
Abstract

This paper focuses on the modelling and simulation of unsteady sheet cavitation in
marine propeller flows. In the first part of the paper, the mathematical model based
on potential flow theory is introduced and the numerical scheme is derived. The nov-
elty of the presented calculation method refers to the unsteady partial sheet cavita-
tion model which has been implemented into the in-house panel code panMARE [1].
Cavitation is a physical effect where the pressure in the flow falls below the vapour
pressure such that a vapour region develops on propeller blades. Cavitation has a sig-
nificant influence on propeller’s performance and can cause material damages, noise
and vibrations on the ship hull. In the second part of the paper the capabilities of the
developed sheet cavitation model are demonstrated by numerical studies on a three-
dimensional foil as well as on a marine propeller flow.

Keywords: sheet cavitation, unsteady cavitation model, boundary element method,
panel method, potential theory, propeller flow.

1 Introduction

This paper is dedicated to the numerical investigation of unsteady hydrodynamic char-
acteristics of a marine propeller under cavitating conditions. For the numerical investi-
gation of propeller characteristics a boundary element method based on potential flow
theory is used in this work. The governing equations for the propeller flow are de-
rived from the assumption that within a flow domain Ω the flow around a solid body is
irrotational, inviscid and incompressible. Since the flow is incompressible the total ve-
locity potential must fullfill the three-dimensional time-dependent Laplace’s equation
which describes the conservation of mass [2]:

∆Φ∗(~x, t) = ∇2Φ∗(~x, t) = 0, ∀ ~x ∈ Ω ∈ R3, t ∈ R+ (1)
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where Φ∗ is the total velocity potential which is composed of the disturbed potential
Φ and the undisturbed free stream potential Φ∞. The velocity distribution in the flow
is obtained by differentiating the total potential:

∇Φ∗(~x, t) = ~V (~x, t) = ~vind(~x, t) + ~V∞(~x, t), ∀ ~x ∈ Ω, t ∈ R+

where ~vind describes the velocity induced by propeller and ~V∞ is the reference veloc-
ity which is the sum of the propeller rotational speed and the inflow velocity to the
propeller behind the ship. After having calculated the velocity field, the pressure on
the body surface can be calculated by the unsteady Bernoulli equation which describes
the conservation of momentum for an incompressible and inviscid fluid [2]:

p(~x, t) = p∞+
1

2
ρ(|~V∞(~x, t)|2−|~V (~x, t)|2)−ρ

∂Φ(~x, t)

∂t
+ρg(z∞−z), t ∈ R+, (2)

∀ ~x ∈ SB, where SB is the body surface, p∞ = 101325 Pa is the constant atmospheric
pressure, ρ = 1000 kg/m3 is the water density, g = 9.81 m3/(kg s2) is the gravity
constant and z∞ is the distance to the free water surface.
In the following sections 2 and 3 the details on the boundary conditions for the mod-
elling of sheet cavitation as well as the numerical scheme used to simulate unsteady
cavitating propeller flows are presented. In section 4 several numerical studies are
performed and the results obtained by panMARE are compared to the results obtained
by other authors.

2 Unsteady sheet cavitation model

2.1 Mathematical formulation

The continuous solution of the Laplace’s equation is obtained by Green’s third identity
as a distribution of sources and dipoles on the body’s surface [2]:

Φ(~x0, t) =
1

4π

∫
S

[
Φ(~x, t)

∂

∂n

( 1

r(~x0, ~x)

)
− ∂Φ(~x, t)

∂n

1

r(~x0, ~x)

]
dS(~x) (3)

∀ ~x0 ∈ Ω, S = ∂Ω and t ∈ R+. It is common to define the source and dipole strength
by the quantities σ(~x, t) := −∂Φ(~x, t)/∂n and µ(~x, t) := −Φ(~x, t), respectively [2].
There are several approaches to solve equation (3). In the present work a potential
based approach is used where the disturbed potential Φ is calculated directly and only
evaluation points inside the body are considered. Since there is no disturbed potential
inside a solid body, the value of the inner potential can be chosen arbitrary. By setting
Φ = 0 inside the body, equation (3) results in:∫

