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Abstract 
 
This paper is focused on the experimental and theoretical analysis of circular 
cylindrical shells subject to base excitation. The shell axis is vertical, it is clamped at 
the base and connected to a rigid body on the top; the base provides a vertical 
seismic-like excitation. The goal is to investigate the shell response when a resonant 
harmonic forcing is applied: the first axisymmetric mode is excited around the 
resonance at relatively low frequency and low amplitude of excitation. A violent 
resonant phenomenon is experimentally observed as well as an interesting saturation 
phenomenon close to the previously mentioned resonance. A theoretical model is 
developed to reproduce the experimental evidence and provide an explanation of the 
complex dynamics observed experimentally; the model takes into account geometric 
shell nonlinearities, electro-dynamic shaker equations and the shell shaker 
interaction. 
 
Keywords: shells, nonlinear dynamics. 
 
 

1  Introduction 
 
Several commercial software allow to carry out static, stability and vibration 
analyses; however, regarding the shell dynamics, such kind of analyses are generally 
reliable in the linear filed, i.e. very small deformations. Problems like global 
stability, post-critical behaviours and nonlinear vibrations cannot yet be accurately 
analysed with commercial software; on such fields there is need of further 
development of computational models. 
 
Readers interested to deepen the literature are suggested to read Refs.[1-6]: some 
topics of extreme importance need further investigations: dynamic stability, post-
critical behaviour, sensitivity to imperfections, nonlinear vibrations and fluid 
structure interaction.  
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Kubenko and Koval’chuk [7] published an interesting review on nonlinear problems 
of shells, where several results were reported about parametric vibrations; in such 
review the limitations of reduced order models were pointed out.  
 
In Ref. [8] a new method, based on the nonlinear Sanders Koiter theory, suitable for 
handling complex boundary conditions of circular cylindrical shells and large 
amplitude of vibrations. The method was based on a mixed expansions considering 
orthogonal polynomials and harmonic functions. Among the others, the method 
showed good accuracy also in the case of a shell connected with a rigid body; this 
method is the starting point for the model developed in the present research. 
 
Mallon et. al [9] studied circular cylindrical shells made of orthotropic material, the 
Donnell’s nonlinear shallow shell theory was used with a multimode expansion for 
discretization (PDE to ODE). The theoretical model considered also the shaker-shell 
interaction; such work is strictly related to the present paper for which concern 
theory and experiments; here a further step toward improved modelling and 
complete understanding of complex dynamic phenomena is attempted, in addition 
here experiments show great coherence with theoretical results. 
 
In the present paper, experiments are carried out on a circular cylindrical shell, made 
of a polymeric material (P.E.T.) and clamped at the base by gluing its bottom to a 
rigid support. The axis of the cylinder is vertical and a rigid disk is connected to the 
shell top end.  
 
Nonlinear phenomena are investigated by exciting the shell using a shaking table 
and a sine excitation. Shaking the shell from the bottom induces a vertical motion of 
the top disk that causes axial loads due to inertia forces. Such axial loads generally 
give rise to axial-symmetric deformations; however, in some conditions it is 
observed experimentally that a violent resonant phenomenon takes place, with a 
strong energy transfer from low to high frequencies and huge amplitude of vibration. 
Moreover, an interesting saturation phenomenon is observed: the response of the top 
disk was completely flat as the excitation frequency was changed around the first 
axisymmetric mode resonance. 
 
A semi-analytical approach is proposed for reproducing experimental results and 
giving a deeper interpretation of the observed phenomena. The shell is modelled 
using the nonlinear Sanders Koiter shell theory; in modelling the system the effect 
of the top disk was accounted for applying suitable boundary conditions and 
considering its inertial contribution; moreover, the interaction between the shell-disk 
and the electro-dynamic shaking table was included in the modelling. The shell 
displacement fields are represented by means of a mixed series (harmonic functions 
and orthogonal polynomials), which are able to respect exactly geometric boundary 
conditions; an energy approach, based on the Lagrangian equations, is used to obtain 
a set of ODE that represents the original system with good accuracy. 
 
Comparisons between experiments and numerical results show a good behaviour of 
the model, numerical analyses furnish useful explanations about the instability 
phenomena that are observed experimentally.  
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2  Experimental setup and results 
 
In the present section the problem under investigation is described by means of 
experimental results. The description follows the history of the present research, 
which started from experimental observations that led the author in developing the 
theoretical model. 
 
