
Abstract

This paper contributes to modelling of porous materials with different levels of poros-
ity at different length scales. We use the theory of homogenization to upscale a poroe-
lastic description of the lowest level to higher levels of porosities in a sense that effec-
tive poroelastic material coefficients (consistent with the Biot model) at a higher level
are obtained by applying homogenization to the lower level. In this way, different
porosities associated with different scale levels are taken into account and a hierarchi-
cal description of a macroscopic specimen is obtained. We consider two scales and
focus on two important cases: a) the systems of pores at the two scales are intercon-
nected or b) are mutually separated by a semipermeable interface. Homogenization
results as well as numerical examples are presented.

Keywords: poroelasticity, homogenization, double porosity, micromechanics, multi-
scale modelling.

1 Introduction

In nature as well as in technical practice one can often find materials with different
levels of porosity at different scales. One possible approach to modelling such ma-
terials is to use the theory of porous media combined with the homogenization. A
model of poroelasticity [5] can describe behaviour at the mesoscopic scale. To take
into account heterogeneities, the theory of homogenization [4, 20] provides a natural
way of upscaling from this mesoscopic level to the macroscopic one, whereby effec-
tive poroelastic material coefficients (consistent with the Biot model) at a higher level
are obtained. This approach leads to a suitable hierarchical description of the porous
medium, where different porosities associated with different scale levels are respected.
Alternatively the dual porosity ansatz [1, 9, 17] related to strong heterogeneities in the
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material permeability can be employed, so that one-level homogenization provides
a model associated with multiple hierarchies of pores. Besides frequently studied
models of fractured porous rocks and other similar materials used in geosciences, an
example of a natural hierarchical porosity is the bone tissue, cf. [6]; two porosities,
the Haversian and the canaliculo-lacunar, associated with the meso- and micro-scopic
levels, respectively, form a connected double-porous structure where deformations in-
duce fluid redistribution.

In the present study we provide homogenization-based formulae which enable to
compute the poroelasticity coefficients for a given geometry and topology of micro-
and mesoscopic levels. At the microscopic level we consider solid skeleton filled with
a compressible fluid. Homogenization at each scale level proceeds in two steps: 1)
Find effective (homogenized) coefficients by solving auxiliary problems for several
characteristic (or corrector) functions, cf. [17, 13]; 2) Compute the homogenized co-
efficients that can be used for the higher level and/or “global” (homogenized) model
of the current level. Due to linearity of the problems, those steps are decoupled in a
sense that the computation of the homogenized coefficients for the global level is valid
for any point having the corresponding “microstructure”.

We present the two-level upscaling “micro-meso-macro” and illustrate influence
of the pore geometry and topology. In [16] we considered systems of interconnected
pores at different scales; in a steady state there is only one pore fluid pressure. In
this paper, we describe a different arrangement of porosities which can be mutually
separated by a semipermeable interface, however, each porosity can form a separate
connected system. In this situation, the homogenized problem results in two differ-
ent pressures. At the mesoscopic scale we take into account the Darcy flow in the
poroelastic matrix, although in the mesoscopic fractures (called channels in our termi-
nology) the fluid is assumed to be static with no pressure gradients.

Here we report the main results only, as the derivation of the homogenization for-
mulae is beyond the scope of this paper. In Section 2 we discuss modelling assump-
tions and introduce all formulae and equations constituting the two-level homogenized
model. The hierarchical homogenization is implemented in our in-house finite element
code; in Section 3 we illustrate the hierarchical upscaling procedure on two examples.

2 Hierarchical model of double porosity

We consider a poroelastic medium saturated by fluid. The porosity of the medium
is formed at two levels, distinguishable by different sizes of pores. These are con-
nected by a weakly permeable interface, so that the model also describes a situation
of disconnected porosities.

The two levels, further labeled by superscripts α and β are associated with the
“microscale” and the “mesoscale”, respectively. At the microscale level, we consider
an elastic solid phase forming a porous skeleton filled with fluid. We assume only
moderate pressure gradients at the mesoscopic scale, such that no flow dynamic effects
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are considered at the microscopic scale – the fluid is static. The pores can form a
connected porosity, or mutually separated inclusions: in the first case only one scalar
pressure value represents the pressure field in the porosity. By homogenizing this two-
phase medium we obtain a Biot-type model describing at the mesoscale the upscaled
poroelastic microstructure α, cf. [2].

