
Abstract

A new vibration based damage localisation method relying on differences of third

and fourth order spatial derivatives of modal displacements of composite laminated

plates is proposed in this paper. The damage is simulated by decreasing the lami-

nate stiffness of specific finite elements. Since the displacement fields of the damaged

plate are discrete, they are differentiated using higher order finite differences. The

modal displacement fields of the undamaged plate are obtained using the Ritz method

and, therefore, the spatial derivatives are computed analytically. Parametric studies

relating the number of measured degrees of freedom to the quality of the damage lo-

calisations are carried out. The results of the present method are compared with the

results obtained with an extension of the well-known rotation and curvature methods.

It was found that higher order derivatives, in particular fourth order derivatives, are

very promising for damage localisation in composite laminated plates.

Keywords: damage localisation, finite element method, Ritz method, higher order

spatial derivative, laminated plate.

1 Introduction

The use of vibration characteristics as a mean to detect, locate and quantify structural

damage has been reported extensively in the literature [1, 2]. One of the most well

established methods was proposed by Pandey et al. [3] and is based on the differ-

ences of mode shape curvatures of undamaged and damaged beams. The curvatures

are computed by applying the second order central finite difference formula to the

measured displacements fields. According to Abdo and Hori [4] one may also use the

differences in the rotation of mode shapes to localise damage. However, these meth-

ods are prone to errors arising from the finite difference itself and the propagation of
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the measurement errors which are always present in experimental data. In order to

cope with this problems, some improvements on these methods and similar ones, such

as the damage index [5] and the frequency response functions curvature [6] methods,

have been reported [7–15]. Also, the use of higher order derivatives for the damage

identification in beam-like structures has been previously reported [16–18].

The development of a method for localisation of damage in composite laminate

plates, based on differences of third and fourth order spatial derivatives of modal dis-

placement fields, i.e. mode shapes, is presented in this paper. The modal displacement

fields of the undamaged plate are obtained using the Ritz method. Since this method

describes the displacement field as a series expansion, a direct analytical computa-

tion of the spatial derivatives, which is more accurate than the computation with finite

differences, is possible. The damaged plate is modeled by finite elements. Therefore,

the modal displacement field obtained needs to be differentiated using numerical tech-

niques. In the present work, higher order finite differences are used. Contrary to most

techniques found in the literature, with the proposed method it is possible to compute

the modal displacement fields derivatives and, therefore, the damage indicators at the

edges of the plate by applying backward and forward finite differences.

2 Damage Localisation Methods

2.1 Undamaged and Damaged Plate Models

2.1.1 Ritz Method for Undamaged Orthotropic Laminated Plates

Bearing in mind the Kirchhoff assumptions [19], the strain energy of a plate of volume

V is given by

U =
1

2

∫

V

(σxǫx + σyǫy + σxyǫxy)dV (1)

where σx, σy, σxy are the stresses and ǫx, ǫy, ǫxy are the strains. After considering the

constitutive relations of an orthotropic plate, the kinematic assumptions, integrating

in the z direction, and taking into account only the maximum amplitude of vibration

w(x, y), Equation (1) defines the maximum strain energy:

Umax =
1

2

∫

A

{
D11

[
∂2w(x, y)

∂x2

]2

+ D22

[
∂2w(x, y)

∂y2

]2

+4D66

[
∂2w(x, y)

∂x∂y

]2

+ 2D12
∂2w(x, y)

∂x2

∂2w(x, y)

∂y2

}
dA (2)

where Dij =

∫ h/2

−h/2

Q
(k)
ij z2dz are the laminate stiffnesses, Q

(k)
ij being the plane stress

reduced stiffnesses of the k-th lamina and h the thickness of the plate [19]. In Equation

(2), A denotes the in-plane surface area of the plate.
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The kinetic energy of the plate in terms of the in-plane displacements u(x, y, t) and

v(x, y, t), out-of-plane displacement w(x, y, t) and the material density ρ, is given by

T =
1

2

∫

V

ρ

{[
∂u(x, y, t)

∂t

]2

+

[
∂v(x, y, t)

∂t

]2

+

[
∂w(x, y, t)

∂t

]2
}

dV (3)

