
Abstract

Numerical simulation requires discretisation of geometrical domains into meshes for

numerical schemes such as finite element methods. Depending on the meshing al-

gorithm to be implemented, the mesh data structure may provide drastically different

features: type of cells, available connections and so on. That is the reason why many

mesh frameworks have been developed in the last decade in order to handle several

mesh models, i.e. a combination of available cells and connections, with a common

interface. Using such a framework, we provide in this paper a level of abstraction to

write an algorithm for any mesh model. We experiment this feature onto an algorithm

that generates a Delaunay triangulation.

Keywords: meshing framework, C++ generic programming, computation time, mem-

ory footprint, mesh model, Delaunay triangulation.

1 Introduction

One of the main building blocks of computational simulations is the mesh data struc-

ture. Depending on the numerical approximation methods or the meshing algorithm to

implement, the mesh data structure must provide drastically different features. For in-

stance, some algorithms require a full tetrahedral mesh where nodes and tetrahedra are

known and thus kept in memory, while others require a full hexahedral mesh with the

knowledge of hexahedra, faces, nodes and specific topological connections. In both

cases, the optimal memory footprint should be achieved with specific implementation

choices. In order to provide a single and uniform way to handle any kind of meshes,

general meshing infrastructures have been developed in the last few years[2, 6, 10, 11].

In this work, we focus on one of them, the C++ Generic Mesh Data Structure (GMDS)

framework[7], which allows the developer to select the kind of cells and connections
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that are indeed kept in memory. Generic is used here for two meanings: first, the

provided data structure can handle any mesh model, i.e. a combination of available

cells and connections; second, it is based on a generic programming paradigm. At

compile-time, it provides a tailored mesh data structure both in terms of computa-

tional complexity and memory footprint, which fits as best as possible the algorithm

requirements.

A mesh framework like GMDS provides code sharing and a uniform access to any

type of mesh model whatever the developers’ requirements are. However, two main

issues remain to be solved in an industrial context: how to select the mesh model that

best fits the requirements of an algorithm?, and how to combine algorithms requiring

different mesh models without space memory duplication? In order to provide a first

answer, we show in this paper how we have added a new level of abstraction into

GMDS: considering a mesh model M , we specialise at compile-time some pieces of

C++ code to retrieve the connections that are not kept in memory according to M .

By extension, an algorithm can be defined in a generic manner and launched with

different mesh models in order to select the mesh model that best fits an expected

balance between memory footprint and speed performances.

The remainder of this paper is organised as follows: in Section 2, some topological

definitions are given to represent any mesh representation and combinatorial terms are

defined to build topological connectivity; Section 3 gives some implementation details

and, eventually, in Section 4, we give some results about a multi-model algorithm

generating a 2d Delaunay triangulation.

2 Background Notions and Related Works

This work deals with the cell-based representation of meshes, which is used by most

of numerical simulation that are based on finite element methods or finite volume

methods. Generally , they use simplicial meshes or quad/hexahedral meshes with

considering four types of cells (nodes, edges, faces and regions) and specific connec-

tions.

In this section, we introduce some background notions that are used in the paper.

We begin by reviewing basic topological concepts related to meshes, then, we describe

traditional combinatorial representations of meshes. Note that this work focus on

topological aspects and, thus, we do not deal with geometrical representations, mesh

classifications [10] or higher-order meshes.

2.1 Topological Definitions of Cells and Meshes

A k-dimensional cell, or k-cell, for brevity, is a subset of the d-dimensional Euclidean

space Ed homeomorphic to a closed k-dimensional ball, where k ≤ d and (d, k) ∈
N

+ ×N
+. For instance, on Figure 1 (a), c2

1, c2
2 and c2

3 are 2-cells. On Figure 1 (b), c0
1

and c1
1 are respectively a 0-cell and a 1-cell. For finite-element method, 3-dimensional
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meshes are generally depicted as a set of 3-cells, called regions, 2-cells, called faces,

1-cells, called edges and 0-cells, called nodes.

Let M = {M0,M1, . . . ,Md} be a (d + 1)-uple of set of cells such that for all

0 ≤ i ≤ d, M i contains all the i-cells of M and for all ci ∈ M i, the set ∂ci is a

collection of (i − 1)-cells of M . Then M is a d-dimensional mesh iff

{

∀i ∈ [0..d], ∀(ci, di) ∈ M i × M i, c̊i ∩ d̊i = ∅
∀i ∈ [0..d − 1], ∀ci ∈ M i, ∃cd ∈ Md / ci ∈ ∂cd

where [i..j] = N ∩ [i, j] for all 0 ≤ i < j, and x̊ means the interior of x.
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Figure 1: Example of a 2d mesh having 3 2-cells. In (a), the intersection of any pair of

2-cells is reduced to 1-cells, i.e. edges; In (b), some 1-cells and 0-cells are represented

Considering a d-mesh M = {M0,M1, . . . ,Md}, some topological relations be-

tween cells are useful for writing algorithms and computing topological properties:

• An i-cell ci and a j-cell cj of M , with 0 ≤ i < j ≤ d are incident iff ci ∈ ∂cj .

• Two i-cells ci
1 and ci

2 are j-adjacent, with 0 ≤ j < i ≤ d iff

∃cj ∈ M j / cj ∈ ci
1 ∩ ci

2.