At the mesoscale the above mentioned α-poroelasticity model describes the mate-
rial occupying the matrix of the meso-structure β; at this “higher” level the canals can
exchange the fluid with the microscopic pores of the α level due to a weakly perme-
able interface. For upscaling from the meso- to the macroscopic scale, we take into
account a slow flow in the “dual porosity” associated with the microscopic scale.

Let us consider the scale parameter ε, describing the ratio of the characteristic
sizes, Lα and Lβ , of the two levels, i.e. ε = Lα/Lβ . By superscript ε we indicate
dependence of functions and other parameters on ε. The two-level structure (double
porosity) is studied for ε→ 0 using the periodic unfolding method of homogenization
(other methods can be used); first we homogenize the microstructure, thus the effective
poroelastic properties of the “matrix” at the level β are obtained. Then upscaling of
the level β using analogical procedure with ε = Lβ/Lmacro leads to the effective
poroelastic properties of the “macroscopic” level.

micro−level meso−level macro−level  
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Figure 1: The two-level heterogeneous structure: α-level can be formed by an oc-
cluded (disconnected) porosities Y α

c , or by a single connected porosity; the matrix Y α
m

is formed by the solid. At the β-level, the homogenized structure of the α-level forms
the material situated in the matrix Y β

m. Representative periodic cells are depicted.

2.1 1st level upscaling: micro-to-meso

At the mesoscopic scale we consider domain Ωα ⊂ R3 which is decomposed into the
skeleton and the canals (or inclusions) occupying the domains Ωα,ε

m and Ωα,ε
c , which

are separated by the interface Γα,ε,

Ωα = Ωα,ε
m ∪ Ωα,ε

c ∪ Γα,ε , Ωα,ε
m ∩ Ωα,ε

c = ∅ , Γα,ε = Ωα,ε
m ∩ Ωα,ε

c . (1)
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In what follows, we will denote by ∇ and ∇· the gradient and divergence opera-
tors, respectively. The symbol “·” will denote the scalar product and the symbol “:”
between tensors of any orders denotes their double contraction. e(u) is the linear strain
tensor generated by displacement vector u.

2.1.1 Model at the microscopic scale

The deformation of the matrix is governed by the system of equations defining the
α-level problem: find (uα,ε, pα,ε) such that

∇ · (Dα,εe(uα,ε)) = fα,ε , in Ωα,ε
m ,

n[m] · Dα,εe(uα,ε) = gα,ε , on ∂extΩ
α,ε
m ,

n[m] · Dα,εe(uα,ε) = −pα,εn[m] , on Γα,ε ,

(2)

and ∫
∂Ωα,ε

c

uα,ε · n[c] dSx + γαpα,ε|Ωα,ε
c | = −Jα,ε , (3)

where uα,ε is the displacement vector of the matrix, pα,ε is the fluid pressure, Dα,ε

is the fourth-order elasticity tensor of the matrix and γα is the fluid compressibility.
The applied surface-force and volume-force fields are denoted respectively by gα,ε and
fα,ε. The outer unit normal vector of the boundary Ωα,ε

m is denoted by n[m]. Condition
(3) says that the change of the porosity (the first left-hand side term), i.e., change of
volume |Ωα,ε

c |, is compensated by fluid compression and by the fluid out-flow Jε,α

through external boundary ∂extΩ
α,ε
c = ∂Ωα,ε

c ∪ ∂Ωα, i.e. outwards Ωα. Note that the
solvability condition yields

∫
∂extΩ

α,ε
m

gα,ε dSx+
∫

Ωα,ε
m

fα,ε dVx = 0 where dSx and dVx

are the differential elements of surface and volume, respectively.
The boundary value problem given by (2) and (3) can be reformulated in the weak

sense: find (uα,ε, pα,ε) ∈ H1(Ωα,ε
m )/R(Ωα)× R such that∫

Ωα,ε
m

(Dα,εe(uα,ε)) : e(v) dVx + pα,ε

∫
Γα,ε

m

n[m] · v dSx =∫
∂extΩ

α,ε
m

gα,ε · v dSx +

∫
Ωα,ε

m

fα,ε · v dVx, for all v ∈ H1(Ωα,ε
m ) , (4)

