
Abstract

In this paper a finite fracture mechanics approach for calculating failure loads of adhe-

sively bonded joints is presented. The approach based on classical linear elasticity so-

lutions for adhesively bonded single lap joints and uses a combined energy and stress

criterion. Parameter studies are performed and it is shown, that the effects of the major

geometrical parameters predicted by the present approach agree well with the effects

known from experiments. Additionally, a direct comparison of the outlined criterion

to experimental results from literature is performed and shows good agreement. Even

the effect of the adhesive layer thickness on the failure load is incorporated.

Keywords: adhesive joints, single lap joint, failure load, finite fracture mechanics.

1 Introduction

Adhesive joints have several advantages over other joining techniques, such as rivet-

ing, bolting or welding [1]. For example the possibility of large surface joining of

thin-walled structures with lower stress concentrations, very low thermal effects or

the ability to join dissimilar materials. Moreover, adhesive joints lead to smoother

bonding regions and can provide a sealing functions.

For the widespread use of adhesive joints precise and effective methods for design

and dimensioning are required. Besides a precise prediction of failure loads, failure

models should allow for studying the effects of the main geometrical and material

parameters on the failure load of a joint. The present work shall give a contribution

to the prediction of failure loads of adhesively bonded joints. Focus is set on a very

commonly used joint shape, the simple single lap joint (SLJ).

Most of the current failure models for adhesive joints are either based on strength

of materials approaches, fracture mechanics approaches or numerical implementa-
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tions of cohesive zone models. In strength of materials approaches the problem arises

that they cannot be directly applied to stress concentrations with singularities, as they

arise at bimaterial notches in adhesive joints. This is possible for fracture mechanics

approaches but assumptions on the shape and size of defects in failure prone regions

of the adhesive joints are required. Cohesive zone models can be used for analysis

of adhesive joints as well. In these models failure is analysed by considering a lo-

cal non-linear traction-separation law, that describes damage and crack onset. In the

simplest form of this law, it is controlled by two parameters: a cohesive strength, that

must be exceeded to initiate damage, and a fracture toughness. Cohesive zone models

are typically embedded in numerical simulations and thus allow for analysis of vari-

ous problems. However, it should be noted that these simulations are non-linear and

numerically demanding. Further problems arise in the determination of the proper

traction-separation law and the involved parameters.

In this work the hybrid criterion by Leguillon [2] in the framework of finite fracture

mechanics is used for the determination of failure loads of adhesive bonded single lap

joints. Finite fracture mechanics considers the spontaneous formation of cracks of

finite size, if a crack formation criterion is fulfilled. The hybrid criterion demands a

simultaneous fulfilment of a strength criterion on the full area of the considered crack

and an energy criterion. Hence, it can be understood as a combination of strength of

materials approaches with fracture mechanics. The hybrid criterion allows for failure

load assessment of structures with and without stress singularities. For evaluation

two parameters a needed, a strength σc and a fracture toughness Gc. In the limit

cases of a sharp crack or a homogeneous stress state in a sufficiently large body the

hybrid criterion matches Griffith’s criterion respectively classical strength of material

approaches. The hybrid criterion has been successfully applied to several structural

situations, e.g. laminates [3, 4, 5], notched/cracked specimens [2, 6] or joints [7, 8].

For the mechanical model of the single lap joint in this work classical linear elastic-

ity solutions are used, that allow for a closed-form analytical formulation of the hybrid

criterion. This enables an efficient assessment of the failure load. The given criterion

is used to study the effect of geometrical parameters, as adherend thickness, overlap

length or adhesive layer thickness, on the failure load of the joint. These dependen-

cies are shown, compared to effects known from experiments and discussed, whereas

special attention is given to the effect of the adhesive layer thickness.

2 Theoretical background

2.1 Theory of the hybrid criterion

In this work the hybrid criterion will be used in the following formulation: A crack of

constant width and finite crack length a is initiated, when a strength criterion f(σij) ≥
σc (f : R

3 → R) is fulfilled on all points x of the crack surface Ωc and simultaneously
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Figure 1: Visualization of the hybrid criterion. The stress criterion yields the upper

bound for the crack length and the energy criterion yields the lower bound of the crack

length. Both criteria must be fulfilled simultaneously. When both bounds coincide the

lowest load fulfilling both criteria is found – the failure load.

the incremental energy release rate Ḡ reaches the fracture toughness Gc:

f(σij) ≥ σc ∀x ∈ Ωc ∧ Ḡ(a) ≥ Gc (1)

The smallest load for all kinematically admissible crack lengths, that leads to the

satisfaction of both criteria given, is the failure load Ff :

Ff = min
F,a

{

F | f(σij) ≥ σc ∀x ∈ Ωc ∧ Ḡ(a) ≥ Gc

}

(2)

In the present case the strength criterion is a monotonically decreasing function of the

distance x from the crack origin and the incremental energy release rate is a mono-

tonically increasing function of the crack length a, for expected crack lengths not

exceeding quarter overlap length. Hence the strength criterion is is an upper bound for

the crack length and the energy criterion is a lower bound for the crack length, as it is

shown in Figure 1. In the optimum, when F = Ff , both bounds coincide.