• Two i-cells, with 0 < i ≤ d are said adjacent if they are (i − 1)-adjacent.

On Figure 1 (b), the 1-cells c1
2 and c1

3 are adjacent since they are both incident to the

0-cell c0
2. In order to define generic adjacency and incidence retrieval operators in

Section 2.2, we also need the following notations:

• Let (i, j) ∈ [0..d]2, let x be an i-cell, the set of j-cells adjacent or incident to x
is denoted by Adjj(x). For instance, considering the 2-cell c2

1 on Figure 2, we

have Adj0(c
2
1) = {c0

1, c
0
2, c

0
6}. Reciprocally, considering the 0-cell c0

2 we have

Adj2(c
0
2) = {c2

1, c
2
2}.
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• Let X be a multiset (or mset for short) of cells, i.e. an unordered collection

of cells, which may contain copies or multiples of a cell. Then the multiset of

k-cells adjacent or incident to at least one cell of X is denoted by

Adjk(X) =
∑

x∈X

Adjk(x).

Considering that the number of copies of a cell c in an mset S is denoted by

mS(c) and called its multiplicity, we have

∀y ∈ S =
∑

i∈I

Ai, mS(y) =
∑

i∈I

mAi
(y).

For instance, considering the 2-cells c2
0 and c2

2 on Figure 2, we have

Adj0({c
2

0, c
2

2}) = Adj0(c
2

0) + Adj0(c
2

2) = {c0

1, c
0

1, c
0

2, c
0

3, c
0

3, c
0

4}.

In this mset, the multiplicity of c0
1 and c0

3 is two and the multiplicity of c0
2 and c0

4

is one.

• Let (i, j) ∈ [0..d]2 and X be an mset of cells, we introduce the notation

Adji1i2...ik
(X) = Adjik ◦ . . . ◦ Adji2 ◦ Adji1(X)

where (g ◦ f)(x) = g(f(x)) for f : X → Y , g : Y → Z and x ∈ X . For

instance, the mset Adj02(x), where x is a 2-cell, corresponds to all the 2-cells

sharing a 0-cell with x, including n occurrences of x if x has n incident 0-cells.

On Figure 2, the mset Adj02(c
0
10) is equal to

Adj02(c
0

10) = Adj0({c
2

5, c
2

8, c
2

9, c
2

7, c
2

6})

= Adj0(c
2

5) + Adj0(c
2

8) + Adj0(c
2

9) + Adj0(c
2

7)+, Adj0(c
2

6)

= {c0

7, c
0

7, c
0

8, c
0

8, c
0

9, c
0

9, c
0

10, c
0

10, c
0

10, c
0

10, c
0

10, c
0

11, c
0

11, c
0

12, c
0

12, c
0

13, c
0

13}.

• Considering an mset X , we introduce the set

Keepn(X) = {x|x ∈ X and mX(x) = n}

which is the set of elements that have at least n copies in X . For instance,

considering the previously given mset Adj02(c
0
10), we have

Keep1(Adj02(c
0

10)) = {c0

7, c
0

8, c
0

9, c
0

10, c
0

11, c
0

12, c
0

13},

Keep2(Adj02(c
0

10)) = {c0

7, c
0

8, c
0

9, c
0

10, c
0

11, c
0

12, c
0

13},

Keep3(Adj02(c
0

10)) = {c0

10}.
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Figure 2: A simple 2d mesh containing several types of 2-cells (triangles, quadrilater-

als, pentagons)

2.2 Mesh Model

Two cell-based representations differ in the type of cells they provide or the incidence

and adjacency relations they explicitly store. The choice of what is explicitly described

in a mesh representation is a consequence of the algorithm to implement. Then, for

a particular algorithm, it might be useless to have all the types of cells. For instance,

geometric smoothing or Delaunay-like algorithms only require nodes and faces in

2d. Each mesh data structure corresponds to a particular mesh model [6, 8] that we

formalise as following: An n-dimensional mesh model M , with n ≥ 0, is a couple

(C, I) where

1. C, a finite subset of N, indicates which dimensions of cells are managed by M ;

2. I , a finite subset of C → C, is a set of relations corresponding to the connections

managed in M . Relation noted (i → j) indicates that the connection from i-
cells to j-cells is stored in M .

Figure 3 and Figure 4 show some mesh models. To illustrate this definition, let us

consider mesh models R1 and F1. Mesh model R1 is defined by ({0, 3}, {0 → 3, 3 →
0}) and mesh model F1 is defined by ({0, 1, 2, 3}, {0 → 1, 1 → 0, 1 → 2, 2 → 1, 2 →
3, 3 → 2}). Considering this mesh model, a cell-base representation can be classified

as being full or reduced, complete or incomplete [8, 9]. A mesh representation is full

iff all the cell types are explicitly stored (see Figure 3). Otherwise it is said reduced

(see Figure 4). A mesh representation is said to be complete iff any adjacency and

incidence relation can be retrieved for any cell without a global traversal of the mesh.

In the other cases, the representation is said incomplete.