S

[
µ(~x, t)

∂

∂n

( 1

r(~x0, ~x)

)
− σ(~x, t)

r(~x0, ~x)

]
dS(~x) = 0, ∀x0 ∈ Ωinner (4)



where Ωinner is a subset of Ω which contains only points inside the body. To obtain a
unique solution of the above equation, boundary conditions are required on the bound-
aries of the flow domain Ω. The boundaries which are considered in this paper are the
solid propeller surface SB, the propeller wake surface SW , the sheet cavitation surface
SC and the cavitating part of the body surface SBC

, respectively (cf. Figure 1). The
boundary conditions of the sheet cavitation model will be applied not on the exact
cavity sheet SC but on the corresponding cavitating parts of the body surface, denoted
by SBC

. This approach is called the partially non-linear approach [3].

Figure 1: Boundaries of the flow domain Ω

2.1.1 Boundary conditions on the wetted part of the body and wake surface

There are two boundary conditions on the non-cavitating parts of the body and wake
surfaces:

(1) On the body surface SB the Neumann boundary condition is applied which pos-
tulates that there is no inflow through a solid surface:

∇Φ∗(~x, t) · ~n = 0, ∀ ~x ∈ SB, t ∈ R+ (5)

where the vector ~n represents the normal vector on the point ~x. From the Neu-
mann boundary condition a relation for the source strength σ on the wetted part
of a lifting body can be derived:

σ(~x, t) =
∂Φ∞(~x, t)

∂n
= ~V∞ · ~n, ∀ ~x ∈ SB, t ∈ R+. (6)

Hence, the Neumann boundary condition determines the value of the source
strengths on the wetted surface of a lifting body, whereas the dipole strengths
are still unknown quantities and have to be calculated by solving the integral
equation (4).

(2) On the wake surface SW the physical Kutta condition is applied to model the
vorticity shed into the trailing wake of a propeller blade. This condition guaran-
tees that there is no circulation at the trailing edge of a solid body:

∆p(~x, t) = 0, ∀ ~x ∈ SW t ∈ R+ (7)

where ∆p = p+−p− is the pressure difference between the pressure value on the
upper and lower side of the trailing wake. By means of the Kutta condition the



dipole strengths on the wake surface can be determined. The dipole strengths on
the trailing wake are defined by ∆Φ(~x, t) = Φ(~x+, t)−Φ(~x−, t) = −µwake(~x, t)
where Φ(~x+, t) and Φ(~x−, t) are the potentials on the upper and lower side of
the wake, respectively.

2.1.2 Boundary conditions on the cavitating part of the body surface

The boundary conditions for sheet cavitation will be formulated in a surface-fitted lo-
cal non-orthogonal coordinate system with the base unit vectors ~t1, ~t2, ~t3 and local
coordinates described by ~s = (s1, s2, s3). The reason for using a surface-fitted local
coordinate system is the simpler mathematical formulation of the boundary condi-
tions.
For the mathematical description of sheet cavitation two regions are significant, the
region where cavitation starts and the region where cavitation ends. The starting point
of cavitation is called the detachment point and will be denoted by ~sd.p., the cavity clo-
sure point is called the reattachment point and will be denoted by ~sr.p.. The location of
the detachment as well as the reattachment points are not known a priori and have to
be determined by an algorithm or have to be estimated by an empirical formula. In the
present work the detachment point is estimated by the Villat-Brillouin criterion [4].
The reattachment point is calculated by an iterative procedure which will be presented
in section 3.
Now, on the cavitating body surface SBC

two boundary conditions are formulated:

(1) The kinematic boundary condition which postulates that there is no inflow through
the cavity sheet:

D

Dt
F (η(s1, s2, t), s3) = 0, ∀~s = (s1, s2, s3) ∈ SBC

, t ∈ R+ (8)

where η is the cavity thickness and F (η(s1, s2, t), s3) = s3 − η(s1, s2, t) is a
function for the cavity shape. From equation (8) it follows that the continuous
kinematic boundary condition is a linear partial differential equation for the
unknown cavity thickness η:

a
∂η

∂s1

(~s, t) + b
∂η

∂s2

(~s, t) = |~t1 × ~t2|(Vs3(~s, t)−
∂η(~s, t)

∂t
), ∀~s ∈ SBC

, t ∈ R+

(9)
where

a = (Vs1(~s, t)− (~t1 · ~t2)Vs2(~s, t)), b = (Vs2(~s, t)− (~t1 · ~t2)Vs1(~s, t))

and Vsi
, i = 1, 2, 3 are the velocity components of the total velocity ~V in the

local non-orthogonal coordinate system.