Considering the Kirchhoff assumptions and after integrating in the z direction,

Equation (3) reduces to

T =
1

2

∫

A

ρh

[
∂w(x, y, t)

∂t

]2

dA (4)

Since the plate is vibrating with harmonic motion at an angular frequency ω, the

maximum kinetic energy is given by

Tmax =
1

2
ω2

∫

A

ρh[w(x, y)]2dA (5)

In the Ritz method one assumes the solution for the maximum amplitudes w(x, y)
to be of the form

w(x, y) =
M∑

m=1

N∑

n=1

WmnXm(x)Yn(y) (6)

where Xm(x) and Ym(y) are functions compatible with the boundary conditions, M
and N are the number of terms in the series and Wmn is a set of parameters to be

determined.

The Ritz method relies on the minimisation of the functional Tmax − Umax with

respect to the parameters Wkl [20, 21]:

∂(Tmax − Umax)

∂Wkl

= 0 with k = 1, . . . ,M and l = 1, . . . , N (7)

Therefore, by replacing Equation (6) in Equations (2) and (5), applying Equation (7)

and performing the necessary mathematical manipulations one gets

M∑

m=1

N∑

n=1

{ ∫

A

(ρhXkXmYlYn)dA

}
Wmnω

2

−

M∑

m=1

N∑

n=1

{ ∫

A

[
D11

d2Xk

dx2

d2Xm

dx2
YlYn + D22XkXm

d2Yl

dy2

d2Yn

dy2

+D12

(
d2Xk

dx2
XmYl

d2Yn

dy2
+ Xk

d2Xm

dx2

d2Yl

dy2
Yn

)
(8)

+4D66

dXk

dx

dXm

dx

dYl

dy

dYn

dy

]
dA

}
Wmn = 0
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This expression defines an eigenvalue problem of size M × N :

[K][W ] = [M ][W ][ω2] (9)

where [K] and [M ] are matrices containing the stiffness and the inertial characteristics,

respectively, and [W ] and [ω2] are matrices containing the parameters Wmn and the

circular natural frequencies ω. The matrix [ω2] is diagonal and [W ] is a full matrix.

The assumed functions used in this work are the ones proposed by Gartner and

Olgac [22] for the analysis of beams and present a greater numerical stability than the

usual characteristic functions:

Xm(x) = Am cos
(γmx

a

)
+ Bm sin

(γmx

a

)
+ Cme−

γmx

a + Dme−
γm(a−x)

a , (10)

Yn(x) = An cos
(γny

b

)
+ Bn sin

(γny

b

)
+ Cne

−

γny

b + Dne
−

γn(b−y)
b (11)

where a and b are the length and the width of the plate, respectively. Am, An, Bm, Bn,

Cm Cn, Dm Dn, γm, and γn are parameters dependent on the boundary conditions.

For a fully clamped plate they take the values

Am = An = Ar = 1, Bm = Bn = Br = −
1 + (−1)re−γr

1 − (−1)re−γr
, (12)

Cm = Cn = Cr = −
1

1 − (−1)re−γr
, Dm = Dn = Dr =

(−1)r

1 − (−1)re−γr
(13)

where the parameters γr are given by solving the non-linear equation:

cos(γr) −
2e−γr

1 + e−2γr
= 0 (14)

It should be noted that since one has analytical functions as integrands in Equation

(8) the computation of matrices [K] and [M ] is performed analytically. Tests to com-

pare the performance of numerical and analytical integrations showed that the latter

is much more efficient than the former. For example, the computation of the matrices

with the Simpson’s rule is about forty times slower than the direct computation with

analytical integrations.

2.1.2 Models of Damaged Orthotropic Laminated Plates

In this work, a reference finite element model of the damaged plate is created to simu-

late a complete set of measured data. Afterwards, based on this model, several others

are generated in order to study the influence of incomplete sets of measurements and,

therefore, the number of measured degrees of freedom in the quality of damage local-

isations using the present methods. These models are named as incomplete models

[23]. They are built by deleting a set of degrees of freedom from the reference finite

element model.
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The damage is simulated by reducing the laminated stiffness [D] of an element e of

the undamaged plate such that the corresponding laminated stiffness of the damaged

plate is given by:

∥∥∥[D̃(e)]
∥∥∥

2
=

(
1 − d(e)

