
Abstract

An analytical model that describes a thin-walled I-section column under pure com-

pression based on variational principles is presented. The Rayleigh–Ritz method is

combined with continuous displacement functions to formulate the total potential en-

ergy that is minimized. A system of differential and integral equilibrium equations

is formulated for the structural component for which numerical continuation reveals

progressive cellular buckling (or snaking) arising from the nonlinear interaction be-

tween the weakly stable overall mode and the strongly stable local buckling mode.

The resulting behaviour is highly unstable and is postulated to be highly sensitive to

initial geometric imperfections.

Keywords: buckling, mode interaction, snaking, thin-walled components, nonlinear-

ity.

1 Introduction

The buckling of struts and columns represents the most common type of structural

instability problem [1]. However, when the compression member is made from slen-

der metallic plate elements they are well known to suffer from a variety of different

elastic instability phenomena. In the current work, the classic problem of a column

under axial compression made from a linear elastic material with an open and doubly-

symmetric cross-section – an “I-section” – is studied in detail from an analytical ap-

proach. Under this type of loading, long members are primarily susceptible to a global

(or overall) mode of instability namely Euler buckling, where flexure about the weak

axis occurs once the theoretical Euler buckling load is reached. However, when the

individual plate elements of the column cross-section, namely the flanges and the web,

are relatively thin or slender, elastic local buckling of these may also occur; if this hap-
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pens in combination with the overall instability, then the resulting behaviour is usually

far more unstable than when the modes are triggered individually. Recent work on the

interactive buckling of columns include experimental and finite element studies [2, 3],

where the focus was on the behaviour of columns made from stainless steel. However,

the more generic finding that the members had an increased sensitivity to imperfec-

tions was highlighted. Other structural components that are known to suffer from the

interaction of local and overall instability modes are thin-walled beams under uniform

bending [4], sandwich struts [5], stringer-stiffened and corrugated plates [6, 7] and

built-up, compound or reticulated columns [8].

Apart from the aforementioned work where some successful numerical modelling

was presented [3], the formulation of a mathematical model accounting for the interac-

tive behaviour has not been forthcoming. The current work presents the development

of a variational model that accounts for the mode interaction between overall Euler

buckling and local buckling of a flange such that the perfect elastic post-buckling re-

sponse of the column can be evaluated. A system of nonlinear ordinary differential

equations subject to integral constraints is derived, which are solved using the nu-

merical continuation package AUTO [9]. It is indeed found that the system is highly

unstable when interactive buckling is triggered; snap-backs in the response showing

sequential destabilization and restabilization and a progressive spreading of the initial

localized buckling mode are also revealed. This latter type of response has become

known in the literature as cellular buckling [10] or snaking [11] and it is shown to

appear naturally in the numerical results of the current model. As far as the authors

are aware, this is the first time this phenomenon has been found in columns undergo-

ing Euler and local buckling simultaneously. Similar behaviour has been discovered

in various other mechanical systems such as in the post-buckling of cylindrical shells

[12], the sequential folding of geological layers [13] and most recently in the lateral

buckling of thin-walled beams [4].

Experimental results from the literature [2] are used primarily as a guideline for

the current study. Highly encouraging results emerge both in terms of the mechan-

ical destabilization exhibited and the nature of the post-buckling deformation. This

demonstrates that the fundamental physics of this system is captured by the analytical

approach. Currently, the situation where overall buckling occurs first is catered for;

hence, a brief discussion is presented on how the current model could be enhanced to

allow for the case where local buckling is critical. Conclusions are then drawn.

2 Analytical Model

Consider a thin-walled I-section column (or strut) of length L made from a linear

elastic, homogeneous and isotropic material with Young’s modulus E and Poisson’s

ratio ν. It is assumed to have a perfect geometry and is loaded by an axial force P
(see Figure 1) that is applied at the centroid of the cross-section (Figure 2) with rigid

end plates that transfer the force uniformly to the entire cross-section. The web is

assumed to provide a simple support to both flanges and not to buckle under the axial
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Figure 1: Elevation of an I-section strut of length L that is compressed axially by a

force P . The longitudinal and lateral coordinates are z and y respectively.
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Figure 2: Cross-section of strut; the transverse coordinate is x.

compression, an assumption that is justified later. For the current case, each flange

has width b and thickness t, the total cross-section depth is h and the column length