2.2 Modeling of the single lap joint

In this work a symmetric single lap joint as shown in Figure 2 is considered. Let the

joint have the width b, adherend height h, adhesive layer thickness t and an overlap

length L. The joint is loaded by an axial force F in horizontal direction. Both the

adherend and the adhesive layer are considered as homogeneous, isotropic continua

with linear-elastic material behaviour. Young’s modulus of the adherend is denoted

as Ex and the one of the adhesive is denoted Ea. Correspondingly, Ga and νa are the

shear modulus and Poisson’s ratio of the adhesive.

Peel stresses occuring due to the eccentricity of the acting forces play an important

role in the failure behaviour of single lap joints and must be taken into account failure
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Figure 2: Geometry of the considered symmetric single lap joint under axial loading.

load assessments of single lap joints [9]. The classical work by Goland and Reissner

[10] is the most simple model for an SLJ that takes these stresses into account. Explicit

solutions for the shear and peel stresses are given in their work. The adherends are

considered as beams and the elastic layer is treated by simplified kinematic relation-

ships. Let ui be the horizontal displacements and wi the vertical displacements of the

adherends 1 (upper adherend) and 2 (lower adherend), then the following relationships

are assumed to hold:

γ =
∂u

∂z
=

u1 − u2

t
(3)

εz =
∂w

∂z
=

w1 − w2

t
(4)

In their study Goland and Reissner introduced a non-linear moment factor to take large

deformations of the adherend into account. These deformations lead to reduced lever

arms of the acting forces. This moment factor has been subject to numerous scientific

discussions [11, 12, 13]. Under consideration of the corrections given by Tsai and

Morton [12] the expression for the shear and peel stresses in the adhesive layer are:

τGR = − F

8b

(

λτ (1 + 3k)
cosh λτx

sinh λτ
L
2

+
3

L
(1 − k)

)

mit λτ =

√

8Ga

Exht
, (5)

σGR
0 =

Fhλσ

Ψb

((

λσ

2
R1k +

2

L
k′ sinh

(

λσ

L

2

)

sin

(

λσ

L

2

))

sinh (λσx) sin (λσx)

. . . +

(

λσ

2
R2k +

2

L
k′ cosh

(

λσ

L

2

)

cos

(

λσ

L

2

))

cosh (λσx) cos (λσx)

)

(6)

with

λσ = 4

√

6Ea (1 − ν2)

Exh3t
, (7)

R1 = cosh λ
L

2
sin λ

L

2
+ sinh λ

L

2
cos λ

L

2
; R2 = sinh λ

L

2
cos λ

L

2
− cosh λ

L

2
sin λ

L

2
,

(8)

Ψ =
1

2
(sinh λL + sin λL) , (9)

k =
1

1 + 2
√

2 tanh

(

√

3(1−ν2)
2

L
2h

√

F
Exhb

) , k′ =
1

L
((1 − k) h + t) . (10)
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The solution by Goland-Reissner bases on a very simplified modeling approach and

assumes the strains and hence stresses to be constant over the adhesive layer thickness.

The boundary condition of vanishing shear stresses at the unloaded interfaces is not

fulfilled as well. Despites these limitations the Goland-Reissner model still represents

an important approach for gaining insight into the behaviour of single lap joints under

axial loading.

An extended analysis, that considers non-constant stresses over the adhesive layer

thickness was given by Ojalvo and Eidinoff [14]. In their modeling the effect of the

adhesive layer is included and enhanced kinematic relationships are used. This rela-

tionships consider the effect of the slope w′

i of the adherends on the shear strain in the

adhesive layer and bases on the definiton of the infinitesimal strain tensor.:

γ1,2 =
∂u

∂z
+

∂w

∂x
=

u1 − u2

t
+ w′

1,2 (11)

εz =
∂w

∂z
=

w1 − w2

t
. (12)

The modelling yields shear- and peel stresses in the adhesive layer. The peel stress

changes over the adhesive layer thickness: the shear stress in the interface to the upper

adherend is denoted as τOE
1 and τOE

2 is the shear stress in the lower interface.