(2) The second condition used to describe the physics of sheet cavitation on SBC
is

the dynamic boundary condition:

p(~s, t) = pvapour, ∀~s ∈ SBC
, t ∈ R+ (10)



where pvapour is the vapour pressure of water. By using equation (2), the dy-
namic boundary condition can be transformed in a Dirichlet like formulation
for the velocity potential µ on the cavitating part of the body:

µ(~s, t) = µ0(t)−
∫ s1

sd.p.,1

[|~t1×~t2|
√

f(~s, t)+~t1·~t2Vs2(~s, t)−V∞,s1(~s, t)]ds1, (11)

∀~s ∈ SBC
, t ∈ R+ where µ0(t) = µ(~sd.p., t) is the potential at the detachment

point of cavitation, the function f is defined by

f(~s, t) = |~V∞(~s, t)|2(1+σv)+2g(s3,∞−s3)+2
∂µ(~s, t)

∂t
−V 2

s2
(~s, t)−V 2

s3
(~s, t),

and σv is the dimensionless cavitation number

σv :=
pref − pvapour

ρ
2
|~V∞|2

. (12)

The normal component of the local velocity Vs3 does not have a significant
influence on the magnitude of the dipole strength but it can cause numerical
instabilities. For that reason it will be neglected in the following numerical
considerations [3].

2.2 Numerical formulation

For the numerical simulation the in-house simulation tool panMARE is used. This
programme is based on a three-dimensional panel method where the body and wake
surfaces are discretised in flat quadrilateral elements and the governing equations of
the potential flow problem are applied on a collocation point of each panel element
(cf. Figure 2(a), 2(b)). The collocation points are defined in panMARE as the cen-
tre points of the surface panels which are slightly displaced inside the body. They
will be denoted in the following by ~xj , ∀ j = 1, . . . , N where N is the number of
body panels. The centre points of the body and wake panels will be denoted by ~xi,
∀ i = 1, . . . , N, N + 1, . . . , Nwake where Nwake is the number of wake panels.
On each body panel element a source and a dipole is distributed with a constant
strength over one panel. On the wake panels only dipoles are distributed since no
displacement is induced by the wake. Due to the discretisation of the geometry, equa-
tion (4) results in a linear equation for each collocation point xj , j = 1, . . . , N :

N+Nwake∑
i=1

µn
i Ai,j −

N∑
i=1

σn
i Bi,j = 0, (13)

where µn
i := µ(~xi, tn), σn

i := σ(~xi, tn) are the discrete dipole and source strength for
the discrete time step tn and

Ai,j := A(~xi, ~xj) =

∫
Paneli

∂

∂n

1

r(~xj, ~xi)
dS(~xi), ∀ i = 1, . . . , N, . . . , N + Nwake,

Bi,j := B(~xi, ~xj) =

∫
Paneli

1

r(~xj, ~xi)
dS(~xi), ∀ i = 1, . . . , N,



(a) Discretised propeller blade and wake (b) Centre, collocation and node
points on a blade profile

Figure 2: Discretisation of the geometry

∀ j = 1, . . . , N are the influence functions which describe the dipole or source influ-
ence of the panel i on the panel j.