Another way to represent a mesh model is to use direct and indirect connectivity

matrices. Here, we present their definitions only for 2d and 3d mesh models. Let M
be a mesh model, the direct matrix DM is the 4 × 4 matrix such that DM

i,j = 1 iff the
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Figure 4: Some reduced models

connection i → j is in M , 0 otherwise. The indirect matrix IM is the 4 × 4 matrix

such that

IM
i,j = × if DM

i,j = 1,

= k with 0 ≤ k ≤ 3 if the shortest connection

path from i to j is i → k → . . . → j,

= − if there is no way to get j from i.

For instance, let us consider the full model F1 (see Figure 3) and the reduced model

R2 (see Figure 3). Their direct and indirect matrices are:

DF1 =









0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









IF1 =









1 × 1 1
× 0 × 2
1 × 1 ×
2 2 × 2









DR2 =









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









IR2 =









× − − ×
− − − −
− − − −
× − − ×








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We can note that the indirect matrix of F1 shows we can always access from i to j for

any values (i, j) ∈ [0..3]2 while it is not the case for R2. For instance, in order to get

nodes of a region r, i.e. the connection 3 → 0, IF1
3,0 = 2 indicates that we have to get

the set of faces incident to r, i.e the set Adj2(r). Then for each face, to get nodes, we

have to go through edges since IF1
3,0 = 1. The connection from edges to nodes being

direct (IF1
1,0 = ×), the nodes of r are in the multiset Adj210(r).

2.3 Topological Queries for any Mesh Model

Considering a mesh model M , it is straightforward to get the j-cells incident to an

i-cell Ci
k if DM

i,j = 1. This operation is local and optimal in computational time. But

some other options are possible to get this incidence relation under relaxed proper-

ties of M . For instance, getting the nodes incident to a face c2
k in the mesh model

{0, 1, 2, 2 → 1, 1 → 0} can be obtained by computing Adj10(c
2
k) and keeping some

elements of this multiset. The aim of this section is to show how to retrieve any adja-

cency or incidence relation for any mesh model M even it is incomplete. To do that,

we introduce the notion of extended mesh model and we restrict our approach to a

specific range of meshes (which are suitable for numerical simulation). Considering a

mesh model M = (C, I), the extended model Me = (Ce, Ie) of M is such that:

• Ce = C

• Ie = {(i → j)|(i → j) ∈ I ∨ (j → i) ∈ I}

In other words, if you consider M as being an oriented graph Me is the corresponding

non-oriented graph. In order to support the indirect topological queries we restrict our

approach to any d-dimensional mesh M that verifies:

1. for all i ∈ [1..d] and x ∈ Mi, either x is an i-simplex or can be split into

i-simplices;

2. for all i ∈ [1..d] and (x, y) ∈ Mi ×Mi, x and y share at most two (d− 1)-cells.

The first property eliminates topological degenerated cells, like flat elements (see Fig-

ure 5 (a) ), while the latter property is necessary to get some incidence and adjacency

relations (see Figure 5 (b) ).

2.3.1 Incidence Set

Let M = (C, I) be a mesh model, let (i, j) ∈ C2 and x an i-cell, we can retrieve the

set of j-cells adjacent to x if there exists a path from i to j in Me that does not go

through a value k greater than i and j. The existence of this path allow us to create

a mset containing the expected set. Considering an i-cell x, three options are then

possible to get an mset Adjk1k2...kpj(x) containing Adjj(x):

1. i → k1 → . . . → kp → j with i < k1 < . . . < kp < j is a path in Me;

7



(a) (b)

c2
0

c2
0 c2

1

c2
1

c2
2

c2
2

c2
3

c2
3

c2
4

c2
4

c2
5

c2
5

c2
6

c2
6 c2

7

Figure 5: Example of 2d meshes we do not consider. In (a), cells c2
0 and c2

1 are not a

2-simplex since they have less than three incident 0-cells or 1-cells; In (b), cells c2
0 and

c2
1 share more than two edges

2. i → k1 → . . . → kp → j with i > k1 > . . . > kp > j is a path in Me;

3. i → k1 → . . . → k → . . . → kp → j with i > k1 > . . . > k < . . . < kp < j is

a path in Me.

In order to illustrate these three options, let us consider Figure 2 and some mesh mod-

els. Considering the 0-cell c0
1 and the mesh model ({0, 1, 2}, {0 → 1, 1 → 2, 2 → 0}),

the set of the 2-cells incident to c0
1 is included in Adj12(c

0
1) = {c2

0, c
2
0, c

2
2, c

2
2} (option 1).

Considering the 2-cell c2
0 and the same mesh model, the set of the 0-cells incident to

c2
0 is included in Adj10(c

2
0) = {c0

1, c
0
1, c

0
3, c

0
3, c

0
4, c

0
4} (option 2). Eventually, considering

the 1-cell [c0
1, c

0
3] and the same mesh model({0, 1, 2}, {0 → 1, 2 → 0}), the set of the

2-cells incident to [c0
1, c

0
3] is included in Adj02([c

0
1, c

0
3]) = {c2

0, c
2
0, c

2
1, c

2
2, c

2
2, c

2
3} (option

3). If the existence of one of the three previous path in Me ensures the ability to build

i → j for any mesh model, it does not ensure an optimal computational time solution.