τOE
0 =

F

bLΩ2

(

Ωζ
cosh

(

Ω2x
L

)

sinh (Ω)
+ Ω2 − ζ

)

, (13)
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0 ∓ Gat

2Ea

· ∂σOE
0
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, (14)
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F
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,

(15)

where

Ω = λ
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√

√

√

√±3tλ2

2h
+

1
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. (17)

The unknowns A1 and A2 in the upper equations have to be determined by the bound-

ary conditions:

L3

8

∂3σOE
0

∂x3

∣

∣

∣

∣

x=L

2

− 6
Ltλ2

2h

∂σOE
0

∂x

∣

∣

∣

∣

x=L

2

= −k
3EaL

3

2Exth2

(

1 +
t

h

)

(18)

L2

4

∂2σOE
0

∂x2

∣

∣

∣

∣

x=L

2

= k
3EaL

3

2Exth2

(

1 +
t

h

)

. (19)

5



a

Figure 3: Crack orginating from the reentrant corner of the upper adherend and the

adhesive layer.

To use these stress solutions for the computation of the failure load an appropriate

stress criterion is needed. In this work a maximum principal stress criterion is used in

the hybrid criterion:

σc
!
= f(σij) =

σx + σy

2
+

√

(

σx − σy

2

)2

+ τ 2
xy

=
σ0

2
+

√

(σ0

2

)2

+ τ 2 (20)

Besides a solution for the stresses in the adhesive layer the incremental energy

release rate must be given as well to formulate the hybrid criterion given previously.

In a single-lap joint cracks typically initiate from the reentrant corners of the adherends

and the adhesive. In the following it is assumed that horizontal cracks initiate in the

reentrant corner of the upper adherend and the adhesive, as shown in Figure 3. It is

assumed that the adhesive layer and the lower adherend below the considered crack are

completely relieved. This allows for using the same solutions for the stress distribution

as in the uncracked case and is a typical assumption for obtaining energy release rates

of lap joints [15]. In case of the Goland-Reissner model the incremental release rate

can be given in closed-form analytical form by integrating the differential release rate

over the finite crack length a or by using the compliance of the cracked and uncracked

structure:

Ḡ(GR) =
1

2

∆C

A
F 2 =

1

2
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ab
F 2 (21)

=
F 2
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(
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2
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(

λτ

l

2

))

+
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τ

a

l (l − a)
+
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(
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− cosh (λσl) − cos (λσl)

sinh (λσl) + sin (λσl)

)]

.

(22)

The incremental energy release rate of the Ojalvo-Eidinoff solution unfortunately

cannot be obtained in closed-form analytical manner. However, it can be obtained by
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computing the integral of the differential energy relase rate numerically:

Ḡ(OE) =
1

a

l
∫

L=l−a

G(L)dL =
1

a

l
∫

L=l−a

(

t

2Ea

σ2
max +

t

2Ga

τ 2
max

)

dL, (23)

where σmax and τmax are the peak stress at the end of the overlap and depends on the

overlap length L, which is the variable of integration.

With the expressions for the stresses and the incremental energy release rate the

optimization problem (2), needed to determine the failure load, is completly defined.

Using a computer algebra system, as e.g. MATHEMATICA, it can be solved quickly.

It takes about .3s to solve the optimization problem of the Goland-Reissner model on

a standard workstation computer. The Ojalvo-Eidinoff model takes around 10 times

longer as the expressions of the stresses are more complex and the incremental energy

release rate must be evaluated numerically.

3 Failure load predictions

In the following the failure load predictions by the given hybrid criterion are shown.

The predictions of the two underlying models are compared with one another and

with parameter effects known from experiments. Moreover, a direct comparison of the

failure load predictions of the given criterion to experimental results from literature is

shown and discussed.

3.1 Effect of geometrical parameters

The main geometrical parameters of a single lap joint are the overlap length L, the

thickness of the adherends h and the adhesive layer thickness t. The overlap length

of the adherends, essentially the length of the adhesive layer, is known to play an

important role on the failure load, such that higher overlap lengths lead to increased

failure loads. But for high overlap length this effect declines and the failure load

converges and so in practise there is an upper limit for the overlap length. The effect

of the adherend thickness is to increase the failure load of single lap joints, as with

stiffer adherends the load is distributed more evenly in the adhesive layer. The effect

of the adhesive layer thickness has been subject to numerous studies in literature.

From experiments it is known that the failure load of adhesive joints decreases with

increasing adhesive layer thicknesses. But most analytical and numerical approaches

to predict failure given in literature fail to cover this effect [16, 17, 18].