2.2.1 Discrete wetted flow model

Firstly, the wetted flow solution is considered where the bodies are assumed to have
no sheet cavitation. Then, the value of the source strength is known from equation
(6) and application of (13) on N body collocation points results in a linear system of
equations with dimension N×(N +Nwake) for (N +Nwake) unknown dipole strengths
at the body and trailing wake surfaces. To handle the problem that the linear system
of equations is under-determined the Kutta condition (7) is applied at the trailing edge
of the lifting body. There are two possibilities for the numerical use of the Kutta
condition. Firstly, the non-linear formulation ∆p(~xwake, t) = 0 can be used to find
the value of the dipole strength ∆Φwake = −µwake. This approach will result in an
iterative procedure since the equation for pressure is a non-linear equation in µwake.
Alternatively, a linear form of the Kutta condition can be formulated:

µwake = µupper − µlower (14)

where µupper and µlower are the dipole strengths of the body panels which are located
either at the suction side or at the pressure side of the trailing edge. In this work the
linear form of the Kutta condition is applied and the influence functions Ai,j , ∀ i, j =



1, . . . , N are substituted in the following way:

A∗
i,j = Ai,j +

Nwake∑
l=1

Al,j, if panel i lies on the upper side of the trailing edge,

A∗
i,j = Ai,j −

Nwake∑
l=1

Al,j, if panel i lies on the lower side of the trailing edge,

A∗
i,j = Ai,j, else.

Now, one obtains a linear system of equations of dimension N ×N for the unknown
body dipole strengths µn

i , ∀ i = 1, . . . , N :A∗
1,1 . . . A∗

1,N
...

...
...

A∗
N,1 · · · A∗

N,N


µn

1
...

µn
N

 =

B1,1 . . . B1,N
...

...
...

BN,1 · · · BN,N


σn

1
...

σn
N

 . (15)

Once this linear system of equations is solved, the local velocities can be computed
from the relations:

V n
s1,i = −∂µn

i

∂s1

, V n
s2,i = −∂µn

i

∂s2

, V n
s3,i = −σn

i , ∀ i = 1, . . . , N. (16)

With the aid of the local velocities the shape of the trailing wake surface can be ad-
justed. A detailed description of the solution algorithm for the wake alignment can be
found in [2].

2.2.2 Discrete cavitating flow model

The novelty of the presented numerical method refers to the unsteady sheet cavitation
model implemented in the simulation tool panMARE. The development of a sheet
cavitation model is motivated by the effects which can be caused by cavitation of pro-
peller blades. In the presented solution procedure firstly the boundary value problem
(15) without sheet cavitation calculation is solved. Then, the pressure distribution is
calculated by the Bernoilli equation (2) and a first guess of the cavity length is made
by applying the criterion:

p(~xi, t
n) ≤ pvapour, ∀ i = 1, . . . N. (17)

In the next step, the dipole strengths on the cavitating panels are calculated by dis-
cretising the dynamic boundary condition (11):

µcav,n
i = µn

0 + µ̃n
i . (18)

The value of µn
0 is extrapolated from the three dipole values in front of the inception

point of sheet cavitation. The value of µ̃n
i is calculated by discretising the integral

in equation (11) by means of the trapezoidal rule [3]. The occuring unsteady terms



∂µn

∂t
and V n

s2
in the dynamic boundary condition can cause numerical problems since

their values are not known and have to be estimated by an approximation. For the
approximation of the potential gradient an approach from [5] is used. The main idea
of that approach is to estimate the potential gradients by differentiating equation (13):

∂

∂t

( N+Nwake∑
i=1

Ai,jµ
n
i −

N∑
i=1

Bi,jσ
n
i

)
= 0.

Since the influence functions depend only on the geometry and does not vary in time,
the differential quotient can be put behind the influence coefficients, such that one
obtains:

N+Nwake∑
i=1

Ai,j
∂µn

i

∂t
−

N∑
i=1

Bi,j
∂σn

i

∂t
= 0. (19)

The change of displacement on the non-cavitating panels should vanish, i.e.

∂σnoncav,n
i

∂t
= 0. (20)

The value of ∂µcav,n
i

∂t
can be determined from equation (11):

∂µcav,n
i

∂t
= −1

2
|V n
∞,i|2(1 + σv) +

1

2
|V n

i |2 − g(z∞ − zn
i ), (21)

whereas the value of ~V n
i is approximated by its value from the previous time step:

~V n
i ≈ ~V n−1

i , ∀ i = 1, . . . , N.