2.1 The setup 
The system under investigation is described in Figures 1 and 2; a circular cylindrical 
shell, made of a polymeric material (P.E.T.), is clamped at the base by gluing its 
bottom to a rigid support (“fixture”); the connection is on the lateral surface of the 
shell, in order to increase the gluing surface, see Figure 1; on the top, the shell is 
connected to a disk made of aluminium alloy, such disk is not externally 
constrained; therefore, it induces a rigid body motion to the top shell end.  
The system data are the following: ρ = 1366 kg

m3 , ν = 0.4 , E = 46 ×108N/m2 ; mass of 
the top disk 0.82kg. The geometry is: radius R=43.88 10-3m, length L=96 10-3m 
thickness h=0.25 10-3m.  
 

 
Figure 1. Experimental setup 
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Figure 2. System geometry 
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The fixture is bolted to a high power shaker (LDS V806, 13000N peak force, 100g, 
1-3000Hz band frequency). 
When the base of the shell is excited by the shaker, a fluctuating vertical move is 
determined, such base movement results in a seismic-like excitation for the shell; the 
rigid body motion generates big inertia forces on the top disk that cause an axial 
shell loading. In particular, the vertical excitation can cause the resonance of the first 
axisymmetric mode of the shell, Figure 3; therefore, the base excitation can be 
amplified inducing large axial stresses on the shell. 
 
2.2 Experimental results 
 
Initially, an experimental modal analysis is carried out (about 80 points are 
considered) in order to extract (identify) natural frequencies, modal damping and 
mode shapes from experimental data.  
The natural frequencies of the system are reported in Table 1, the corresponding 
mode shapes are represented in Figure 3. 
 

Mode Natural frequencies [Hz] 
Experimental 
frequency 

Theory Finite elements 
k n Frequency Error % Frequency Error% 

first beam like 
mode n=1 

95 96 1.1 93 2.1 

1 0 314 322 2.5 314 0 
second beam like 

mode n=1 
438 432 2.5 424 3.2 

1 6 791 797 0.8 782 1.1 
1 7 816 802 1.7 802 1.7 
1 5 890 888 0.2 885 0.6 
1 8 950 926 2.5 918 3.4 
1 9 1069 1016 5.0 1103 3.2 

Table 1. Natural frequencies and mode shape description [8]. 
 

 

first beam like mode n=1 (95Hz) mode (1,0) (314Hz) 

mode (1,6) (791Hz) mode (1,7) (816Hz) 

 
Figure 3. Experimental mode shapes [8]. 
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The first three modes of Table 1 present a shape that includes the top disk motion; 
the second mode (first axisymmetric mode) shows a simple translational motion of 
the top disk, see Figure 3; shell like modes (modes after the third of Table 1) behave 
like clamped-clamped shell modes, i.e. the top disk does not move. For the linear 
theory, shell like modes of a perfect shell are not directly excited by a translational 
base motion on the shell axis, because the top disk motion cannot pump energy in 
such modes. The only prediction that could be done using linear models is to 
consider the time varying axial forces caused by the top mass acceleration, this will 
lead to a time varying linear system, which could undergo to parametric instabilities 
of Mathieu type; therefore, linear theories could be able to analyze the instability 
boundaries only. 
 

Experiments proved that, when the shell is excited harmonically from the base, with 
an excitation frequency close to the first axisymmetric mode, complex dynamic 
scenarios appear and the energy pumped in the system at low frequency spreads over 
a wide range of the spectrum.  
 

Tests are carried out using a seismic sine excitation, close to the resonance of the 
first axisymmetric mode (m=1, n=0).  
 

The complexity and violence of vibrations due to nonlinear phenomena gave several 
problems to closed loop controllers of the shaking table; therefore, an open loop 
approach was chosen. 
 

The accelerations of the base, the top, and the displacement of the shell lateral 
surface are measured. 
 