) ∥∥∥[D(e)]
∥∥∥

2
with 0 ≤ d(e) ≤ 1 (15)

where the subscript 2 denotes the Frobenius norm of a matrix, given in is this case by:

∥∥∥[D(e)]
∥∥∥

2
=

√(
D

(e)
11

)2

+
(
D

(e)
22

)2

+
(
D

(e)
66

)2

+ 2
(
D

(e)
12

)2

(16)

The parameter d(e) defines the amount of damage in the specified element. If d(e) =
0 there is no reduction in the stiffness, whereas if d(e) = 1 there will be a complete

reduction of stiffness in element e. The SHELl finite element from the package FEAP

is used [24]. It is a quadrilateral finite element with 4-nodes and six degrees of freedom

(three translations and three rotations).

2.2 Damage Indicators

The damage indicators proposed are based on differences in modal displacement fields

derivatives and are defined by the following expression:

DFD
(p)
i (x, y) =

∣∣∣∣
∂pw̃i(x, y)

∂xp
−

∂pwi(x, y)

∂xp

∣∣∣∣ (17)

with p denoting the order of the spatial derivative, i the mode shape, and x and y are

the coordinates where these indicators are computed. The indicators of mode shape

rotations and curvatures differences can be identified in Equation (17) with p = 1 and

p = 2, respectively, if only one dimension is considered [3, 4]. Besides considering

two dimensions, in the present work we also present results with p = 3 and p = 4.

One can take the sum of these damage indicators over n mode shape as follows:

SDFD(p)(x, y) =
n∑

i=1

∣∣∣∣
∂pw̃i(x, y)

∂xp
−

∂pwi(x, y)

∂xp

∣∣∣∣ (18)

Since the displacement field of the undamaged plate wi(x, y) is defined by a series

expansion of known functions (see Equation (6)), the differentiations ∂pwi(x, y)/∂xp

in Equations (17) or (18) are performed analytically. However, the displacement of

the damaged plate w̃(x, y) is obtained using the finite element method, and thus only

discrete values are available. Therefore, a numerical differentiation technique to com-

puted ∂pw̃i(x, y)/∂xp must be used. In the present work, the numerical technique

chosen is the finite difference method. In reference [25] one finds several formulas of

finite differences for a function of one variable and the associated approximation er-

rors. All these finite differences can be extended to a function of two variables such as
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Figure 1: Point where the fourth derivative is computed• and its neighbouring points

◦ using six points finite difference formula

the one describing the displacement field of a plate. Therefore, the general expression

for the computation of damaged displacement spatial derivatives in the x direction can

be written as:

∂pw̃(xj, y)

∂xp
≈

p!

m!hp
x

m∑

i=0

Piw̃(xi, y) (19)

where m plus one is the number of points used in the approximation of w̃(x, y), (xj, y)
are the coordinates of the point where we are computing the derivative, (xi, y) are

coordinates of neighbouring points along a line with y = constant, such that hx =
xi+1−xi, and Pi are known coefficients. The coefficients Pi in Equation (19) are given

in Appendix A in Tables A1, A2, A3 and A4 for the first, second, third and fourth

derivatives, respectively. The approximation errors are also listed in these Tables. We

see that the errors in the approximation of any p-th derivative is of order O(h2
x).

Figure 1 shows the six possible positions of the point where the fourth derivative is

computed using the six points finite difference. It can be seen that, by setting j = 0 or

j = 5, i.e. by using backward or forward finite differences, the derivatives of points

at the left and right edges of the plate can be computed. In a similar fashion, the same

applies to the other order derivatives.
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3 Results

The plate is 400 mm long, 200 mm wide and 2 mm thick and is clamped at all edges.

The plate is a AS4/Epoxy, with the properties given in reference [26]. The layers

stacking sequence is [0, 90]3S . The undamaged mode shapes were computed using

the Ritz method with M = N = 26 (see Equation (6)), and the eigenvectors are

normalised to the mass matrix. The damaged mode shapes were computed using a

finite element model (FEM) with 80 × 40 elements. Each element is a four nodes

square element with a size of 5 mm and the total number of nodes is 81 × 41. The

damage is a square area of 40 mm2 and corresponds to 8× 8 damaged elements. Two

damage locations were considered: (a) L1, in the centre of the plate (xd = 200 mm,

yd = 100 mm), and (2) L2, in the centre of the right upper quarter (xd = 300 mm,

yd = 150 mm). The damage parameter d(e) is set to 0.1 (see Equation (15)). The

eigenvectors of the damaged mode shapes are also normalised to the mass matrix.