L is chosen such that Euler buckling about the weaker y-axis occurs place before any

flange buckles locally. It is assumed currently that the I-section is effectively made up

from two channel sections connected back-to-back; hence, the assumption is that the

web thickness tw = 2t, this type of arrangement has been used in recent experimental

studies [2, 4]. The formulation begins with the definitions for both the overall and the

local modal displacements. Timoshenko beam theory is assumed, meaning that the

effect of shear is not neglected as in standard Euler–Bernoulli beam theory. Although

it turns out that the effect of shear is only minor, it is necessary to account for it

since it provides the key expressions within the total potential energy equation that

allow buckling mode interaction to be modelled [5, 4]. To account for shear, two

generalized coordinates qs and qt, defined as the amplitudes of the degrees of freedom

known as “sway” and “tilt” [5] are introduced to model the overall mode as shown in

Figure 3, where the lateral deflection W and the rotation θ are given by the following

expressions:

W (z) = qsL sin
πz

L
,

θ(z) = qtπ cos
πz

L
.

(1)
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Figure 3: Sway and tilt components of the minor axis overall buckling mode.

For the present case, the shear strain γxz is included and given by the following ex-

pression:

γxz =
dW

dz
− θ = (qs − qt) π cos

πz

L
. (2)

Of course, Euler–Bernoulli beam theory would imply that since γxz = 0, then qs = qt.

The local mode is modelled with appropriate boundary conditions. The outstands

of the flanges have free edges, whereas the web is assumed to provide no more than a

simple support to the flanges; hence, a linear distribution is assumed in the x direction,

see Figure 4), as [14] shows that the local buckling eigenmode would have a linear

x

y

w

w

w(x, z) = −
2x

b
w(z)

z Web line

b/2 w

Free edge

x

Figure 4: Local buckling mode: out-of-plane flange displacement w(z); note the linear

distribution in x direction.

transverse displacement distribution for that type of plate. For the local mode in-plane

displacement u, the distribution is also assumed to be linear in x, as shown in Figure

5, leading to the following expressions for the local out-of-plane deflection w and the

in-plane deflection u:

w(z, x) = −
2x

b
w(z),

u(z, x) = −
2x

b
u(z).

(3)
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Figure 5: Local buckling mode: in-plane flange displacement u(z); note the linear

distribution in x direction and the assumed average end-displacement that is used to

calculate the local contribution to the work done by P (lower diagram).

The transverse deflection v(z, x) is assumed to be small and hence neglected for the

current case; this reflects the findings from Koiter and Pignataro [6] for rectangular

plates with three pinned edges and one free edge.

2.1 Total potential energy

The total potential energy, V , was determined with the main contributions being the

overall and local bending energy Ubo and Ubl respectively, the membrane energy Um,

the shear strain energy Us and the work done PE . Note that the overall bending energy

Ubo only consists of the bending energy stored in the web, since the membrane energy

stored in the flanges already accounts for the effect of bending in the flanges. The

overall bending energy involves the second derivative of W and is given by:

Ubo =
1

2
EIw

∫ L

0

Ẅ 2 dz

=
1

2
EIw

∫ L

0

q2
s

π4

L2
sin2 πz

L
dz,

(4)

where dots represent differentiation with respect to z and Iw = 2t(h − 2t)2/12 is the

second moment of area of the web about the global weak axis. The local bending
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energy, accounting for both flanges, is determined as:

Ubl =

∫ L

0

∫ 0

−b/2

D

{

[

∂2w

∂z2
+

∂2w

∂x2

]2

− 2 (1 − ν)

[

∂2w

∂z2

∂2w

∂x2
−

(

∂2w

∂z∂x

)2
]}

dx dz

= D

∫ L

0

[

1

6
bẅ2 +

4

b
(1 − ν) ẇ2

]

dz,

(5)

where D = Et3/[12(1 − ν2)] is the plate flexural rigidity and ν is the Poisson’s ratio.