Figures 4a-e represent the amplitudes of vibration in terms of acceleration (base and 
top disk vibration) or displacement (measured on the lateral surface of the shell, the 
vertical position is on the middle): during experiments the input voltage was 
sinusoidal (v(t)=v0sin(2π f t), v0=0.07V) and the frequency was moved step by step 
(stepped sine approach with a frequency step of 0.3Hz) starting from high 
frequency, 340Hz, and reducing up to 290Hz; the sampling frequency was about 
6400Hz.  
 

Figure 4a shows that the maximum excitation (base motion) is between 8 and 14 g; 
there is a strong interaction between the shaker and the shell-disk. 
The top disk vibration (Figure b) increases as the first axisymmetric mode resonance 
is approached, from 340 to 333Hz the top disk response follows the usual behaviour 
expected by a linear resonance. The top disk vibration amplitude remains flat from 
322 to 295 Hz. 
 

For frequencies higher than 333Hz the shell vibration is small, about 0.04 mm 
(about 16% with respect to the shell thickness, 0.25mm), Figure 4c; reducing the 
excitation frequency below 333Hz, the shell vibration amplitude suddenly grows up, 
at 331.5 Hz the amplitude is 0.57 mm, the increment is 1325%; such huge increment 
takes place in a narrow frequency band, i.e. from 333 Hz to 331.4 Hz (about 0.5% 
frequency variation). Another jump in the shell response is observed from 325 Hz 
(0.75 mm amplitude) to 320 Hz (1.53 mm), i.e. 104% increment in terms of 
amplitude in 5 Hz. The response remains almost flat from 300 to 296Hz, the 
amplitude oscillates around 1.5 mm; then at 295 Hz the phenomenon suddenly 
disappears (0.022mm amplitude). 
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Figure 4. Experimental results, amplitude, harmonic excitation: a) base excitation 
amplitude (acceleration [g]), b) top disk amplitude (acceleration [g]), c) response on 
the shell mid-span (displacement [mm], positive inward), d) minimum response of 
the shell mid-span (displacement [mm], negative outward). 
 
 
 
 
a) 

 

b) 

 
                                   c) 

 
 
Figure 5. Experimental results, RMS, harmonic excitation: a) base excitation 
(acceleration [grms]), b) top disk (acceleration [grms]), c) response on the shell mid-
span (displacement [mm] rms). 
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In Figure 5a-c this scenario is represented in terms of RMS, which is of interest as it 
represents the vibration energy of the phenomenon. Comments to Figures4a-e apply 
also to Figures 5a-c; however, considering the RMS one can clearly observe the 
saturation phenomenon (Figure 5b), the response of the top disk, in proximity of the 
resonance, becomes completely flat even though the excitation varies (remember 
that the excitation is open-loop). In terms of RMS, the shell vibration presents a 
jump at 296Hz, but the jump at 333Hz disappears; apparently, this is incoherent with 
Figure 4c, such incoherence is explained by checking the time response, which is 
characterized by a non-stationary behaviour and the presence of several spikes. 
Spikes have a direct influence the maximum of a signal, but the effect on the signal 
energy can be almost insensible, therefore it is not surprising a difference on 
representation of the dynamic scenario in terms of amplitude or RMS. 

 

  
Figure 6. Lateral shell vibration (displacement mm), sine excitation, frequency 

331Hz. 

 
It is to note that the dynamic phenomenon is extremely violent, it is accompanied by 
a strong noise (hear protections are needed), the acceleration generated on the shell 
are surprisingly huge. For example if the amplitude is 3 mm, and we suppose the 
vibration is purely harmonic at 300 Hz, an approximate estimation of the 
acceleration is about 1100 g! Such estimate does not consider that the shell response 
is no more sinusoidal (see e.g. Figure 6), conversely it is non stationary and broad 
band, this means that the response spectrum contains high frequency components 
that can lead to a further increment of the acceleration. Some initial experiments 
carried out using accelerometers for the lateral shell vibration measurement, have 
shown accelerations up to 2000g! 
Figure 7 shows the bifurcation diagram of Poincaré maps, this kind of representation 
is important to evaluate the stationarity of the response.  In Figure 7 one can see that, 
outside the instability region (where violent vibrations are manifested), all 
measurement are close each other (one point), inside the instability region there is a 
spreading over a wide range (several points); this proves that the phenomenon is non 
stationary. 
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Figure 7. Bifurcation diagram. Experimental results. 