Regarding the influence of incomplete sets of measurements, the models studied

are characterised by the following number of nodes and distance hx between two

consecutive nodes:

• Model 0: 81×41 nodes, hx = 5 mm (reference or complete model),

• Model 1: 41×21 nodes, hx = 10 mm,

• Model 2: 21×11 nodes, hx = 20 mm,

• Model 3: 11×6 nodes, hx = 40 mm.

3.1 Complete Model

Figure 2 shows the first, second, third and fourth x-derivative of the first mode shape,

computed using FEM data with finite differences and Ritz method data with analytical

differentiation. It can be seen that for the FEM data, the higher the derivative, the

higher the numerical noise. Since the derivatives of the Ritz method data are computed

analytically there is no noise.

Some examples of using the different DFD indicators can be seen in Figures 3, 4

and 5. It is noticeable that the best order p of the x-derivative, and the corresponding

DFD indicator, to localise the damage is different for each mode shape. Figure 3

shows the DFD indicators computed using the third mode shape, with the damage

at locations L1 and L2. In this case, p = 3 and p = 4 present similar results in

the localisation of damage. On the other hand, Figure 4 shows the DFD indicators

computed using the fourth mode shape, being p = 2 and p = 3 the order of the x-

derivative with better results. Figure 5 shows the DFD indicators computed using the

eighteenth mode shape, where p = 4 is the best option to localise the damage.

The results of the damage localisation using the DFD indicators for each one of

the first twenty modes and p = 1, 2, 3 and 4 are compiled in Table 1. It can be
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: First (a, e), second (b, f), third (c, g) and fourth (d, h) x-derivative of first

mode shape, computed with FEM data (damage location L1) and numerical differen-

tiation (a-d) and the Ritz method data and analytical differentiation (e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: DFD
(1)
3 (x, y) (a, e), DFD

(2)
3 (x, y) (b, f), DFD

(3)
3 (x, y) (c, g) and

DFD
(4)
3 (x, y) (d, h), with the damage at locations L1 (a-d) and L2 (e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: DFD
(1)
4 (x, y) (a, e), DFD

(2)
4 (x, y) (b, f), DFD

(3)
4 (x, y) (c, g) and

DFD
(4)
4 (x, y) (d, h), with the damage at locations L1 (a-d) and L2 (e-h)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: DFD
(1)
18 (x, y) (a, e), DFD

(2)
18 (x, y) (b, f), DFD

(3)
18 (x, y) (c, g) and

DFD
(4)
18 (x, y) (d, h), with the damage at locations L1 (a-d) and L2 (e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: SDFD(1)(x, y) (a, e), SDFD(2)(x, y) (b, f), SDFD(3)(x, y) (c, g) and

SDFD(4)(x, y) (d, h), all computed with n = 20, with the damage at locations L1

(a-d) and L2 (e-h)

seen that, in general, the higher the derivative, the higher the number of successful

localisations of damage. Also, in general, the higher modes present better damage

localisations than the lower ones.

Figure 6 shows the results of damage localisations with the SDFD indicators,

which are computed considering a sum over twenty modes (n = 20 in Equation (18)).

Again, in general, the higher the derivative, the better the damage localisation.

3.2 Incomplete Models

Based on the results of the previous Section, only damage localisations with indicators

based on the fourth derivative are reported here. Some examples of the DFD indicator

using incomplete models can be seen in Figures 7 and 8. From Figure 7, an important

conclusion can be made: some modes that are unsuccessful in locating the damage

with the complete model can give good localisations with the incomplete models (first

mode shape in this case). Figure 8 shows that for other modes, the reduction of the
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Location L1 L2

