account a sinusoidal higher-order shear deformation theory, we choose

vectors Ft = [1 z sin(πz/h)] for displacements u, v, w.

5 Numerical examples

5.1 Natural frequencies of composite plates

We now consider square laminated plates, where all layers of the laminate are assumed

to be of the same thickness, density and made of the same linearly elastic composite

material. The following material parameters of a layer are used:

E1

E2

= 10, 20, 30 or 40;G12 = G13 = 0.6E2;G3 = 0.5E2; ν12 = 0.25

The subscripts 1 and 2 denote the directions normal and transverse to the fiber

direction in a lamina, which may be oriented at an angle to the plate axes. The ply

angle of each layer is measured from the global x-axis to the fiber direction.

The example considered is a simply supported square plate of the cross-ply lami-

nation [0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted by h and a,

respectively. The thickness-to-span ratio h/a = 0.2 is employed in the computation.

Table 1 lists the fundamental frequency of the simply supported laminate made of var-

ious modulus ratios of E1/E2. It is found that the results are in very close agreement

with the values of [88] and the meshfree results of Liew [90] based on the FSDT. The

relative errors between the analytical and present solutions are below 1%.

In Table 2, we consider a three-layer laminate [0◦/90◦/0◦], with clamped bords with

E1/E2 = 40. The normalized frequencies are obtained as w̄ = (wb2/π2)
√
ρh/D0,

where D0 = E2h
3/12(1 − ν12ν21). Square (a/b = 1.0) and rectangular (a/b = 2.0)

plates are considered. Results are compared with solutions by Liew [21] and Zhen

and Wanji [32], as well as radial basis functions and pseudospectrals by Ferreira and

Fasshauer [17], and show excellent agreement with these solutions.

9



Method Grid E1/E2

10 20 30 40

Liew [90] 8.2924 9.5613 10.320 10.849

Exact [88][33] 8.2982 9.5671 10.326 10.854

Radial basis functions 9 × 9 8.2540 9.4986 10.2320 10.7341

13 × 13 8.2525 9.4974 10.2308 10.7329

17 × 17 8.2526 9.4974 10.2308 10.7329

Wavelets (present) 9 × 9 12.2487 13.1468 13.6379 13.9596

17 × 17 8.2794 9.5375 10.2889 10.8117

33 × 33 8.2793 9.5375 10.2889 10.8117

Table 1: The normalized fundamental frequency of the simply-supported cross-ply

laminated square plate [0◦/90◦/90◦/0◦] (w̄ = (wa2/h)
√
ρ/E2, h/a = 0.2)

6 Conclusions

A study of the free vibration of shear flexible isotropic and laminated composite plates

with a unified formulation was presented. The analysis is based on a collocation

method by wavelets.

The results show excellent accuracy of the present method in the free vibration

analysis of composite and sandwich plates.

The present method shows excellent agreement with finite element solutions.
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Present 17 × 17 4.4466 6.6422 7.6996 9.1851 9.7393 11.3988 11.6448 12.4655

Present 33 × 33 4.4466 6.6419 7.6996 9.1852 9.7379 11.3992 11.6440 12.4659

10 Liew [90] 7.411 10.393 13.913 15.429 15.806 19.572 21.489 21.620

Zhen and Wanji [32] 7.484 10.207 14.340 14.863 16.070 19.508 20.716 22.489

RBF-PS 17 × 17 7.4727 10.2544 14.2440 14.9363 15.9807 19.4129 20.6868 22.1851

Present 17 × 17 7.4106 10.3944 13.9128 15.4403 15.8061 19.5797 21.4892 21.6855

Present 33 × 33 7.4108 10.3928 13.9129 15.4292 15.8056 19.5724 21.4892 21.6227

20 Liew [90] 10.953 14.028 20.388 23.196 24.978 29.237 29.369 36.266

Zhen and Wanji [32] 11.003 14.064 20.321 23.498 25.350 29.118 29.679 36.624

RBF-PS 17 × 17 10.9680 13.9636 20.0983 23.3572 25.0859 28.6749 29.1620 35.8138

Present 17 × 17 10.9528 14.0360 20.4533 23.1974 24.9827 29.2795 29.6910 36.5184

Present 33 × 33 10.9529 14.0279 20.3904 23.1960 24.9783 29.2388 29.3789 36.2738

100 Liew [90] 14.666 17.614 24.511 35.532 39.157 40.768 44.786 50.297

Zhen and Wanji [32] 14.601 17.812 25.236 37.168 38.528 40.668 45.724 53.271

RBF-PS 17 × 17 14.4305 17.3776 24.2662 35.5596 37.7629 39.3756 43.4874 51.7685

Present 17 × 17 14.4455 17.5426 25.1868 37.8851 39.5489 39.6519 44.0026 54.1828

Present 33 × 33 14.4342 17.3942 24.3148 35.4087 37.7795 39.3921 43.4481 50.4300

2 5 Liew [21] 3.045 4.248 5.792 5.905 6.535 7.688 7.729 9.176

Zhen and Wanji [32] 2.953 4.288 5.595 6.096 6.446 7.796 8.053 9.005

RBF-PS 21 × 21 2.9679 4.2575 5.5406 6.0225 6.3620 7.6737 7.9414 8.7482

Present 17 × 17 3.0453 4.2483 5.7921 5.9046 6.5354 7.6901 7.7292 9.1778

Present 33 × 33 3.0453 4.2482 5.7916 5.9045 6.5350 7.6882 7.7289 9.1760

10 Liew [90] 2.9680 4.2576 5.5408 6.0225 6.3620 7.6730 7.9411 8.7462
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Present 33 × 33 4.1408 6.6162 8.3536 9.8945 9.9662 12.4415 13.6586 14.1203

20 Liew [90] 4.779 8.840 9.847 12.511 14.703 17.300 17.673 19.429

Zhen and Wanji [32] 4.813 8.954 9.968 12.768 14.960 17.764 18.041 19.993

RBF-PS 21 × 21 4.7593 8.8318 9.7221 12.4153 14.7156 17.2484 17.3088 19.1064

Present 17 × 17 4.7790 8.8425 9.8600 12.5212 14.7160 17.3161 17.7502 19.4969

Present 33 × 33 4.7782 8.8394 9.8463 12.5089 14.7023 17.2979 17.6746 19.4283

100 Liew [90] 5.105 10.527 10.583 14.324 19.567 19.701 22.148 22.237

Zhen and Wanji [32] 5.144 10.407 10.929 14.706 18.954 20.799 22.205 23.703

RBF-PS 21 × 21 5.0844 10.4349 10.5527 14.2538 19.2727 19.8125 21.9359 22.3671

Present 17 × 17 5.1102 10.5341 10.8046 14.4741 19.7425 20.7458 22.3679 23.1373

Present 33 × 33 5.0900 10.4388 10.5569 14.2342 19.2840 19.6635 21.8618 22.1442
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