Note that the local bending energy only arises from the more compressive side of

the flanges after Euler buckling occurs. The buckled configuration of the flange plate

involves double curvature in the z and x directions, indicating the non-developable

nature of plate deformation. The so-called membrane strain energy is derived from

considering the axial stresses in the flanges, thus:

Um =
1

2
E

∫ L

0

∫ t

0

∫ b/2

−b/2

(

ε2
z + ε2

x + 2νεzεx

)

dx dy dz. (6)

The transverse component of strain εx is neglected since it has been shown that it has

no effect on the post-buckling behaviour of a long plate with three simply-supported

edges and one free edge [6]. The longitudinal strain εz has to be modelled separately

for different outstand flanges. Recall that the tilt component of the in-plane displace-

ment from the overall mode is given by ut = −θx; hence:

εz,overall =
∂ut

∂z
= xqt

π2

L
sin

πz

L
. (7)

The local mode contribution is based on von Kárman plate theory. A pure in-plane

compressive strain ∆ is also included. The direct strains in the tension and compres-

sion side of the flanges, denoted as εzt and εzc are thus:

εzt = xqt
π2

L
sin

πz

L
− ∆,

εzc = xqt
π2

L
sin

πz

L
− ∆ +

∂u

∂z
+

1

2

(

∂w

∂z

)2

= xqt
π2

L
sin

πz

L
− ∆ −

2x

b
u̇ +

2x2

b2
ẇ2.

(8)

The total membrane energy is thus, assuming that h ≫ t:

Um =

∫ L

0

{

Eth∆2 + Etb

[

b2

12
qt

2 π4

L2
sin2 πz

L
+ ∆2 +

1

6
u̇2 +

1

40
ẇ4

−
b

2
qt

π2

L
sin

πz

L

(

1

3
u̇ +

1

8
ẇ2

)

−
1

2
u̇∆ −

1

6
ẇ2∆ +

1

8
u̇ẇ2

]}

dz,

(9)

where, apart from the first term that represents the energy stored in the web, the con-

tributions are from the strains in both flanges. The shear strain energy Us has a general
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expression:

Us =
1

2
G

∫ L

0

∫ t

0

∫ b/2

−b/2

γ2
xz dx dy dz, (10)

where G is the shear modulus and is given by E/[2(1 + ν)] for a homogeneous and

isotropic material. The shear strain γxz contributions are also modelled separately for

the compression and the tension side of the flanges:

γxzt =
∂W

∂z
− θ = (qs − qt) π cos

πz

L
,

γxzc =
∂W

∂z
− θ +

∂u

∂x
+

∂w

∂z

∂w

∂x

= (qs − qt) π cos
πz

L
−

2

b
u +

4

b2
xwẇ.

(11)

The expression for the strain energy from shear is thus:

Us = Gtb

∫ L

0

[

(qs − qt)
2 π2 cos2 πz

L
+

2

b2

(

u2 +
1

3
w2ẇ2 + uwẇ

)

−
1

b
(qs − qt) π cos

πz

L
(2u + wẇ)

]

dz.

(12)

Finally, the work done by the axial load P is given by:

PE = P

∫ L

0

[

1

2
qsπ

2 cos2 πz

L
−

1

2
u̇ + ∆

]

dz, (13)

where E consists of the longitudinal displacement due to overall buckling, the in-plane

displacement due to local buckling and the initial end shortening. Note that the dis-

placement due to local buckling is taken as the average value between the maximum

in-plane displacement in the more compressed outstand u and the zero in-plane dis-

placement in the less compressed outstand, which is illustrated in Figure 5. The total

potential energy V is therefore assembled thus:

V = Ubo + Ubl + Um + Us − PE . (14)

2.2 Variational Formulation

The governing differential equations are obtained by performing the calculus of vari-

ations on the total potential energy V following a well established procedure that has

been detailed in [5]. The integrand of the total potential energy V can be expressed as

the Lagrangian (L) of the form:

V =

∫ L

0

L (ẅ, ẇ, w, u̇, u, z) dz. (15)
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The first variation of V is given by:

δV =

∫ L

0

[

∂L

∂ẅ
δẅ +

∂L

∂ẇ
δẇ +

∂L

∂w
δw +

∂L

∂u̇
δu̇ +

∂L

∂u
δu

]

dz. (16)

To find the equilibrium states, V must be stationary, which requires the first variation

δV to vanish for any small change in w and u. By assuming that δẅ = d(δẇ)/ dz,

δẇ = d(δw)/dz and similarly δu̇ = d(δu)/dz, integration by parts allows the devel-

opment of the Euler–Lagrange equations for w and u; these comprise a fourth order

differential equation in terms of w and a second order differential equation in terms

of u was obtained. For the equations to be solved by the continuation package AUTO,

the system has to be non-dimensionalized with respect to the non-dimensional spatial

coordinate z̃, which is defined as z̃ = 2z/L. The non-dimensional out-of-plane dis-

placement w̃ and in-plane displacement ũ are also introduced as the scalings 2w/L
and 2u/L respectively. Note that these scalings assume symmetry about the midspan

and the differential equations are solved for half the length of the column; this assump-

tion has been shown to be perfectly acceptable for cases where the overall buckling is

critical [5, 4]. The non-dimensional differential equations are thus:

˜....w −
3

8
G̃

[

2φ2w̃

(

1

3
˜̇w2 +

1

3
w̃ ˜̈w +

1

2
˜̇u

)

+ (qs − qt)
π2φ

2
sin

πz̃

2
w̃

]

− 6φ2 (1 − ν) ˜̈w

+
3

8
D̃

[

qt
π2

4φ

(

sin
πz̃

2
˜̈w +

π

2
cos

πz̃

2
˜̇w

)

−
3

5
˜̇w2 ˜̈w +

2

3
˜̈w∆ −

1

2

(

˜̈u ˜̇w + ˜̇u ˜̈w
)

]

= 0,

˜̈u −
3Gφ

E

[

φ

(

1

2
w̃ ˜̇w + ũ

)

− (qs − qt) π cos
πz̃

2

]

−

[

qt
π3

4φ
cos

πz̃

2
−

3

4
˜̇w ˜̈w

]

= 0,

(17)

where D̃ = EtL2/D, G̃ = GtL2/D and φ = L/b. Equilibrium also requires the

minimization of V with respect to the generalized coordinates qs, qt and ∆. This es-

sentially provides three integral conditions, again expressed in non-dimensional form:

∂V

∂qs

= π2qs + s̃ (qs − qt) −
PL2qs

EIw

−
s̃φ

π

∫ 1

0

cos
πz̃

2

(

1

2
w̃ ˜̇w + ũ

)

dz̃ = 0,

∂V

∂qt

= π2qt − k̃ (qs − qt) + φ

∫ 1

0

[

k̃

π
cos

πz̃

2

(

1

2
w̃ ˜̇w + ũ

)

− sin
πz̃

2

(

2˜̇u +
3

4
˜̇w2

)]

dz̃ = 0,

∂V

∂∆
=

∫ 1

0

[

2

(

1 +
h

b

)

∆ −
1

2
u̇ −

1

6
ẅ2

−
P

Etb

]

dz̃ = 0,

(18)

where s̃ = (2GtbL2)/(EIw) and k̃ = (12GL2)/(Eb2). The boundary conditions for

w̃ and ũ and their derivatives are for pinned end conditions for x̃ = 0 and for symmetry

at x̃ = 1:

w̃(0) = ˜̈w(0) = ˜̇w(1) =
.̃..
w(1) = ũ(1) = 0, (19)
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with a further condition from matching the in-plane strain:

1

3
˜̇u(0) +

1

8
˜̇w2(0) −

1

2
∆ +

P

2Etb
= 0 (20)

Linear eigenvalue analysis is conducted to determine the critical load for overall

buckling PC
o . This is achieved by considering the Hessian matrix Vij , thus:

Vij =

[

∂2V
∂qs

2

∂2V
∂qs∂qt

∂2V
∂qt∂qs

∂2V
∂qt

2

]

; (21)

at the critical load Vij is singular. Hence, the critical load for overall buckling is:

PC
o =

π2EIw

L2
+

2Gtb

1 + k̃
. (22)

3 Numerical example and discussion

The full nonlinear non-autonomous differential equations are obviously complicated

to be solved analytically. The continuation and bifurcation software AUTO-07P has

been shown in the literature [4, 5] to be an ideal tool to solve the equations numer-

ically. For this type of mechanical problem, one of its major attributes is that it has

the capability to show the evolution of the solutions to the equations with parametric

changes. The solver is very powerful in locating bifurcations and tracing branching

paths as model parameters are varied. To demonstrate this, an example set of section

properties are chosen which are shown in Table 1. The overall critical load PC
o can

Column length L 4000 mm
Flange width b 96 mm

Flange thickness t 1.2 mm
Section depth h 120 mm
Section area A 513 mm2

Young’s modulus E 210 kN/mm2

Poisson’s ratio ν 0.3

Table 1: Section and material properties. Recall that the thickness of the web tw = 2t.
The section properties are identical to those tested in [2].