p 1 2 3 4 1 2 3 4

Mode 1 Yes Yes Yes No Yes Yes No No

Mode 2 Yes Yes Yes No Yes Yes Yes Yes

Mode 3 Yes Yes Yes Yes Yes Yes Yes Yes

Mode 4 Yes No Yes No No Yes Yes No

Mode 5 Yes No No No Yes Yes Yes Yes

Mode 6 No Yes Yes Yes No Yes Yes Yes

Mode 7 Yes No Yes Yes No Yes Yes Yes

Mode 8 No No No Yes Yes Yes Yes Yes

Mode 9 Yes Yes Yes Yes No Yes Yes Yes

Mode 10 No No No Yes Yes Yes Yes Yes

Mode 11 No No No No No No No No

Mode 12 Yes Yes Yes No Yes Yes Yes Yes

Mode 13 No No Yes Yes No No No Yes

Mode 14 No Yes Yes Yes No No No Yes

Mode 15 No No Yes Yes No Yes Yes Yes

Mode 16 No Yes No Yes No No No Yes

Mode 17 No No No Yes No No Yes Yes

Mode 18 No No No Yes No No No Yes

Mode 19 No Yes Yes Yes No No No No

Mode 20 No No No Yes No No No No

Number of

successful 8 9 12 14 7 12 12 15

localisations

Table 1: Damage localisations using the DFD
(p)
i indicators for each one of the first

twenty mode shapes and p = 1, 2, 3 and 4, with the damage at locations L1 and L2

number of points causes a worsening in the damage localisation (third mode shape in

this case).

A compilation of damage localisations with complete and incomplete models using

the indicator DFD
(4)
i for each one of the first twenty modes is presented in Table 2. It

can be seen that, in general, a reduction in the number of measured points leads to less

modes being able to successfully locate the damage, in particular for higher modes.

However, it can be seen again that some modes that gave wrong results in the damage

localisation with the complete model can give good results with incomplete models.

Regarding the SDFD indicator, Figure 9 shows the results for this indicator com-

puted with n = 20 and using the models 0, 1, 2 and 3. It can be seen that the damage

indicator works worse when the number of points is decreasing. This is particularly

noticeable with incomplete models 2 and 3, for which the damages are not located.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: DFD
(4)
1 (x, y) using model 0 (a, e), model 1 (b, f), model 2 (c, g) and model

3 (d, h), with the damage at locations L1 (a-d) and L2 (e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: DFD
(4)
3 (x, y) using model 0 (a, e), model 1 (b, f), model 2 (c, g) and model

3 (d, h), with the damage at locations L1 (a-d) and L2 (e-h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: SDFD(4)(x, y) using model 0 (a, e), model 1 (b, f), model 2 (c, g) and

model 3 (d, h), all computed with n = 20, with the damage at locations L1 (a-d) and

L2 (e-h)
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Location L1 L2

Model 0 1 2 3 0 1 2 3

Mode 1 No Yes Yes Yes No Yes Yes No

Mode 2 No Yes Yes No Yes Yes Yes No

Mode 3 Yes Yes Yes No Yes Yes Yes No

Mode 4 No Yes Yes No No Yes Yes Yes

Mode 5 No Yes No No Yes Yes Yes No

Mode 6 Yes Yes No No Yes Yes No No

Mode 7 Yes Yes No No Yes Yes Yes No

Mode 8 Yes Yes No No Yes Yes No No

Mode 9 Yes Yes No No Yes Yes No No

Mode 10 Yes No No No Yes Yes No No

Mode 11 No Yes Yes No No Yes No No

Mode 12 No Yes No No Yes Yes Yes No

Mode 13 Yes Yes Yes No Yes Yes No No

Mode 14 Yes Yes No No Yes No No No

Mode 15 Yes Yes No No Yes Yes No No

Mode 16 Yes No No No Yes No No No

Mode 17 Yes No No No Yes Yes No No

Mode 18 Yes No No No Yes No No No

Mode 19 Yes No No No No No No No

Mode 20 Yes No No No No No No No

Number of

successful 14 14 6 1 15 15 7 1

localisations

Table 2: Damage localisations using the DFD
(4)
i indicator for each one of the first 20

modes and models 0, 1, 2 and 3, with the damage at locations L1 and L2

4 Conclusions

A set of new indicators for damage localisation in composite laminated plates using

vibrational data are proposed in this paper. These indicators are defined as differ-

ences of third and fourth order spatial derivatives of modal displacement fields. The

damaged displacement fields, generated with finite elements, are differentiated using

higher order finite differences, whereas the undamaged displacement fields, computed

using the Ritz method, are obtained analytically. Besides computing the damage indi-

cators at interior points of the plate using central finite differences, the present method

also computes these indicators at the plate edges by differentiating the displacement

fields using forward and backward finite differences. Two damage cases are anal-

ysed and the results using all indicators show that they are mode shape dependent.