 
The previous analysis furnishes a clear scenario about the dynamics of the system; 
however, it is referred to a particular excitation (sine input voltage amplitude 
0.07V). In order to investigate the behaviour of the system as the excitation 
amplitude varies, several tests are carried out starting from 0.03 V. For each 
excitation level two tests are carried out increasing (“upward”) and decreasing 
(“backward”) the excitation frequency on the range 240-350 Hz; for each test the 
frequency boundaries of the instability are acoustically detected, i.e. by checking the 
change in the noise generated by the system. Results are presented in Figure 8, lines 
are the boundaries that separate the low vibration to high vibration regimes; the right 
boundary remains unchanged for downward and upward experiments, the left 
boundary is moved to the left in the case of backward tests; this means that the 
region were huge vibrations take place is wider when the excitation changes from 
high to low frequencies; this is typical of softening type nonlinearities.  
 

  
 

Figure 8. Stability region. 
 
Figure 8 shows that the boundaries are almost straight lines starting from 320 Hz, 
they behave similarly to the classical Ince-Strutt diagrams referred to the instability 
regions of the Mathieu equation, which is the paradigm for problems with time 
varying coefficients (parametric excitation). For such reason, the region where huge 
vibrations take place is named here “instability region”. Figure 8 suggests that the 
present phenomenon can be correlated to large in-plane loads, which are generated 
on the shell when the first axisymmetric mode undergoes to the resonance; such 
loads induce a parametric excitation on the shell like modes, which are high 
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frequency modes, this is an explanation of the energy transfer from low to high 
frequency. 
The left and right boundaries of Figure 8 should theoretically touch each other at the 
bottom, depending on the damping; however, it was impossible to find 
experimentally such minimum, even if specific tests were attempted. 
An energy transfer from low to high frequencies is quantified in Figures 9a,b; the 
spectrum of the Laser signal is represented. In the case of Figure 9a we are outside 
the unstable region and signal is dominated by the harmonic component referred to 
the excitation frequency (334 Hz), the other harmonic components are negligible as 
they are more than one order less than the dominant one (decade in log scale). 
Figure 9b shows that, when experiments are carried out inside the unstable region 
(316 Hz), the shell response presents a spectrum where the energy spreads over a 
wide range: from 316 to 1500 Hz one can see non-negligible harmonics; moreover, 
three dominant harmonics are present at about 316, 630 and 950 Hz (the discrete 
spectrum resolution does not allow great accuracy), i.e. the excitation frequency and 
its first two multiples. 
 
a) 

 

b) 
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Figure 9. Lateral shell vibration, excitation 0.07V, spectra. a) 334Hz low vibration; 

b) 316Hz high amplitude vibration 
 
The experiments show clearly the complexity of the problem under investigation, 
which can be summarized with the following three points:  

1. There is a strong interaction among the excitation source (shaker) and the 
system under investigation (shell and top disk), this is proven by observing the 
behaviour of the base vibration compared with the top disk and shell vibration. 

2. The violent dynamic phenomenon, observed around the resonance of the first 
axisymmetric mode, is due to a dynamic instability; this is proved by the stability 
diagram of Figure 9. 

3. There is a nonlinear modal interaction among the directly excited mode (the 
first axisymmetric mode) and high frequency modes (shell-like modes), this is 
proved by observing that the top disk vibration amplitude have a flat region when 
the instability takes place, i.e. the energy flows from modes involving a disk motion 
to shell-like modes (no disk motion). 
Such considerations are the starting point for developing a suitable theory able to 
reproduce the experimental observations and give a deeper understanding of the 
phenomenon. 
A theory for the shell dynamics should include: nonlinear effects, top disk modelling 
including suitable boundary conditions and in-plane loads effect; a shaker-shell 
interaction model. 
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3  Modelling 
 
The theoretical model of the shaker will be described as well as the theoretical shell 
modelling based on the nonlinear Sanders-Koiter theory.  
The shaker used in the present experiments is an electromechanic machine, the main 
body is suspended on the ground by means of very soft gas suspensions (see Figure 
10), which have the task of reducing forces transmitted to the ground. The power 
supply is given by an amplifier that is not represented in Figure 10, the amplifier 
furnishes the current both to the field coil and the armature coil; the amplifier input 
E0(t) is a low power and voltage signal (up to 1V), it is generated by an external 
device. The governing equations for the shaker are [9-10]: 
 