∫
∂Ωα,ε

c

uα,ε · n[c] dSx + γαpα,ε|Ωα,ε
c | = −Jα,ε ,

where space R(Ωα) contains all the rigid body motions; due to the boundary condi-
tions in (2), the displacements are determined up to rigid body motions. We assume
that fα,ε and gα,ε are defined in such a way that the solvability conditions associated
with (4) are satisfied.
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2.1.2 Homogenization result

We assume that the domain Ωα is obtained from a periodic microstructure generated
by a representative unit cell Y α decomposed as follows

Y α = Y α
m ∪ Y α

c ∪ Γα
Y , Y α

c = Y α \ Y α
m , Γα

Y = Y α
m ∩ Y α

c . (5)

Without loss of generality we can define Y = (]0, 1[)3 to be the unit cube, so |Y | =
1. As a result of (5), the domain Ωα is defined by

⋃
k∈Kε ε(Y α + k) with Kε =

{k ∈ Z3, ε(Y α +k) ⊂ Ωα}. The upscaling procedure of the heterogeneous continuum
consists in the limit analysis with respect to ε → 0. For this we use the periodic
unfolding method [4, 8] based on the coordinate decomposition x = ξ + εy, where
ξ = ε

[
x
ε

]
Y

is the lattice coordinate at the mesoscopic scale, so that y ∈ Y is the
local coordinate of the microscopic scale. The analogous notation is employed when
upscaling from the mesoscopic to macroscopic scale. By ∼

∫
D

= |Y |−1
∫

D
with D ⊂ Y

we denote the local average, although |Y | = 1.
We assume weak convergence of the external forces; denoting by χε

m the charac-
teristic function of the matrix, χε

mfα,ε converge towards (1−φα)fα where fα is a local
averaged volume-force acting on the matrix. The volume fraction of pores is defined
by φα = |Y α

c |/|Y α|.
When ε → 0, the strain is a two-scale function defined from its macroscopic part

e(u(x)) and its fluctuating part ey(u1(x, y)), where the fluctuations are proportional
to macroscopic strains. There are so called characteristic displacements ωij(y) and
ωP (y) such that u1(x, y) = ωij(y)∂jui(x) − ωP (y)p, where p is the constant fluid
pressure in Ωα. Functions ωij(y) and ωP (y) are obtained as solutions of the following
problems: find (ωij,ωP ) ∈ H1

#(Ym)×H1
#(Ym) satisfying

aα
m

(
ωij + Πij, v

)
= 0 , ∀v ∈ H1

#(Ym) ,

aα
m

(
ωP , v

)
=∼
∫

ΓY

v · n[m] dSy , ∀v ∈ H1
#(Ym) ,

(6)

where aα
m (w, v) =∼

∫
Ym

(Dey(w)) : ey(v) and Πij = (Πij
k ), i, j, k = 1, 2, 3 with

Πij
k = yjδik.
Using the characteristic responses (6) obtained at the microscopic scale the effec-

tive properties of the deformable porous medium are given by

Aα
ijkl = aα

m

(
ωij + Πij, ωkl + Πkl

)
, Bα

ij = − ∼
∫

Ym

divyω
ij , Mα = aα

m

(
ωP , ωP

)
.

(7)

Obviously, the tensors Aα = (Aα
ijkl) and Bα = (Bα

ij) are symmetric; moreover Aα is
positive definite and Mα > 0.

Model of the poroelasticity At this first-level of the homogenization process, we
obtain a model of the poroelasticity involving the skeleton displacements u ∈ H1(Ω)/R(Ω)

5



and fluid pressure p ∈ R which is constant due to our assumptions. These state vari-
ables verify the following equations:∫

Ω

(
Aαe(u)− pB̂

α
)

: e(v) =

∫
Ω

(1− φ)f · v +

∫
∂Ω

ḡ · v dSx , ∀ v ∈ H1(Ω) ,∫
Ω

B̂
α

: e(u) + p(Mα + φαγ)|Ωα| = −J, with B̂
α

:= Bα + φαI,

(8)

where J is the limit of the total flux Jα,ε outwards Ωα and ḡ is the mean surface stress
(traction force).