After having determined the value of µ on the cavitating panels and by assuming that
there are Ncav cavitating and (N − Ncav) non-cavitating panels, the linear system of
equations for the cavitating case can be set up:

Nnoncav∑
i=1

A∗
i,jµ

noncav,n
i −

Ncav∑
i=1

Bi,jσ
cav,n
i = −

Ncav∑
i=1

A∗
i,jµ

cav,n
i +

Nnoncav∑
i=1

Bi,jσ
noncav,n
i , (22)

∀ j = 1, . . . , N , where the known parts are put on the right side and the unknown parts
on the left side of the system.

3 Solution algorithm

The whole solution algorithm for the calculation of unsteady sheet cavitation on a
lifting body can be summarised as follows:

(1) Firstly, the linear system of equations (15) without sheet cavitation calculation
is set up and solved numerically.



(2) The velocities and pressures on the body and wake surfaces are calculated by
equations (16) and (2) and the initial cavity length is estimated by criterion (17).

(3) The time dependent potential gradients are calculated by solving the linear sys-
tem of equations (19).

(4) Then, the linear system of equations (22) for cavitating and non-cavitating pan-
els is set up. Hereby, for the computation of the dipole and source strengths the
following differentiation is made:

– On non-cavitating body panels: The source strengths are known in advance
from relation (6), the dipole strengths are determined by solving the linear
system of equations (22).

– On cavitating body panels: The dipole strengths are calculated by the dis-
crete dynamic boundary condition (18). The source strengths are deter-
mined by solving the linear system of equations (22).

– On wake panels: The dipole strengths are calculated by applying the Kutta
condition (14).

(5) The new velocities and pressures on the cavitating and non-cavitating body and
wake panels are calculated by equations (16) and (2).

(6) The cavity thickness on the cavitating parts of the body is computed by solving
the partial differential equation (9). For the approximation of the spacial deriva-
tives ∂

∂s1
and ∂

∂s2
a central difference scheme and for the approximation of the

time derivative a backwards difference scheme of first order is used.

(7) The cavity shape is computed by an iterative procedure. If the computed cavity
thickness at the cavity closure is smaller than a given tolerance, the algorithm
stops. If it is not the case, a new estimate for the cavity length is made and the
steps (3) to (7) are repeated until convergence. The mesh of the body surface is
not regridded during the iteration procedure.

At the end, the propeller characteristics can be computed. The force and the moment
are calculated by:

~F = −
N∑

i=1

p(~xi, t
n)~ni

∫
Paneli

dS(~x), ~M = −
N∑

i=1

p(~xi, t
n)(~ni × ~xi)

∫
Paneli

dS(~x).

The cavity area and volume are determined by:

Acav =

∑Ncav

i=1

∫
Paneli

dS(~x)∑N
i=1

∫
Paneli

dS(~x)
, Vcav =

∑Ncav

i=1 η(~xi, t
n)

∫
Paneli

dS(~x)∑N
i=1

∫
Paneli

dS(~x)
.



4 Simulation results

This section demonstrates the abilities of the implemented sheet cavitation model.
For this purpose numerical studies are performed for a three-dimensional unsteady
foil flow as well as for an unsteady marine propeller flow.

4.1 Numerical studies on the three-dimensional NACA0010 foil

In the following numerical studies the considered foil section is a NACA0010 with 90
panels along the cross section and 10 panels along the spanwise direction of the foil. In
the first study the pressure distribution under subcavitating condition is kept constant
and the cavitation number is forced to vary in time. In the second study the cavitation
number is kept constant and the angle of attack is varied by forcing a temporal change
of the inflow velocity in the normal direction.