   L
I (t)+ℜI (t)+ kc

Ub(t) = E(t)  

   
m0
Ub(t)+ cb

Ub(t)+ kbUb(t) = kcI (t)+ Fsystem(t)  
(1a) 
(1b) 

 
where ℜ  and L are the armature coil resistance and inductance respectively, and 

   
E(t) = Pamp bamp

E0(t)+ E0(t)( )   
 
 
 

 

field coil 

armature  
coil 

in
ne

r p
ol

e 

ou
te

r p
ol

e 

magnetic flux 

Soil 

elastic 
suspension 
(gas) 

mechanical 
system under 
testing 

fixture 

elastic elements 

 
 

Figure 10. Electrodynamic shaker. 
 

The geometry of a circular cylindrical shell is represented in Figure 11a; three 
displacement fields are represented: longitudinal u, circumferential v, radial w; the 
geometry of the shell is summarized by the following parameters: radius R, length L, 
thickness h. 
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Figure 11. Shell model. 

 
In the present work the nonlinear Sanders-Koiter theory is considered, this is a 
theory based on the Love’s first approximation  
Strain components ,  and  at an arbitrary point of the shell are: 

,0x x xr kε ε= +  
,0 r kθ θ θε ε= +  

,0x x xr kθ θ θγ γ= +        (2) 
where: ,  and  are the middle surface strains; xk , kθ  and 

xk θ  are the 
curvature and torsion changes of the middle surface.  
The elastic strain energy US of a circular cylindrical shell, neglecting the radial stress 

 (Love’s first approximation), is given by 

( )
2 1 / 2

0 0 / 2

1 d (1 / )d d
2

h

S x x x x
h

U LR r R r
π

θ θ θ θσ ε σ ε τ γ η θ
−

= + + +∫ ∫ ∫       (3) 

where: ( )21x x
E

θσ ε ν ε
ν

= +
−

,
 ( )21 x

E
θ θσ ε ν ε

ν
= +

−
,
 ( )2 1x x

E
θ θτ γ

ν
=

+ , E is the Young’s modulus and ν 
is the Poisson’s ratio, the potential energy contains quadratic and higher order terms: 
the first one will lead to linear terms in the equations of motion and higher order 
terms will lead to nonlinear terms; ,

 

the kinetic energy 
TS is given by

 

TS =
1
2
ρS h LR u2 + v2 + w2( )

0

1

∫
0

2π

∫ dηdθ ,         (4) 

where ρS is the mass density of the shell, the overdot denotes a time derivative. 
External forces are considered by means of the virtual work  
In order to carry out a linear vibration analysis US,LINEAR is considered, see equation 
(7). 
Following the approach developed in Ref.[8], modes of vibration are formally 
written as follows: 

     (10) 
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where:  and  represent the modal shape, such shapes are 
described by means of a double series expansion, e.g: .

 
U (η,θ ) = Um,nTm

*(η)cosnθ
n=0

N

∑
m=0

MU

∑  
where 

( ) ( )* 2 1m mT Tη η= −  and Tm(⋅) is the m-th order Chebyshev polynomial. The expansion 
allows to respect exactly the geometric boundary conditions. 
Once the linear analysis is carried out the displacement fields are re-expanded using 

the eigenfunctions of the system, e.g. ( ) ( )
max

( )
,

1
, , , ( )

N
j

u j
j

u x t U x f tθ θ
=

= ∑
 
.  

The shell shaker interaction and the effect of the top disk are taken into account in 
the energy approach based on the Lagrange equations. Details are omitted for the 
sake of brevity. 
 
 

4  Numerical Analysis  
 
Numerical analyses are carried out after a deep convergence analysis, details are 
omitted for the sake of brevity. 
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Figure 12. Amplitude frequency diagrams, numerical simulations, backward 
frequency sweep, shell vibration (mm). a) inward displacement and RMS(w); b) 
outward (positive) displacement. Position of the simulated point measurement: 

, c) Top and base acceleration [grms]. Excitation source: 0.09V. 
 