To achieve this optimal, we follow the next priority order:

1. If DM
i,j = 1 then getting the j-cells incident to an i-cell c1 is local to ci, else

2. If IM
i,j 6= − then getting the j-cells incident to an i-cell c1 is local to a neigh-

bourhood of ci, and thus independent of the mesh size, else

3. If DMe

i,j = 1 then getting the j-cells incident to an i-cell c1 corresponds to a

global traversal of M j to find the j-cells being incident to ci, else

4. If IMe

i,j 6= − then it exists a series of local and global traversals to getting the

j-cells incident to an i-cell c1.

The two first options require a local traversal of the mesh structure, while the two last

options require at least one global traversal.
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In practice, in order to get the set Adjj(x) of j-cells incident to an i-cell x in a mesh

model M , only some copies of a corresponding incidence mset have to be kept. The

choice of copies to keep depends on their multiplicity, the type of connection (i → j)

and the existing paths in Me. Since 3 is the maximum diameter of Me (considered as

being a graph), a shortest path between any i and j in Me has a size of 1, 2 or 3. Let

us suppose that such a path exists. If its length is one, we have DM
i,j = 1 or DMe

i,j = 1.

In both cases, Adjj(x) is the expected set. If its length is two, it means there exists k
such that (i → k) ∈ Me and (k → j) ∈ Me. We have then the three possible cases

given previously with only the value k in the path. If i < k < j or i > k > j then

we have to keep a copy of each element being in Adjkj(x) (see Table 1). In fact, when

the dimension values of the path define a monotonic function, we build a growing

geometrical neighbourhood, and thus, we never reach j-cells that are not incident to

x. Thus we can keep one copy of each element being in the incidence mset. Let us

suppose that i > k and j > k, then the mset Adjkj(x) contains j-cells that are not

incident to x. In order to build the corresponding incidence set, we have to keep j-

cells having at least p + 1 copies in Adjkj(x) with p = min(i, j) (see Table 1). Let us

prove it. In the following, x denotes an i-cell.

• First, let us suppose that i > j. As we only consider 2d and 3d meshes, i = 2
or i = 3.

– Let i = 2, then (j, k, p) = (1, 0, 1). The mset Adj01(x) contains all the

1-cells incident to at least one 0-cell incident to x. Since an edge is topo-

logically defined with two 0-cells, only the 1-cells having 2 = p+1 copies

in Adj01(x) must be kept.

– Let i = 3, then (j, k, p) = (1, 0, 1) or (2, 1, 2) or (2, 0, 2). If (j, k, p) =
(1, 0, 1), the mset Adj01(x) contains all the 1-cells incident to at least one

0-cell that is incident to x. Since an edge is defined with two 0-cells,

only the 1-cells having 2 = p + 1 copies in Adj01(x) must be kept. If

(j, k, p) = (2, 0, 2), the mset Adj02(x) contains all the 2-cells incident to

at least one 0-cell incident to x. Since a face is defined with at least three

0-cells, only the 2-cells having at least 3 = p + 1 copies in Adj02(x) must

be kept. If (j, k, p) = (2, 1, 2), we use the fact that a face has at least three

edges to get the same conclusion.

• Let us now suppose that i < j. We get the same four cases than beforehand and

the same results indeed. Let us just consider the case (i, j, k, p) = (2, 3, 0, 2).
The mset Adj03(x) contains all the 3-cells incident to at least one 0-cell incident

to x. Since a face is defined with at least three 0-cells, a region, or 3-cell,

incident to x has at least 3 = p + 1 copies in Adj03(x). Equivalent proofs can

be lead for the three other cases.

Table 1 summarises all the possibilities to retrieve incidence relations between cells in

2d and 3d meshes. Eventually, we consider paths of length 3. Each of this path goes

through all the type of cells in 3d and does not goes through a dimension greater than i
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and j. They are summarised in Table 2. The number of j-cells to keep is defined in the

same way as for 2-length paths. In the case of paths that do not follow a monotonic

way, we have to reduce msets to sets by keeping one copy per k-cell. The scheme

we use to compute an incidence set is equivalent to the 2-length path having the same

minimal intermediate node. For instance, the path 3 → 0 → 1 → 2 is equivalent to

the path 3 → 0 → 2.

ց �ր

i > j

2 → 1 → 0 (Keep1 ◦ Adj10)(x) 2 → 0 → 1 (Keep2 ◦ Adj01)(x)
3 → 2 → 0 (Keep1 ◦ Adj20)(x) 3 → 0 → 1 (Keep2 ◦ Adj01)(x)
3 → 2 → 1 (Keep1 ◦ Adj21)(x) 3 → 0 → 2 (Keep3 ◦ Adj02)(x)
3 → 1 → 0 (Keep1 ◦ Adj10)(x) 3 → 1 → 2 (Keep3 ◦ Adj12)(x)

i < j

0 → 1 → 2 (Keep1 ◦ Adj12)(x) 1 → 0 → 2 (Keep2 ◦ Adj02)(x)
0 → 1 → 3 (Keep1 ◦ Adj13)(x) 2 → 0 → 3 (Keep3 ◦ Adj03)(x)
0 → 2 → 3 (Keep1 ◦ Adj23)(x) 2 → 1 → 3 (Keep3 ◦ Adj13)(x)
1 → 2 → 3 (Keep1 ◦ Adj23)(x) 1 → 0 → 3 (Keep2 ◦ Adj03)(x)

Table 1: Indirect incidences for 2-length paths. The first column gathers monotonic

paths and the second column gathers acceptable non-monotonic paths.