Figures 4 show the failure load predictions by the current approach for an exem-

plaric joint with steel adherends and an epoxy structural adhesive. The material pa-

rameters are chosen according to Table 1. The parameters L, h and t are examined

in a typical range to show their effect on the failure loads of single lap joints. All
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Figure 4: Predicted effect on the failure load of the three geometrical parameters:

overlap length, adherend thickness and adhesive layer thickness. GR stands for the

Goland-Reissner model and OE for the Ojalvo-Eidinoff model.
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Adhesives Adherends

Redux 326 Hysol 9321 High strength steel

Young’s modulus E [GPa] 4.44 3.87 210

Poisson’s ratio ν [-] 0.35 0.36 -

Strength σc [ N
mm2 ] 50.9 22.0 -

Fracture toughness Gc [ N
mm

] 0.35 0.45 -

Table 1: Material parameters of the experimentally tested single lap joints in [18, 19,

20]. Data which are not needed here are left out (-).

diagramms show curves according to the Goland-Reissner model as dashed lines and

the ones of the Ojalvo-Eidinoff model as solid lines.

Diagram 4(a) shows the effect of the overlap length predicted by the present crite-

rion. For both models an increase of the failure load with increased overlap lengths

of the joint is predicted. The Ojalvo-Eidinoff model predicts a stronger effect for

higher overlap lengths. In diagram 4(b) the prediction of the effect of the adherend

thickness can be seen. Both models yield higher failure loads for increased adherend

thicknesses. Where the curve of the Goland-Reissner model has a steeper slope. The

effect of the adhesive layer thickness as predicted by both models is shown in diagram

4(c). Both models predict a decrease of the failure load with increasing adhesive layer

thicknesses. The effect is more pronounced in the Ojalvo-Eidinoff model.

These predicted dependencies of the failure load on the geometrical parameters

agree well with effects observations from literature.

Beside a study of the effect of the geometrical parameters, a direct comparison to

experimental results from literature is performed. Two studies are considered: the

study by da Silva et al. on the effect of the overlap length from 2004 [19] and the

study on the effect of the adhesive layer thickness from 2006 [20]. In the first study

experiments with single lap joints composed of steel adherends with a bismaleimide

adhesive (Redux 326) were tested. In the second study tests were performed on single

lap joints with steel adherends and an epoxy structural adhesive (Hysol 9321). The

material parameters of the used materials are summarized in Table 1. The strength

and the fracture toughness needed to evaluate the hybrid criterion were taken from the

studies [19, 20] resp. from a comparative study which uses the same experimental

data [17, 18].

In Figure 5 the comparison of the experimental failure loads and the failure loads

predicted by the present approach are shown. Figure 5(a) shows the dependency on

the overlap length. The Goland-Reissner and the Ojalvo-Eidinoff model both predict

an increase of the failure load with increased overlap lengths. Whereas the latter gives

a better prediction of the effect of the overlap length. The loads predicted by both

models are always lower than the experimental results.

In Figure 5(b) the study of the effect of the adhesive layer thickness can be seen.

Both models predict a decrease of the failure loads for higher adhesive layer thick-
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Figure 5: Comparison of the failure load prediction of the current criterion with ex-

perimental results. (Dashed line: Goland-Reissner model, solid line: Ojalvo-Eidinoff

model)

nesses. But the effect predicted by the Goland-Reissner model is somewhat too weak.

The model yields failure loads being lower and higher than the experimental values.

The reported values are always within the error bars of the experimental results. How-

ever, the Ojalvo-Eidinoff model covers the effect of the adhesive layer thickness very

well. The predicted failure loads are 23%, 23% and 28% lower than the experimen-

tally obtained failure loads. The prediction is conservative.

It is particularly interesting that the adhesive layer thickness effect cannot be cov-

ered by commonly used analytical solutions for the strength of single lap joints found

in literature, as shown by da Silva et al. [17, 18]. The consideration of the energy

balance in the hybrid criterion however allows for a correct prediction of the thickness

effect, if the underlying model of the joint is sufficiently realistic.

4 Conclusion

In this paper the hybrid criterion in the framework of finite fracture mechanics was

used to predict the failure load of adhesively bonded single lap joints. To model

the mechanical behaviour of the single lap joints two closed-form analytical linear-

elasticity solutions were used. Beside the classical Goland-Reissner model the en-

hanced Ojalvo-Eidinoff model was used. Both models give solutions for the peel and

shear stress distribution in the adhesive layer. On the basis of the expressions for the

stresses and the incremental energy release rate the optimization problem of the hy-

brid criterion was formulated. Parameter studies were performed to study the effect

of the geometrical parameters overlap length, adherend thickness and adhesive layer

thickness. The obtained effects coincide well with observations known from practice.
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Additionally, a comparison of the predicted failure loads with experimental results

from the literature was performed. The results show that: (1) especially the Ojalvo-

Eidinoff model yields a very good prediction of the failure loads; (2) the effect of the

overlap length and even the effect of the adhesive layer thickness are covered; and (3)

that the predicted loads are always conservative.
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