2.2 2nd level upscaling: meso-to-macro

The dimensionless parameter ε now denotes the ratio between the mesoscopic and the
macroscopic scales. At the mesoscopic scale, the geometrical configuration consists
of two compartments: 1) the matrix Ωβ,ε

m which is formed by the porous medium
associated with the upscaled microstructure of level α, 2) the channels Ωβ,ε

c which
are filled with the fluid. The following split holds: Ωβ = Ωβ,ε

m ∪ Ωβ,ε
c ∪ Γβ,ε. The

interface Γβ,ε
m separating the two compartments is semipermeable, in general, i.e. the

fluid can be redistributed between Ωβ,ε
m and Ωβ,ε

c . As well as in the case of the 1st level
upscaling, we neglect any pressure gradients in the fluid occupying Ωβ,ε

c .

2.2.1 Model at the mesoscopic scale

The structure is loaded on ∂extΩ
β,ε
m = ∂Ωβ∩∂Ωβ,ε

m by a surface-force field ḡα (see (8))
and by a volume-force field f̂

α
= (1−φα)f acting on the solid phase. The total outflow

from Ωβ through the micro-porosity α is Jβ,ε
ext . Moreover, the mesoscopic channels of

the level β are drained through ∂extΩ
β,ε
c ; we assume that a normal filtration velocity

w̄n is given.

Pressure at the mesoscopic level By p̃α,ε we shall refer to the pressure in the up-
scaled “microscopic” porosity, i.e. in Ωβ,ε

m , whereas by pβ,ε we denote the fluid pres-
sure in the mesoscopic pores which form Ωβ,ε

c . Further, pε = (p̃α,ε, pβ,ε) is the abbre-
viation for pressure in Ωβ .

Using the result of the upscaling of the α-level problem, the poroelasticity model
(8) yields the following equilibrium equations imposed locally in any x ∈ Ωβ,ε

m

−∇ · σβ,ε = (1− φα)f ,

φαζ̇β,ε + B̂
α

: e(u̇β,ε) + (Mα + φαγ) ˙̃pα,ε = 0 ,
(9)

where ζ̇β,ε is the local increase of the fluid volume in the 1st level porosity. Moderate
pressure gradients ∇p̃α,ε are admitted at the mesoscale level in Ωβ,ε

m , so that (9) is
supplemented by the constitutive equations involving a permeability tensor K:

σβ,ε = Aαe(uβ,ε)− B̂
α
p̃α,ε ,

φαζ̇β,ε = −∇ · wβ,ε , wβ,ε = −K∇p̃α,ε .
(10)
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While the stress σ is given according to (8)1, wβ,ε is the filtration velocity obeying the
Darcy law. The permeability K can be computed using the standard homogenization
of the Stokes flow considered in a connected α-porosity generated by Y α

c , see e.g.
[9, 20]. However, if this porosity is not connected, i.e. if Y α

c ∩∂Y = ∅, then K is zero!
In this case also the interface Γβ

m is impermeable.
On the interface Γβ,ε

m separating the pore fluid and the poroelastic matrix the fol-
lowing conditions are considered,

n · σβ,ε = npβ,ε ,

−n · K∇p̃α,ε = κε[pε]αβ , where [pε]αβ = (p̃α,ε − pβ,ε) ,
(11)

which express pressure loading of the solid phase of the microscopic porosity, (11)1,
and the semipermeability of Γβ,ε

m , (11)2. We shall assume

κε = εκ̄ ,

so that the interface is progressively less permeable with decreasing size of the meso-
scopic structure. Note that κ̄ = 0 if the α porosity is occluded, as discussed above.