ց
i > j 3 → 2 → 1 → 0 (Keep1 ◦ Adj210)(x)
i < j 0 → 1 → 2 → 3 (Keep1 ◦ Adj123)(x)

�ր

i > j
3 → 2 → 0 → 1 (Keep2 ◦ Adj1 ◦ Keep1 ◦ Adj20)(x)
3 → 1 → 0 → 2 (Keep3 ◦ Adj2 ◦ Keep1 ◦ Adj10)(x)
3 → 0 → 1 → 2 (Keep3 ◦ Adj2 ◦ Keep1 ◦ Adj01)(x)

i < j
2 → 1 → 0 → 3 (Keep3 ◦ Adj3 ◦ Keep1 ◦ Adj10)(x)
2 → 0 → 1 → 3 (Keep3 ◦ Adj3 ◦ Keep1 ◦ Adj01)(x)
1 → 0 → 2 → 3 (Keep2 ◦ Adj3 ◦ Keep1 ◦ Adj02)(x)

Table 2: Indirect incidences for 3-length paths. Non-monotonic paths require to use

the Keep operator twice

2.3.2 Adjacency Set

Considering a mesh model M = (C, I), we want now to retrieve the d-cells adjacent

to a d-cell Cd
k with d = 2 (2d) or d = 3 (3d). If DM

d,d = 1, it is straightforward, local

and optimal in computational time. Otherwise, getting an adjacency relation consists

in getting a value k ∈ C such that it exists a path from d to k and k → d ∈ I . The

possible cases are resumed in Table 3. Computing the path from d to k is done by

applying the computational terms given for building incidence sets previously. We get

10



then a set Sk containing all the k-cells incident to cd. Then we use the Adjd operator

to get an mset S ′ containing all the d-cells adjacent to cd. By construction, the d-

cell cd has |Sk| copies in S ′ and must be removed to get the expected adjacency set.

Moreover, the d-cells to keep are the ones having more than d− k copies in S ′ but cd.

path computational term

2 → 1 → 2 (Keep1 ◦ Adj12)(x) − {x}
2 → 0 → 2 (Keep2 ◦ Adj02)(x) − {x}
3 → 2 → 3 (Keep1 ◦ Adj23)(x) − {x}
3 → 1 → 3 (Keep2 ◦ Adj13)(x) − {x}
3 → 0 → 3 (Keep3 ◦ Adj03)(x) − {x}
2 → 1 → 0 → 2 (Keep2 ◦ Adj2 ◦ Keep1 ◦ Adj10)(x) − {x}
2 → 0 → 1 → 2 (Keep1 ◦ Adj2 ◦ Keep2 ◦ Adj01)(x) − {x}
3 → 2 → 1 → 3 (Keep2 ◦ Adj3 ◦ Keep1 ◦ Adj21)(x) − {x}
3 → 1 → 2 → 3 (Keep1 ◦ Adj3 ◦ Keep3 ◦ Adj12)(x) − {x}
3 → 2 → 0 → 3 (Keep3 ◦ Adj3 ◦ Keep1 ◦ Adj20)(x) − {x}
3 → 0 → 2 → 3 (Keep1 ◦ Adj3 ◦ Keep3 ◦ Adj02)(x) − {x}
3 → 1 → 0 → 3 (Keep3 ◦ Adj3 ◦ Keep1 ◦ Adj10)(x) − {x}
3 → 2 → 1 → 0 → 3 (Keep3 ◦ Adj3 ◦ Keep1 ◦ Adj210)(x) − {x}
3 → 1 → 0 → 2 → 3 (Keep1 ◦ Adj3 ◦ Keep3 ◦ Adj2 ◦ Keep1 ◦ Adj10)(x) − {x}
3 → 0 → 1 → 2 → 3 (Keep1 ◦ Adj3 ◦ Keep3 ◦ Adj2 ◦ Keep1 ◦ Adj01)(x) − {x}

Table 3: Indirect Adjacency paths

3 A C++ Multi Model Mesh Framework

In order to provide a framework allowing the developer to select the mesh model

he wants for writing algorithms, we have developed a C++ library called GMDS for

Generic Mesh Data Structure[7].This library uses the main features of the object-

oriented programming (OOP) and generic programming paradigm:

• OOP provides the necessary level of abstraction to ease the development of com-

plex software. Some key concepts of OOP are data encapsulation, inheritance

and pure virtual classes, or interfaces: In OOP, software is organised around

classes that encapsulate data structures and the treatments needed to access and

manipulate this data; Inheritance allows the developer to create new classes spe-

cialising existing ones; Interfaces allow the developer to define sets of services

(depicted by operations) that concrete classes will implement. The latter notion

is essential to define modular and evolving software architectures.

• In response to some of the shortcomings of OOP (like computing time penal-

ties), generic programming has gain widespread acceptance as a complementary
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programming paradigm, especially in the C++ community. Generic program-

ming is mainly used to define generic containers or generic algorithms which

are independent of the objects they deal with. In numerical simulation codes,

generic programming is also used to improve speed performances by perform-

ing mathematical computation at compile-time. Despite the appeal of generic

programming, its exclusive use for large-scale software is not viable, since the

excessive use of templates usually leads to cryptic software that is hard to un-

derstand, debug and has very long compilation times.