4.1.1 Results for the NACA0010 foil in an oscillating cavitation number field

The three-dimensional NACA0010 foil was calculated with the geometrical aspect
ratio Λ = span2/reference area = 3 and angle of attack α = 5◦. In order to have
an oscillating cavitation number and a constant pressure distribution in subcavitating
condition, the unsteady potential gradient in the dynamic boundary condition (11) is
set to zero and the cavitation number is defined as a function of time:

σv(t) = 0.9259 + 0.2436 · sin(ωt). (23)

Thus, the cavitation number varies between 1.1695 and 0.6823 (cf. Figure 3). All

Characteristics Value
α 5 [deg]
Vinflow 10 [m/s]
∆t 1/300 [s]
ω 2π · 4 [1/s]
Blade section NACA0010
Λ 3

Table 1: Input data for the test case 1

relevant data used in the calculations are summarised in Table 1.
Figures 4 - 6 present the results of the calculations. On Figure 4 the dimension-
less pressure distribution for several cavitation numbers is illustrated. The pressure is
scaled by the stagnation pressure −1/2ρ|Vinflow|2. The graphs on Figure 4 demon-
strate that the dimensionless pressure is constant and equal to the cavitation number
in the regions where sheet cavitation occurs. These results varify the physical correct-
ness of the implemented model.
On Figure 5 a screenshot of the NACA0010 foil with the calculated cavity sheet and



Figure 3: Oscillating cavitation number

thickness determined by panMARE for the cavitation number σv = 0.6823 is pre-
sented. Figure 6 illustrates the calculated results for the lift and drag coefficients
which are defined by:

cl =
Lift

1/2ρ|Vinflow|2
cd =

Drag

1/2ρ|Vinflow|2
. (24)

The results calculated by panMARE confirm qualitatively very well to the results
published by [6]. By increasing the cavitation number the lift and drag coefficients
decrease until a minimal value is achieved where no sheet cavitation occurs. On the
other hand, a deacrease of the cavitation number leads to a rise of the lift and drag
coefficient which is due to the increasing sheet cavity length and cavity thickness. As
it can be seen in Figure 4 the cavitation area has a strong influence on the pressure
distribution. The pressure peak at the leading edge of the suction side of the foil is
reduced by cavitation and the cavitation area length is much longer than this pressure
peak. In the area of the cavity sheet vapor pressure exists which is lower than the local
pressure without cavitation. This pressure reduction increases the lift force on the foil.

4.1.2 Results for the NACA0010 foil in pitch motion

In the second test case the foil was calculated with a varying angle of attack. The
varying angle of attack is equivalent to a non-uniform inflow to the foil and the inflow
velocity is defined as a function of time:

Vinflow(t) = V∞ + V0 · sin(ωt) (25)

where V∞ = 1 and V0 was chosen in the way that the angle of attack varies between
α = +5◦ and α = −5◦. The calculations were performed for the constant cavitation
number σv = 0.65. All relevant data of the simulations are summarised in Table 2.
The results of the simulations are demonstrated in Figure 7(a) and compared to the



Figure 4: Scaled pressure distribution of the NACA0010 foil in an oscillating cavita-
tion field

Figure 5: Sheet cavitation thickness on the NACA0010 foil for the cavitation number
σv = 0.6823

results obtained by [6] (cf. 7(b)). Figure 7(a) illustrates the lift coefficient for the
cavitating and non-cavitating case as a function of the angle of attack. The results
show that for the angle of attack between 2◦ and 5◦ the lift coefficient of the foil
increases due to the existence of sheet cavitation. These results confirm very well
with the results published in [6] (cf. 7(b)). The only difference to the results in 7(b) is
that the results of panMARE show no sheet cavitation on the pressure side of the foil.
This is because only an algorithm for the computation of the suction side cavitation has
been implemented in panMARE, thus the pressure side cavitation cannot be captured
by the programme at the moment.

4.2 Numerical studies on the P1356 propeller

In this section the five-bladed marine propeller KCS (MOERI Container ship) is stud-
ied under cavitating conditions. All relevant propeller data are listed in Table 3. The



(a) Lift coefficient for an oscillating cavitation
number

(b) Drag coefficient for an oscillating cavitation
number

Figure 6: Results of the sheet cavitation calculations on the NACA0010 foil for an
oscillating cavitation number

Characteristics Value
σv 0.65
V∞ 1 [m/s]
V0 ±0.0875 [m/s]
∆t 1/300 [s]
ω 1 · π [1/s]
Blade section NACA0010
Λ 3

Table 2: Input data for the test case 2

grid of the propeller consists of 20 panels in the spanwise and 70 panels in the cross-
wise direction. In the following numerical studies the propeller is simulated for two
different inflow velocity fields and cavitation numbers.