Parametric studies carried out lead to the conclusion that, as the number of damaged

measured degrees of freedom decrease, the success in damage localisation decreases.
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It was also found that the damage indicator based on the fourth order spatial derivative

of the modal displacement field allows better damage localisations, in particular by

considering the sum of the differences of these derivatives over a certain number of

modes shapes.
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[20] J.V. Araújo dos Santos, A.L. Araújo, C.M. Mota Soares, “Eigenfrequency analy-

sis of completely free multilayered rectangular plates using a higher order model

and Ritz technique”, Mechanics of Composite Materials and Structures, 5(5):

55–80, 1998.

[21] P. Frederiksen, “Single-layer plate theories applied to the flexural vibration of

completely free thick laminates”, Journal of Sound and Vibration, 186(5): 743–

759, 1995, ISSN 0022-460X.

[22] J.R. Gartner, N. Olgac, “Improved numerical computation of uniform beam char-

acteristic values and characteristic functions”, Journal of Sound and Vibration,

84(4): 481–489, 1982.
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Appendix A

This Appendix lists the coefficients Pi in Equation (19).

j P0 P1 P2 Error

0 −3 4 −1
1

3

∂3w(ζ, y)

∂x3
h2

x

1 −1 0 1 −
1

6

∂3w(ζ, y)

∂x3
h2

x

2 1 −4 3
1

3

∂3w(ζ, y)

∂x3
h2

x

Table A1: Coefficients Pi for the computation of first derivative (p = 1) with three

points (m = 2) and O(h2
x) approximation errors where ζ ∈ [x0, xm] [25]

j P0 P1 P2 P3 Error

0 6 −15 12 −3
11

12

∂4w(ζ, y)

∂x4
h2

x

1 3 −6 3 0 −
1

12

∂4w(ζ, y)

∂x4
h2

x

2 0 3 −6 3 −
1

12

∂4w(ζ, y)

∂x4
h2

x

3 −3 12 −15 6
11

12

∂4w(ζ, y)

∂x4
h2

x

Table A2: Coefficients Pi for the computation of second derivative (p = 2) with four

points (m = 3) and O(h2
x) approximation errors where ζ ∈ [x0, xm] [25]
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j P0 P1 P2 P3 P4 Error

0 −10 36 −48 28 −6
7

4

∂5w(ζ, y)

∂x5
h2

x

1 −6 20 −24 12 −2
1

4

∂5w(ζ, y)

∂x5
h2

x

2 −2 4 0 −4 2 −
1

4

∂5w(ζ, y)

∂x5
h2

x

3 2 −12 24 −20 6
1

4

∂5w(ζ, y)

∂x5
h2

x

4 6 −28 48 −36 10
7

4

∂5w(ζ, y)

∂x5
h2

x

Table A3: Coefficients Pi for the computation of third derivative (p = 3) with five

points (m = 4) and O(h2
x) approximation errors where ζ ∈ [x0, xm] [25]

j P0 P1 P2 P3 P4 P5 Error

0 15 −70 130 −120 55 −10
17

6

∂6w(ζ, y)

∂x6
h2

x

1 10 −45 80 −70 30 −5
5

6

∂6w(ζ, y)

∂x6
h2

x

2 5 −20 30 −20 5 0 −
1

6

∂6w(ζ, y)

∂x6
h2

x

3 0 5 −20 30 −20 5 −
1

6

∂6w(ζ, y)

∂x6
h2

x

4 −5 30 −70 80 −45 10 −
5

6

∂6w(ζ, y)

∂x6
h2

x

5 −10 55 −120 130 −70 15
17

6

∂6w(ζ, y)

∂x6
h2

x

Table A4: Coefficients Pi for the computation of fourth derivative (p = 4) with six

points (m = 5) and O(h2
x) approximation errors where ζ ∈ [x0, xm] [25]
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