Results presented in Figure 12 are referred to a simulation carried out considering a 
sine excitation of the shaker with input voltage equal to 0.09V, this value is larger 
than the excitation used during the experiments (0.07V); however, below such value 
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the numerical model did not detect any dynamic instability. Simulations are carried 
out by decreasing the excitation frequency. The issue about the voltage level is not 
really significant; indeed, the need of a voltage slightly larger than experiments is 
probably due to an underestimation of the amplifier gain: this quantity could be 
influenced by the operating conditions of the amplifier-shaker system. The 
simulation is carried out in the frequency interval 300-350Hz, decreasing the 
frequency; the onset of instability is found at 333.4Hz, below such frequency the 
vibration amplitude is magnified, at 329,4Hz a second increment of the vibration 
amplitude is detected leading the maximum inward deflection to 2.7mm, a further 
reduction of the frequency does not cause a big amplitude variation up to 319.3Hz, 
where the vibration level drops down to small amplitudes. The behavior is coherent 
with the experimental results, the numerical model overestimates the amplitude of 
vibration (experiments give 1.8mm max inward vibration) and underestimates the 
frequency range for which the instability appears (experimental instability range 
295-333 Hz); this can be explained by the absence of companion modes and 
imperfections. 
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Figure 13. Stability boundaries. 

 
Figure 13 shows the stability boundaries obtained numerically by varying both the 
excitation source voltage and frequency; the boundaries are coherent with 
experiments and similar to the Ince-Strutt diagrams referred to the Mathieu equation, 
this is a further confirmation that the instability is due to a parametric resonance. 
The boundaries, obtained by increasing the excitation frequency (forward), are quite 
similar to the experimental boundaries; numerical boundaries are moved up with 
respect to the experiments, i.e. for the same excitation voltage the experimental 
instability region is wider. Backward boundaries present a wider instability region 
for low voltage; moreover, left and right curves do not match at the bottom, this 
indicates that the boundaries search could be improved by using a more 
sophisticated search, which is however beyond the purposes of the present work. 
Let us now consider an improved numerical model where companion modes are 
included in the expansion. It is worthwhile to point out the structures having 
symmetries are always characterized by double modes (also called conjugate modes) 
having the same frequency. In Figure 14 the representation of two conjugate modes 
is presented, the cross section of the shell is represented; indeed, the axial symmetry 
implies that the difference in shape of two conjugated modes appears only in the 
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circumferential direction. Shell conjugate modes have the same shape, but they are 
shifted of a quarter of wavelength in the circumferential direction. Obviously, 
axisymmetric modes do not have companions. 
 

MODE (1,6) MODE (1,6)c  companion 

 
Figure 14. Conjugate modes: a shell-like mode and its companion. 

 
If one includes companion modes in the displacement expansions (e.g. 

u(x,θ ,t) = U ( j ) (x,θ ) fu , j (t)+Uc
( j ) (x,θ ) fu , j ,c (t)⎡⎣ ⎤⎦

j=1

Nmax

∑ ) the results of the simulations 

improve, see Figure 15. The instability phenomenon is captured better, i.e. the 
instability region is enlarged with respect to the case without companion mode 
participation (322-340Hz), the saturation is more evident and the amplitudes are 
closer to the experiments.  
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Figure 15. Companion mode participation. Amplitude frequency diagrams, 
numerical simulations, backward frequency sweep, shell vibration (mm). a) inward 
displacement and RMS(w); b) outward (positive) displacement. Position of the 
simulated point measurement: . Excitation source: 0.09V. 

 
The numerical model allows to deepen the comprehension of the instability 
mechanisms. Figure 16 shows that when the instability takes place, the mode (1,6) 
and its companion are activated; such modes are not directly excited by the axial 
forces generated by the seismic excitation, there is an auto-parametric excitation of 
the asymmetric modes (modes (m,n) with n ≠ 0 ) due to the vibration of the resonant 
axisymmetric mode; the latter one is directly excited by the axial load produced by 
the inertia force of the top mass. 
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The energy transfer mechanism can be summarized as follows: outside the 
instability region the most important mode is the first axisymmetric one; inside the 
instability region mode (1,0) is driven by the resonant mode (1,6). When the 
instability takes place, the mode (1,6) is excited and absorb the most of the vibration 
energy, the energy inlet is provided at low frequency (close to the resonance of 
mode (1,0)), there is an energy transfer to the high frequency mode (1,6) a second 
modal activation is observed: mode (1,6c). 
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Figure 16. Amplitude frequency diagrams, numerical simulations, backward 
frequency sweep, modal amplitudes. Excitation source: 0.09V. 