4.2.1 P1356 propeller with a homogeneous inflow velocity

In the first test case the propeller is simulated with a uniform inflow velocity Vinflow =
4.74 and the cavitation number σv = 6.42. Figure 8 shows a comparison between the
simulation results obtained by panMARE and the experimental results measured by
the SVA (Schiffbau-Versuchsanstalt Potsdam GmbH) for the same cavitation number
[7]. The cavity shape calculated by panMARE conforms qualitatively very well to the
cavity shape measured by the expreminent. At the blade tip of the propeller the sheet
cavity length calculated by panMARE is a little underestimated. This is due to the
fact that no tip vortex cavitation can be calculated in panMARE at the moment.



(a) Lift coefficient calculated by panMARE (b) Lift coefficient calculated by [6]

Figure 7: Calculated and measured lift coefficients for the NACA0010 foil in pitch
motion

Characteristics Value
Propeller diameter (Dprop) 0.25 [m]
Hub ratio 0.180
Skew 12.66 [deg]
Mean camber line distribution (a) 0.8
Blade section NACA66
Pitch ratio 1
Propeller area ratio 0.7
Scale ratio λ = 31.6

Table 3: Propeller data

4.2.2 P1356 propeller in a non-uniform wakefield

In the second study the KCS propeller is simulated in a non-uniform wakefield with
the constant cavitation number σv = 2.651. The results of the sumulations are shown
in Figure 9 for two different angular positions of the key blade and compared to the ex-
perimental results measured by the SVA (Schiffbau-Versuchsanstalt Potsdam GmbH)
[8]. The results obtained in the simulations are consistent with the experimental re-
sults and for both angular positions the cavity shape is calculated correctly.
Additionally, in Figure 10 the relative thrust coefficient of the cavitating KCS propeller
is illustrated as a function of the blade angular position. As it can be seen in Figure 10
sheet cavitation has an influence on the thrust coefficient of the propeller. The thrust
coefficient of the propeller operating in an unsteady cavitating flow is smaller than that
of the non-cavitating propeller.



Advance coefficient J = 0.6
Rotation speed n = 25 [1/s]
Inflow velocity Vinflow = J · n ·Dprop=4.74 [m/s]
ω 2π · n [1/s]
Cavitation number σv = 6.42

Table 4: Input data for the test case 1

(a) Sheet cavitation measured by SVA [7] (b) Sheet cavitation calculated by
panMARE

Figure 8: Comparison of the measured and calculated results for the sheet cavity on
the KCS propeller for σv = 6.42

5 Discussion and outlook

In this paper a calculation scheme for the determination of unsteady sheet cavita-
tion on a hydrofoil and marine propeller flows was devised. The numerical model
was implemented in the in-house simulation tool panMARE and applied to a three-
dimensional foil flow as well as to a five-bladed marine propeller flow. The numerical
results obtained by panMARE show a good agreement with the results obtained by
other authors and experiments.

In the next steps, the code should be further validated by two- and three-dimensional
examples and the free surface effects should be included in the calculation of the cav-
ity sheet. It was investigated by Bal and Kinnas that the inclusion of a free surface
in the numerical calculations may have a significant influence on the cavity shape re-

Advance coefficient J = 0.7497
Rotation speed (n) n = 11.72 [1/s]
Inflow velocity Vship = J · n ·Dprop = 2.196 [m/s]
ω 2π · n [1/s]
Cavitation number σv = 2.651

Table 5: Input data for the test case 2



(a) Sheet cavitation measured by
SVA [7]

(b) Sheet cavitation calculated
by panMARE

Figure 9: Comparison of the measured and calculated results for the sheet cavity shape
on the KCS propeller for σv = 2.651 at the blade angular positions θ = 0◦ and θ = 20◦

sults [9]. Additionally, for the completeness of the sheet cavitation model, the code
should be extended related to the calculation of pressure side cavitation. Pressure side
cavitation occurs mainly for small angles of attack and for high cavitation numbers.
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