It is now possible to set the β-level problem: find (uβ,ε, p̃α,ε, pβ,ε) ∈ H1(Ωβ,ε
m ) ×

H1(Ωβ,ε
m )× R such that∫

Ωβ,ε
m

(
Aα : e(uβ,ε)− p̃α,εB̂

α
)

: e(v) + pβ,ε

∫
Γβ,ε

v · n[m] dSx =∫
Ωβ,ε

m

f̂
α
· v +

∫
∂extΩ

β,ε
m

ḡα dSx ,∫
Ωβ,ε

m

(
B̂

α
: e(u̇β,ε) + (Mα + γφα) ˙̃pα,ε

)
qα +

∫
Ωβ,ε

m

K∇p̃α,ε · ∇qα,ε

+

∫
Γβ,ε

κε[pε]αβ [qε]αβ + qβ

∫
Γβ,ε

u̇β,ε · n[c] dSx + γφβ|Ωβ|ṗβ,εqβ =

−Jβ
extq

β +

∫
∂extΩ

β,ε
m

qαn[m] · w̄ε ,

(12)

for all v ∈ H1(Ωβ,ε
m ) and for all qα ∈ H1(Ωβ,ε

m ). Problem (12) has been treated
by asymptotic analysis, ε → 0. Below we summarize the main results. We recall
1− φβ,ε = |Ωβ,ε

m |/|Ωβ|, where φβ,ε → φβ := |Y β
c |/|Y β|.

2.2.2 Homogenization result

In analogy with the first level upscaling, we consider a periodic mesostructure gener-
ated by the local periodic cell Y β which is decomposed according to (5), i.e. Y β =
Y β

m ∪ Y β
c ∪ Γβ

Y . To define the local problems for corrector functions, we need the fol-
lowing bilinear forms which involve the homogenized coefficients computed in (7):

aβ
m (w, v) =∼

∫
Y β

m

Aαey(w) : ey(v) ,

bβm (p, v) =∼
∫

Y β
m

pB̂
α

: ey(v) .
(13)
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Obviously, aβ
m (·, ·) is coercive on H1

#(Y β
m). The convergence result yields multiplica-

tive splits of the displacement and pressure fluctuations, u1 and p1:

u1(x, y, t) = wijex
ij(u) + ŵ(y)pα(x, t) + w̄(y)p̄β(t) ,

p1(x, y, t) = ηi∂x
i p

α(x, t) .

It is worth noting that upscaling from the meso- to the macro-level does not lead to
any fading memory terms involving time convolutions, in contrast with upscaling of
the double porosity media, cf. [17, 12]. As a counterpart to the α level, see (6), the
characteristic responses, i.e., displacement modes at the mesoscopic level, satisfy the
following problems: find wij, ŵ, w̄ ∈ H1

#(Y β
m) such that

aβ
m

(
wij + Πij, v

)
= 0 ∀v ∈ H1

#(Y β
m) ,

aβ
m (ŵ, v) = bβm (1, v) ∀v ∈ H1

#(Y β
m) ,

aβ
m (w̄, v) = − ∼

∫
Γβ

Y

v · n[m] ∀v ∈ H1
#(Y β

m) .

(14)

The pressure fluctuation p1 associated with the α-level porosity is driven by the char-
acteristic pressure response: find η1 ∈ H1

#(Y β
m)/R such that

∼
∫

Y β
m

K∇y(η
i + yi) · ∇yψ = 0 ∀v ∈ H1

#(Y β
m) . (15)

The homogenized coefficients describing the material behaviour at the β level are
computed as follows:

Aβ = (Aβ
ijkl), Aβ

ijkl = aβ
m

(
wij + Πij, wkl + Πkl

)
,

Bβ = (Bβ
ij), Bβ

ij = bβm
(
1, wij + Πij

)
,

B̄β
= (B̄β

ij), B̄β
ij = φβδij + aβ

m

(
wij, w̄

)
,

Kβ = (Kβ
ij), Kβ

ij =∼
∫

Y β
m

K∇y(η
i + yi) · ∇y(η

j + yj) ,

(16)

where Aβ is the skeleton stiffness corresponding to the dried medium, Bβ and B̄β are
the Biot-type stress coefficients associated with the two pressures, pα and p̄β , respec-
tively, and Kβ is the effective permeability.