 
 
 

The analysis of the time histories is interesting: outside the instability region the 
response is regular and stationary (Figures 17 and 18), the spectrum presents peaks 
at the excitation frequency and its multiples (the amplitude is not small so the 
superharmonics can be due to nonlinearities); inside the instability region the 
response is non-stationary and changes is character depending on the modes 
activated, the spectrum is broadband. 
Even if a specific analysis is not carried out yet, some conjectures can be made. The 
instability seems to lead to a chaotic region; the activation of several modes suggests 
that this could be high dimensional chaos.  
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Figure 17. Time histories. 
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Figure 18. Spectra. 
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5 Conclusions 
 
In this paper an experimental investigation on the nonlinear dynamics of circular 
cylindrical shells excited by a base excitation is presented. A nonlinear model of the 
shell considering also the shell shaker interaction is developed. 
 
Experiments clearly show a strong nonlinear phenomenon appearing when the first 
axisymmetric mode is excited: the phenomenon leads to large amplitude of 
vibrations in a wide range of frequencies, it appears extremely dangerous as it can 
lead to the collapse of the shell; moreover, it appears suddenly both increasing and 
decreasing the excitation frequency and is extremely violent. By observing 
experimentally a strong transfer of energy from low to high frequency a conjecture 
can be made about the nonlinear interaction among axisymmetric (directly excited) 
and asymmetric modes. A saturation phenomenon regarding the vibration of the top 
disk is observed, this is associated with the violent shell vibration; the shell behaves 
like an energy sink, absorbing part of the disk energy. 
 
The theoretical model shows satisfactory agreement with experiments and clarifies 
the energy transfer mechanism from low frequency axisymmetric modes and high 
frequency asymmetric modes, confirming the conjecture arising by the experimental 
data analysis.  
 
It is now clear that, in order to safely predict the response of a thin walled shell 
carrying a mass on the top, i.e. the typical aerospace problem for launchers, a 
nonlinear shell model is needed, but it is not enough: a further modelling regarding 
the shell mass interaction and the interaction between shell and excitation source is 
needed. 
 
 

References 
 
[1] Leissa, A.W., 1993. Vibration of Shells, NASA SP-288. Washington, DC: 

Government Printing Office. Now available from The Acoustical Society of 
America. 

[2] Babcock, C.D., 1983. Shell Stability. Journal of Applied Mechanics, 50, 935-
940. 

[3] Calladine, C.R., 1995. Understanding Imperfection-Sensitivity in the Buckling 
of Thin-Walled Shells. Thin-Walled Structures, 23, 215-235. 

[4] Teng, J.G., 1996. Buckling of thin shells: Recent advances and trends. Applied 
Mechanics Reviews, 49(4), 263-274. 

[5] Amabili, M., Païdoussis, M.P., 2003. Review of studies on geometrically 
nonlinear vibrations and dynamics of circular cylindrical shells and panels, 
with and without fluid-structure interaction. Applied Mechanics Reviews, 56, 
349-381. 

[6] Amabili, M., 2008. Nonlinear Vibrations and Stability of Shells and Plates, 
Cambridge University Press, Cambridge. 



18 

[7] Kubenko, V.D., Koval’chuk, P.S., 1998. Nonlinear problems of the vibration 
of thin shells (review). International Applied Mechanics. 34, 703- 728. 

[8] Pellicano, F., 2007. Vibrations of circular cylindrical shells: theory and 
experiments. J. of Sound and Vibration, 303, 154–170. 
doi:10.1016/j.jsv.2007.01.022. 

[9] Mallon, N. J., Fey, R. H. B., Nijmeijer, H., 2010. Dynamic stability of a base-
excited thin orthotropic cylindrical shell with top mass: Simulations and 
experiments. J. of Sound and Vibration, 329, 3149-3170. 

[10] F. Pellicano, Dynamic instability of a circular cylindrical shell carrying a top 
mass under seismic excitation: experiments and theory, Int. J. of Solids and 
Structures, 48 (2011) 408–427. 

 