be calculated using Equation (22), whereas the local buckling critical stress σC can be

evaluated using the well-known formula σC = kDπ2/b2t, where the coefficient k de-

pends on plate boundary conditions; approximate values being k = 0.43 and k = 4 are

chosen for the flanges and the web respectively, assuming that the plates are relatively

long [14]. Table 2 summarized the critical loads and showed the assigned section di-

mensions satisfy the assumptions that the overall mode is critical and that the critical

load of the web is orders of magnitude higher than that of the flange.
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Average overall buckling stress σC
o 44.7 N/mm2

Flange local buckling stress σC
l,flange 51.1 N/mm2

Web local buckling stress σC
l,web 2731 N/mm2

Table 2: Theoretical values of the overall and local critical buckling stresses. Note that

the overall buckling mode would be triggered first, the expression for σC
o = PC

o /A and

the web is obviously not vulnerable to local buckling.

An initial run in AUTO was performed from the primary bifurcation point C, where

P = PC
o determined from the linear eigenvalue analysis, with qs being the primary

continuation parameter. Out of the many bifurcation points that were detected on the

weakly stable post-buckling path, the focus was on the one with the lowest value of

qs, which is denoted as S, the so-called secondary bifurcation point. A second run was

then performed from S using the branch switching function in AUTO, after which the

equilibrium path exhibits the interaction between the overall and the local modes.

Figure 6 shows a plot of the normalized axial load p = P/PC
o versus the gener-

alized coordinates of the sway component qs (Figure 6(a)) and the maximum out-of-

plane deflection of the buckled flange plate, wmax (Figure 6(b)) whereas the plot in

Figure 6(c) shows the relative amplitudes of the overall and the local buckling modes.

Finally, the plot in Figure 6(d) shows the relationship between qs and qt and it can be

seen that they are almost equal indicating that the shear strain is small but, importantly,

not zero.

One of the most distinctive features of the equilibrium paths, Figures 6(a) and 6(b),

is the sequence of snap-backs that effectively separate the equilibrium path into 11 in-

dividual parts in total as shown. The fourth, seventh and the eleventh paths are labelled

as C4, C7 and C11 respectively in Figure 6. Each path corresponds to the formation

of a new local displacement peak or trough. Figure 7 illustrates the corresponding pro-

gression of the numerical solutions for the local buckling functions w and u from path

C1 to C11, where C1 represents the initial interactive buckling equilibrium path gen-

erated from S. It is observed that the local buckling mode is initially localized at the

midspan of the column, then the buckling deformation spreads towards the supports as

new peaks and troughs are formed. Figure 8 shows a selection of 3-dimensional rep-

resentations of the deflected column that include the components of overall buckling

(qs and qt) and local buckling (w and u) at a specific state on paths C1, C4, C7 and

C11. As the equilibrium path develops to C11, the maximum out-of-plane deflection

wmax approaches a value of 2.5 mm which is roughly twice the flange thickness and

can be regarded as large in terms of geometric assumptions. The interactive buck-

ling pattern becomes effectively periodic on path C11. Any further deformation along

the equilibrium path would be expected to cause restabilization to the system since the

boundaries would begin to confine the spread of the buckling deformation. It should be

stressed of course that any plastic deformation during the loading stage would desta-

bilize the system significantly. Figure 9 shows the direct strain, εz in the extreme fibre

of both the vulnerable and the non-vulnerable outstands at a specific state on paths C1,

C4, C7 and C11. It can be seen that the direct strain in the non-vulnerable part of the
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Figure 6: Numerical equilibrium paths. Graphs of the normalized force ratio p ver-

sus 6(a) the generalized coordinate qs and 6(b) the maximum out-of-plane deflection

of the buckled flange plate wmax are shown. The graph in 6(c) shows wmax versus qs

and the graph in 6(d) shows the relationship between the generalized coordinates qt

and qs defining Euler buckling during interactive buckling.

flange has become tensile at C11 due to bending, whereas the maximum direct strain

in the vulnerable part of the flange is approximately 1.3 × 10−3(= 0.13%). This is

shown to be confined to the ends of the column and is also well below the yield strain

of most structural steels; even for the stainless steels given in [2], significant nonlinear

softening only begins from approximately 0.1% strain.

The phenomenon described above is known in the literature as “cellular buckling”

[10] or “snaking” [11]. The term “cellular buckling” was coined since it describes

the way that the buckling deformation spreads in cells with progressively reduced

wavelengths. The term “snaking” was coined since the equilibrium diagram exhibits

progressive destabilization and restabilization, which in some other applications re-

sembles the shape of a snake. In the current case, the destabilization is caused primar-

ily by the interaction of the overall and local instabilities, whereas the restabilization is

caused by the stretching of the buckled plates when they bend into a double curvature.