There are three effective Biot compressibility modulae

Mβ = aβ
m (ŵ, ŵ) , M̄β = aβ

m (w̄, w̄) , Nβ = aβ
m (ŵ, w̄) , (17)

which constitute the following compressibility matrix:

IMβ =

[
Mβ +Mα + γφα Nβ

Nβ M̄β + γφβ

]
. (18)

Further, we shall use the two-level pressure [pα, p̄β] ∈ L2(Ωβ) × R, recalling that p̄β

is a scalar value. The macroscopic behaviour of the double porosity fluid saturated
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medium is described by the triplet (u, pα, p̄β) ∈ H1(Ωβ)/R(Ωβ)×L2(Ωβ)×R which
satisfies the macroscopic equations (we use the abbreviation Ω = Ωβ)

∫
Ω

Aβe(u) : e(v)−
∫

Ω

e(v) :
[
Bβ, B̄β

]
[pα, p̄β]T =

∫
∂Ω

ḡβ · v dSx +

∫
Ω

(1− φβ)f̂
α
· v ,∫

Ω

[qα, q̄β]
[
Bβ, B̄β

]T

: e(u̇)

+

∫
Ω

Kβ∇pα · ∇qα +

∫
Ω

κβ(pα − p̄β)(qα − q̄β)

+

∫
Ω

[qα, q̄β] · IMβ[ṗα, ˙̄pβ]T = −Jβ
extq̄

β +

∫
∂Ω

(1− φβ)qαw̄n dSx ,

(19)

for all triplets (v, qα, q̄β) ∈ H1(Ωβ) × L2(Ωβ) × R, where κβ =∼
∫

Γβ
Y

κ̄ is the average
interface permeability, ḡβ := (1 − φβ)ḡα + φβ(−p̄β)n is the mean surface stress (the
traction force density), w̄n is a draining flux outwards the α porosity and Jβ

ext is a given
overall drainage of the β-level connected pores. Obviously, the data must satisfy some
solvability conditions.

If Kβ or κβ are nonvanishing, initial conditions must be supplied; one may consider
the unloaded and undeformed state, or a steady state characterized by a single pressure
value, i.e. pα(x, ·) = p̄β(·), x ∈ Ωβ .

3 Numerical examples

The homogenization results presented in previous sections were discretized by the
finite element method and implemented in a standalone computer code based on our
code SfePy [3]. In this section we show several results obtained by this code.

For numerical illustration of effects of connected versus disconnected porosities on
the level α (recall Fig. 1) we used the reference periodic cells of the micro structures
shown in Fig. 2. Two cases were considered:

• case 1: disconnected porosity on the level α (Fig. 2 left), connected porosity on
the level β (Fig. 2 right);

• case 2: connected porosity on the levels α and β (Fig. 2 right).

The following material/geometrical parameters were used:
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Figure 2: Left: reference cell with disconnected porosity (level α for case 1). Right:
reference cell with connected porosity (level α for case 2, level β for cases 1 and 2).

coefficient units where level values
stiffness D GPa Ym α λ = 17, µ = 1.7

kinematic fluid viscosity ν m2/s Yc α ν = 10−6

fluid compressibility γ GPa−1 Ωβ macro β γ = 1.0
interface permeability κβ m / (GPa s) Ωβ macro β κβ = 10−6

porosity φ 1 case 1 α φ = 0.260
1 case 2 α φ = 0.185
1 case 1, 2 β φ = 0.185

where the Lamé parameters defined the stiffness tensor as follows:

D : Dijkl ≡ µ(δikδjl + δilδjk) + λδijδkl .

Because a practical computation has to be related to a real scale of an existing mi-
crostructure, and because of scaling assumptions for fluid viscosity and interface per-
meability, we assumed the real value of ε = 10−3 and scaled the values given above
accordingly, when solving for the homogenized coefficients (ν → ν/ε2, κβ → κβ/ε).
The computations resulted in the homogenized coefficients summarized in Tab. 1 for
the two cases.

The macroscopic equations of level β (19) were solved on a cube domain with the
following initial and boundary conditions:

• u(0, ·) = 0, pα(0, ·) = 0, p̄β(0, ·) = 0,

• u(t, x) = 0 for x on the bottom face,

• pressure traction load on the top face, with magnitude equal to time step ×10−2

[GPa] up to step 10, then held on the value 10 × 10−2, for 20 time steps, t ∈
[0, 0.1].