Mixing oriented-object programming and generic programming has also been done

in many software packages like CGAL [4] and GrAL [1] for computational geometry

and meshing, OpenMesh [2] for polygonal meshing and some other works for finite

element software [5]. In GMDS, generic programming is used to get for any mesh

model M a tailored memory footprint and specific behaviours.

In the following of this section, we shortly present some key points of the GMDS

implementation and we focus on how we handle adjacency and incidence relations

whatever the mesh model is. The interested reader can refer to [7] for more details

about the memory footprint of the data structure.

3.1 Design Overview

Figure 6 shows a simplified class diagram, which gives a structural view of the cell-

based mesh kernel. Classes can be split into four categories :

1. Mesh interfaces are Node, Edge, Face, Region, Cell and Mesh classes.

They give a user-friendly access to mesh concepts without dealing with template

parameters (except for the Mesh class).

2. Internal mesh classes are TNode, TEdge, TFace, TRegion and TCell

classes. They use generic programming to optimise memory footprint.

3. Allocation classes are not represented in Figure 6 but are essential. They man-

age memory allocation to improve memory allocation performances. Tradi-

tional techniques like chunk allocations are performed.

4. Policy classes encapsulate the behaviour that depends on template parameters

(mesh model and cell types).

In Figure 6, generic parameter TMask defines the mesh model we want to use. We

call it the model mask and it defines the mesh model. Every internal mesh class has

this generic parameter. It is defined as a combination of the following symbols: Dim2

and Dim3 define the mesh dimension; N E, F, R indicates which types of cells are

available; X2Y with (X, Y)∈{N, E, F, R}2 indicates that the topological relation from

cells of type X to cells of types Y are stored. For instance, to define and work with

a mesh in the mesh model R1 (see Figure 4), the user has to use an instance of the
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Figure 6: Simplified class diagram of the GMDS cellular mesh module.

class Mesh<Dim3|N|R|R2N|N2R>. It means this is a 3d mesh (Dim3) composed

by nodes (N) and regions (R) where connections 3 → 0 (R2N) and 0 → 3 (N2R) are

stored.

All internal classes, but Mesh class, have also an extra parameter defining the

type of cell they represent. For instance, for a face, values can be GMDS QUAD,

GMDS TRIANGLE or GMDS POLYGON. These parameters are used to specialise mem-

ory consumption and cell behaviour. Each internal cell class implements an interface

and inherits from the TCell class. From a user point of view, internal classes, allo-

cation classes and policy classes are hidden. Developers only use cell interfaces and

the Mesh class. This design provides flexibility and a user-friendly interface.

3.2 Implementation of Basic Queries and Modifications

We use template specialisation to optimise both accesses and basic modifications for

a specific mesh model. For instance, if an operation is not available, the decision to

throw a C++ exception for this operation is performed at compile-time. As a con-

sequence, no extra conditional test is performed during the program execution. This

way, even if we certainly do not reach the speed performances of dedicated mesh data

structure that can be optimised, there is no penalty due to the mesh model.

Since the mesh model is known at compile-time, we use traits and policy techniques

to generate the adequate source code corresponding to the computational terms given

in Section 2. For instance, let us consider the mesh model M = ({0, 1, 2}, {2 →
1, 0 → 1}). We want to get the nodes incident to a face x. Considering Me, we have a

path 2 → 1 → 0, and thus the nodes incident to x are obtained by (Keep1 ◦Adj10)(x).
Considering the C++ variable x, which is a pointer to a Face object, we write with

GMDS,

std::vector<Node*> nodes = x->getNodes();

In the body of the getNodes() operation, a call to the operation vec() of the

policy class GetAdjPolicy is done. This template class has three template param-
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eter corresponding to the mesh model, the dimension of the departure cell and the

dimension of the destination cells. For the incidence relation (2 → 0), we use the

specialisation GetAdjPolicy<M,2,0> (see Listing 1). In the operation vec(),

we check some properties of the model in order to get the nodes in an optimal com-

putational time according to the mesh model. For that we follow the priority or-

der given in Section 2. Thus, if the mesh model stores the connection (2 → 0)
(DirectAdj<M,2,0>::yes), we use an template operation given directly the

nodes of our face. The second test is for (2 → 1) ∧ (1 → 0) that uses two local

traversal. With the mesh model M , the condition of Line 9 in Listing 1 is true, and

thus three operations are called (line 10 and 11):

• First, Get<1>::Adj(f) provides all the edges incident to the 2-cell f. Let E

to be this set of edges.

• Second, GetInv<M,0>::Adj(m,E) computes the mset of nodes incident to

at least one 1-cell of E. It is a global operation that requires to go through all the

nodes of the mesh. Let N to be this mset of nodes.

• Third, Keep<Node*,1>::AtLeast(N) is an operation that returns the set

of nodes having at least one copy in N.