As the amplitude of the overall buckling mode qs increases, the compressive bend-
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Figure 7: Numerical solutions for the local out-of-plane deflection w (left) and local

in-plane deflection u (right) for the tip (x = −b/2) of the vulnerable flange. Individual

solutions on equilibrium paths C1 to C11 are shown in sequence from top to bottom

respectively.
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(a) C1: p = 0.9988 (b) C4: p = 0.9597

(c) C7: p = 0.8635 (d) C11: p = 0.7511

Figure 8: Numerical solutions of the system of equilibrium equations visualized on

three dimensional representation of the column. The results are shown for individ-

ual points on paths C1, C4, C7 and C11 with the specific force ratio p given. All

dimensions are in millimetres.
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Figure 9: Direct strain εz in the extreme fibre of the more compressed and the less

compressed outstands according to a specific point on paths C1 (lowest strain magni-

tudes), C4, C7 and C11 (highest strain magnitudes).

ing stress in the flange outstands increase also, which imply that progressively longer

parts of the flange are susceptible to local buckling. Since local buckling is inherently

stable, the drop in the load from the unstable mode interaction is limited owing to the

stretching of the plate when it buckles in progressively smaller wavelengths. There-

fore the cellular buckling occurs due to the effective trade-off between the unstable

mode interaction and stable local buckling.

3.1 Preliminary comparison with published experiment

Figure 6 shows that the trend for both the overall lateral displacement and the lo-

cal out-of-plane displacement increase as the load decreases. This indicates that the

destabilization from mode interaction is stronger than the stabilizing effect of plate

buckling. In terms of a preliminary comparison with an experiment, the results for

the interactive buckling mode profiles in [2, 3] are compared with the specific result

presented above. First of all, the interactive buckling wavelength is defined in Figure

10. The results from Figure 7 show the evolution of the interactive buckling mode.

The actual experimental response, which obviously includes initial geometric imper-

fections, is likely to jump to the final cell relatively rapidly once the initial instability

is triggered. This was shown in the experiments presented for work on the interactive
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Figure 10: Definition of local buckling wavelength Λ from results for w from the

variational model.

buckling of beams [4] in the cases where overall and local buckling were triggered at

similar load levels. In [2] the local buckling mode has a plate buckling wavelength of

275 mm with a modulated amplitude. The numerical results in the current work show

that the value of Λ = 280 mm for the interactive buckling wavelength. This close

comparison offers grounds for optimism for the future developments of the current

model.

3.2 Future model enhancements

Currently, the model has been developed such that the overall mode is assumed to

occur before any local buckling. This is perfectly good for long columns, but for

columns of intermediate to shorter lengths the possibility of local buckling occurring

first would need to be accounted for. For that case, both sides of the flange outstand

would be seen to buckle with qs being initially zero. Becque and Rasmussen [2] state

that their experiments show exactly this type of response for their experiments with

smaller length specimens. A straightforward way of incorporating the possibility of

local buckling being critical is to introduce an extra set of the local mode displacement

functions. Therefore, instead of having u(x, z) and w(x, z) describing the local dis-

placement of a flange outstand under more compression from flexural buckling, there

would be u1(x, z) and w1(x, z) that describe that flange outstand alongside u2(x, z)
and w2(x, z) that describe the flange outstand less compression from flexural buck-

ling (see Figure 11). Moreover, the possibility of modelling the whole flange buckling

locally, which would occur when local buckling is critical, would become a reality.

4 Concluding remarks

A nonlinear analytical model based on variational principles has been presented for

axially-loaded thin-walled columns buckling about the weak axis. The model identi-

fies a secondary instability which leads to highly unstable cellular buckling through a

series of snap-back instabilities that result from the increasing overall buckling mode

forcing the flanges to buckle locally and progressively. This process has been ob-

served in recent experimental work and in other components that suffer from a non-

linear interaction between overall and local buckling. A preliminary comparison with

a published experiment offers encouragement to pursue this analytical approach that

would allow the study of the parameters that drive the behaviour.
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Figure 11: Model capable of accounting for local buckling being critical. (a) Out-of-

plane flange outstand displacements w1 and w2. (b) In-plane flange outstand displace-

ments u1 and u2. Similar assumptions apply as for the current model.
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