In Fig. 3 we compare time histories of macroscopic solutions for the two cases and in
Fig. 4 several snapshots of macroscopic solutions are shown. It can be seen that the
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coef. case 1 case 2

Kα

2
4

0 0 0
0 0 0
0 0 0

3
5

2
4

2.05 · 10−4 0 0
0 1.25 · 10−4 0
0 0 2.98 · 10−4

3
5

Bα �
4.70 · 10−1, 4.70 · 10−1, 4.70 · 10−1, 0, 0, 0

� �
5.87 · 10−1, 5.94 · 10−1, 5.85 · 10−1, 0, 0, 0

�

Aα

2
666664

6.48 4.12 4.11 0 0 0
4.12 6.50 4.12 0 0 0
4.11 4.12 6.49 0 0 0
0 0 0 1.01 0 0
0 0 0 0 1.01 0
0 0 0 0 0 1.01

3
777775

2
666664

5.82 3.18 3.42 0 0 0
3.18 5.54 3.30 0 0 0
3.42 3.30 5.84 0 0 0
0 0 0 0.948 0 0
0 0 0 0 1.10 0
0 0 0 0 0 1.05

3
777775

Mα
2.59 · 10−2 3.25 · 10−2

Kβ

2
4

0 0 0
0 0 0
0 0 0

3
5

2
4

1.67 · 10−4 0 0
0 1.02 · 10−4 0
0 0 2.43 · 10−4

3
5

Bβ �
2.84 · 10−1, 2.74 · 10−1, 2.86 · 10−1, 0, 0, 0

� �
3.31 · 10−1, 3.30 · 10−1, 3.28 · 10−1, 0, 0, 0

�

B̄β �
3.15 · 10−1, 3.26 · 10−1, 3.14 · 10−1, 0, 0, 0

� �
3.15 · 10−1, 3.21 · 10−1, 3.16 · 10−1, 0, 0, 0

�

Aβ

2
666664

3.05 1.28 1.40 0 0 0
1.28 2.91 1.35 0 0 0
1.40 1.35 3.02 0 0 0
0 0 0 0.552 0 0
0 0 0 0 0.641 0
0 0 0 0 0 0.611

3
777775

2
666664

2.99 1.08 1.30 0 0 0
1.08 2.72 1.20 0 0 0
1.30 1.20 2.93 0 0 0
0 0 0 0.519 0 0
0 0 0 0 0.688 0
0 0 0 0 0 0.631

3
777775

Mβ
4.66 · 10−2 5.68 · 10−2

M̄β
4.80 · 10−2 6.31 · 10−2

Nβ −4.73 · 10−2 −5.99 · 10−2

Table 1: Homogenized coefficients on levels α, β for case 1 and 2.

connected porosity (case 2) behaves in a viscoelastic manner because of the fluid flow
in the interconnected pores, while the disconnected porosity (case 1) behaves like an
elastic body, without time dependence.

4 Conclusion

In this paper we introduced the two-level homogenized model of poroelastic media
with weakly permeable interface between two porosities. As an advantage, the poroe-
lastic coefficients can be computed for a given specific micro- and meso- structures.
Obviously, this method of introducing the “effective” material parameters is much
more accurate than the phenomenological approach based on the theory of porous
media, cf. [5, 7]. In the literature, homogenization in poroelasticity is a frequently
discussed issue [2], but to our knowledge, the results reported in this paper are novel,
namely due to the numerical feedback and computer implementation [3]. There are
many issues of interest which should be considered in a future work, such as the
restrictions arising along-with the scale separation and periodicity. Moreover, there
are several important extensions of the present modeling approach which we have in
mind: comparing this hierarchical method of upscaling with the homogenization of
double porous media, cf. [17], extensions for nonlinear materials and large deforma-
tions [11, 15, 10], or modeling poro-viscoelastic structures, [19, 18].
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Figure 3: Comparison of time histories of macroscopic solutions for the two cases: (a)
difference between pα in a point on the top face xt and bottom face xb for case 1; (b)
for case 2; (c) p̄β , (d) z-displacement in a point on the top face xt.
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[14] E. Rohan, R. Cimrman, V. Lukeš, “Numerical modelling and homogenized con-
stitutive law of large deforming fluid saturated heterogeneous solids”, Computers
and Structures, 84: 1095–1114, 2006.
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