The template class GetAdjPolicy<M,i,j> is specialised in a similar way for any

couple (i,j) ∈ [0..3]2 and it implements the computational terms given in Tables 1, 2

and 3. Note that the conditional decisions that are in the body of the vec() operation

are solved at compile-time since they only depend of template parameters. Thus, in

the case of M , the vec() operation is reduced to a call to line 10/11.

4 A Multi Model 2d Delaunay Algorithm

In order to illustrate the benefits of having multi-model topological query operators,

we have studied the Bowyer-Watson algorithm [3, 12], which generates a Delaunay

triangulation T of an arbitrary set of points P by sequentially adding new points and

modifying the existing triangulation by means of purely local operations (if the mesh

model allows it). This algorithm proceeds in an iterative manner, taking a point of P
and inserting it into T . Traditionally, the algorithm starts with an initial triangulation

T0 of the bounding box of P and terminates when P is empty.

4.1 Algorithm implementation

Let us now briefly detail each step i of this algorithm. Let pi be the point of P to insert

during this step and Ti−1 be the triangulation before beginning this step:

1. Getting a triangle of Ti−1 containing pi (see Figure 7 (a) and (b) ) - We start

with a triangle T ∈ Ti−1 randomly chosen and we compute the barycentric
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0template<int M> struct GetAdjPolicy<M,2,0>{

static std::vector<Node*> vec(Mesh<M>& m, Face* f)

{

if(DirectAdj<M,2,0>::yes)

return Get<0>::Adj(f);

5 else if(DirectAdj<M,2,1>::yes && DirectAdj<M,1,0>::yes)

return Keep<Node*,1>::AtLeast(Get2<1,0>::Adj(f));

else if(DirectAdj<M,0,2>::yes)

return Keep<Node*,1>::AtLeast(GetInv<M,0>::Adj(m,f));

else if(DirectAdj<M,2,1>::yes && DirectAdj<M,0,1>::yes)

10 return Keep<Node*,1>::

AtLeast(GetInv<M,0>::Adj(m,Get<1>::Adj(f)));

else if(DirectAdj<M,1,2>::yes && DirectAdj<M,1,0>::yes)

return Keep<Node*,1>::

AtLeast(Get<0>::Adj(GetInv<M,1>::Adj(m,f)));

15 else if(DirectAdj<M,1,2>::yes && DirectAdj<M,0,1>::yes)

return Keep<Node*,1>::AtLeast(GetInv2<M,1,0>::Adj(m,f));

}

};

Listing 1: Policy class specialisation providing the 2 → 0 incidence relation for any

mesh model

coordinates of pi in T . These coordinates indicate if pi is in T or in which

direction to go to find a triangle containing pi. In the latter case, we go to the

incident face of T along this direction. Thus we need the connection (2 → 2) in

order to topologically traverse the mesh and the connection (2 → 0) to compute

barycentric coordinates.

2. Cavity creation (see Figure 7 (c) ) - Let Ti be the triangle containing pi, some

incident triangles of Ti could have their circumcircle that contains pi. All those

triangles define the cavity Ci. Connections (2 → 2) and (2 → 0) are necessary

here too.

3. Cavity triangulation (see Figure 7 (d) ) - All the triangles of Ci must be deleted

and new triangles are created by properly connecting pi and the nodes of ∂Ci.

In 2d, a natural mesh model to implement this algorithm is thus ({0, 2}, {2 →
0, 2 → 2}). Indeed, faces are defined by their incident nodes and local traversal

are naturally performed by finding the faces adjacent to a given one. We have thus

implemented a simple Bowyer-Watson algorithm on this mesh model before extending

it to any available 2d mesh model. From a programming point of view, the extension

to any mesh model M is straightforward if:

• the algorithm is encapsulated in a template class having the mesh model as a

template parameter,
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(a) (b)

(c) (d)

Figure 7: The main steps of the Bowyer-Watson algorithm. The red point is the point

to insert in the Delaunay triangulation

• the topological modifications are handled for any mesh model,

• there is no optimisation specific to M .

In order to satisfy the second item, we had to provide generic operations to create and

delete a triangle. These operations are the two mesh modifications that are performed

during the Bowyer-Watson algorithm. Each time, a triangle is created or deleted the

adjacency and incidence relations are updated and some cells can also be created or

deleted. It is the case of edges if they are defined in the mesh model M . They are

useless in our implementation of the Bowyer-Watson algorithm but they have to be

handled in order to keep a well-defined mesh. As a consequence, when we create a

face, we can have to create its incident edges or find them if they already exist in the

mesh. This research operation requires to get the nodes incident to an edge: if M
contains edge, it has to contain (1 → 0) or (0 → 1). The third optimisation can be

done, but a generic algorithm must be provide. Using the mesh model ({0, 2}, {2 →
0, 2 → 2}), a traditional optimisation to improve the mesh traversal is to store incident

nodes and adjacent faces in a specific order locally to a face: In a face f , the node

with local number i is not incident to the face adjacent to f and having local number

i. As we want a generic algorithm, we can not use such a local numbering in our

implementation. This led us to write an operation that returns the that shares two

nodes with another face. To be optimal in computational time, this operation requires

that the mesh model provides relation (0 → 2).
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Another drawback of our implementation is that we have to check the orientation

of triangles before any computation where the nodes’ order is important (circumcircle

computation). Indeed, we can not ensure that getting the nodes of a triangle in two

different mesh models gives the same ordered collection of nodes. If the connection

(2 → 0) is stored then you can store and retrieve nodes in a defined order. On the

contrary, getting nodes of a face using connections (2 → 1) and (0 → 1) does not

preserve any order. It is important to note that defining a multi-model algorithm will

never provide the best algorithm in terms of computational time. It is always better

to write a dedicated mesh data structure where connections are stored in a tricky way

and to improve the algorithm.

4.2 Experimental Results

We have implemented the Bowyer-Watson algorithm in 2d using the GMDS frame-

work. In 2d, there are 7 possible connections and thus 128 theoretical mesh model.

But all these potential mesh models are not supported by our implementation. The

empty model (without any connection) can be removed as well as all the mesh models

that do not allow to compute connections (2 → 0) and (2 → 2) that are used into

our implementation. Moreover if the mesh model deals with edges, it has to contain

connections (1 → 0) or (0 → 1). Finally it remains only 105 convenient mesh mod-

els. In practice, without any change in the source code, our implementation of the

Bowyer-Watson algorithm runs onto these 105 mesh models. As expected, the mem-

ory footprint and the performance speed depends of the mesh model. Table 4 gathers

some results for different mesh models. In this case study, the final triangulation con-

tains 1 225 points. With the nine first mesh model, we get the triangulation in less

than one second. It was expected since the relations that we use in the algorithm are

(2 → 0), (0 → 2), (2 → 2) and (1 → 0) (if edges are available or can be built with

local topological traversals only). In models 10 to 14, a connection must be computed

using a global traversal, while models 15, 16 and 17 require several global traversal.

Note that the model 14, which was our first choice, does not provide the best speed

performances. It would be with model-specific optimisations.

In order to select a mesh model, computational time and memory footprint have

to be taken into account. In Table 4, models 1 to 9 provides an equivalent com-

putational time but have quite different memory footprints. If edges are not nec-

essary to write an algorithm, it is then better to use models 1 or 2. Another crite-

rion to select a mesh model is the scalability. Figure 8 gives the behaviour of three

mesh models when the number of points goes from 2 500 to 40 000. We can deduce

that the best balance between computational time and memory footprint is achieved

by the model DIM2|F|N|F2N|N2F|F2F. It provides the best computational time

since it has all the required connections in a direct manner.is equivalent to the model

DIM2|F|N|F2N|N2F|F2F for memory footprint. In fact, there is a small over-

head because the number of connections F2F is small in comparison with the other

connections.
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Mesh model Comp. Memory

time (s) (bytes)

1 DIM2|F|N|N2F|F2N < 1 2 334 720

2 DIM2|F|N|N2F|F2N|F2F < 1 2 342 912

3 DIM2|F|E|N|F2N|N2F|F2E < 1 3 526 656

4 DIM2|F|E|N|F2N|N2F|F2E|F2F < 1 3 547 136

5 DIM2|F|E|N|F2E|E2F|F2N|N2F < 1 4 038 656

6 DIM2|F|E|N|F2N|N2F|N2E|E2F < 1 5 672 960

7 DIM2|F|E|N|F2N|N2F|N2E|E2F|F2F < 1 5 726 208

8 DIM2|F|E|N|F2N|N2F|E2N|N2E|F2E|F2F < 1 5 332 992

9 DIM2|F|E|N|F2N|N2F|E2F|F2E|E2N|N2E|F2F < 1 5 902 336

10 DIM2|F|N|N2F|F2F 49 2 314 240

11 DIM2|F|E|N|N2F|N2E|F2F 50 5 136 384

12 DIM2|F|N|N2F 55 2 289 664

13 DIM2|F|N|F2N 90 942 080

14 DIM2|F|N|F2N|F2F 91 987 136

15 DIM2|F|E|N|E2F|N2E 541 4 567 040

16 DIM2|F|E|N|F2E|E2N 2 129 1 454 080

17 DIM2|F|E|N|F2E|E2N|F2F 2 243 1 499 136

Table 4: Computational time and memory footprint for generating a 2d Delaunay

triangulation of 1225 points.

5 Conclusion

In this paper we have described an approach allowing users to write multi-model al-

gorithms in the GMDS framework. Some combinatorial terms have been exhibited in

order to compute missing connections of a mesh model. We have also showed that

some adjacency and incidence relations can not be computed for some mesh mod-

els. These combinatorial terms have been implemented in GMDS in order to build at

compile-time the appropriate pieces of source code. This feature has been evaluated

with implementing a Bowyer-Watson algorithm. The obtained algorithm runs onto

105 mesh models. It shows that an algorithm can be written for a specific mesh model

and then be reused with another mesh model.

In this work, we have provided generic computational terms to build adjacency and

incidence relations for any mesh models. We have now to test them with larger meshes

and to improve their behaviour if necessary. For instance, GMDS is partially based on

STL containers for storing the adjacency and incidence relations. Some improvements

are possible on this side. Another work is to extend the topological modifications for

any kind of cells. In this work, they were only written for triangular meshes.

Eventually, an long-term work will be to provide a tool allowing to analyse a mesh-

ing algorithm written with GMDS and to deduce the best model to use according to a

given balance between computational time and memory footprint.
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lation having 2 500 to 400 000 points with 3 mesh models
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