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Abstract 
 
The geometry configuration of vascular bypass grafts has profound influence on the 
physiologic flow pattern. Poor geometries might be correlated with postoperative 
occlusion pathogenesis. Improving the blood flow dynamics in the bypass is an 
important element for the long-term success of bypass surgeries. Genetic algorithms 
are effective tools to identify optimal shapes of grafts given a robust fluid dynamics 
numerical solver able to determine the main flow features of different setups. This 
paper focuses on a specific graft shape and three design variables: graft calibre, graft 
angulation and suture sizing. A multi-objective shape optimization algorithm 
considers a genetic algorithm iterating over numerically simulated flow through 
idealized bypass grafts. Shape optimization is accomplished by simultaneously 
minimizing shear stress and recirculation zones. 
 
Keywords: blood flow simulation, multi-objective optimization, genetic algorithms. 
 
1  Introduction 
 
Nowadays the ability to detect localized atherosclerotic plaques using non-invasive 
ultrasonic methods has advanced significantly. Atherosclerotic plaques tend to be 
localized at sites of branching and artery curvature, locations expected to harbour 
complex flow patterns. Currently, a working hypothesis for the role of fluid 
dynamics in postoperative pathogenesis is that intimal thickening is a normal 
response to low wall shear stress and that the spatial  location of atherosclerotic 
plaque is related to the presence of oscillatory shear stress in those regions where 
transient flow reversal is prominent [1, 2]. Poor post-operative bypass graft 
performance is often attributed to the development of intimal hyperplasia (IH), a cell 
unnatural growth (restenosis) mechanism, at the graft distal junction. Research on 
the complexity of blood flow in the complete model of arterial bypass suggests that 
flow in the bypass graft is greatly dependent on the area reduction in the host artery 
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[3]. As the area reduction increases, higher stress concentration and larger 
recirculation zones are formed at the distal corner of the bifurcation as well as at the 
toe and heel of the distal anastomosis that could be damaging to the artery-graft 
junctions. Searching an improvement of the blood dynamics conditions, shape 
optimization frameworks have been considered to optimize the geometry of artificial 
grafts [4 - 6].  

The purpose of this research is to contribute towards the improvement of arterial 
bypass surgeries based on simulated models. Specifically, multi-objective shape 
optimization of an idealized artificial graft is presented. The process entails the 
combination of three computational entities: a finite element code solver, an 
automated pre-processor and a shape optimization genetic algorithm. The shape 
optimization will be accomplished by simultaneously minimizing shear stress and 
recirculation zones.  

 
2  The finite element method formulation 
 
The blood flow in the graft/artery system can be considered as incompressible and 
pulsatile by nature. The blood non-Newtonian rheology is accounted for through the 
Casson non-Newtonian model [7]. The hemodynamics problem is considered 
laminar since the anastomotic flow typically reaches a maximum Reynolds number 
less than 1000. The governing equations for this problem are the Navier–Stokes set 
that consists of the continuity and the momentum equations 
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where (u,v) is the velocity vector, p the pressure, ρ the density, μ the dynamic 
viscosity and operator ׏ଶ is defined as 
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The dynamic viscosity varies spatially due to its dependence on the shear rate. 
The non-linear expression of μ is given by the Casson law [7]  
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The arterial wall is assumed to be rigid. Regarding boundary conditions, a 
pulsatile waveform is prescribed at the inlet and a no-slip condition (zero velocity) is 
prescribed at the walls. 

The developed numerical procedure [8] for the transient non-Newtonian 
equations uses the Galerkin-finite element method and a fractional-step method for 
the integration in time [9].  The discretization in time is obtained by an implicit 
fractional step-method in which the time advancement is decomposed into a 
sequence of two [9-11]. The method includes a diffusion term, which allows the 
imposition of full boundary conditions for the velocity while needing no pressure 
boundary conditions.  

 
 

3  The graft geometry 
 
Simplified arterial graft prosthesis is formed of a cylindrical tube disposed about the 
longitudinal axis of the prosthesis. The graft is symmetric and meets the host artery 
with a side-to-end proximal anastomosis and an end-to-side distal anastomosis. The 
host artery is assumed to be a fully stenosed straight conduit. As usually adopted by 
most previous investigations, the distensibility of the vessel wall is neglected. All 
the vessels are assumed to be impermeable rigid tubes. To our knowledge, most 
authors consider circular [12] or polynomial [4] symmetric geometries for the 
prosthesis with variable junction angles. Small junction angles have more obvious 
advantages for the hemodynamics of bypass grafts [12]. With a circular prosthesis, 
the optimal limit for junction angle would be close to zero producing an extremely 
large graft/artery junction. Instead of circular geometries, this investigation will 
consider sinusoidal geometries with the longitudinal axis of the graft being drawn by 
a sine curve. Figure 1 presents a simplified bypass model. There are at least three 
parameters that can be controlled: the suture line dimension, D, the width of the 
prosthesis, Wp, and the distance from the near wall of the graft to the near wall of 
the artery, H. 
 

 
 

Figure 1. Anastomotic configuration and nomenclature of the geometry model. 
 

The artery is simulated using a cylindrical tube of diameter 10 mm. For the shape 
optimization problem presented here, the graft is properly connected to the artery 
always in the same region. The space design of the three parameters is given as 
follows: 
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10 ൑ ܦ ൑ 14 ݉݉
10 ൑ ܪ ൑ 20 ݉݉
8 ൑ ݌ܹ ൑ 12 ݉݉

 (5) 

 
Only symmetric geometries were considered since removing the symmetry 

constrain does not have a significant effect [4].    
 
 
 
4  The multi-objective GA 
 
Genetic Algorithms (GAs), a family of biology-inspired methods, are considered 
here. With a GA a highly effective search of the solution space is performed, 
allowing a population of strings representing possible solutions to evolve through 
basic genetic operators. The goal of the genetic operators of the algorithm is to 
progressively reduce the space design driving the process into more promising 
regions. GA has many advantages, such as the capability of exploring a large design 
space, the merit that no gradients information is needed and also it can compute 
multiple independent objective functions simultaneously in one optimization run.  

A general multi-objective optimization seeks to optimize the components of a 
vector-valued objective function mathematically formulated as 
 
ሻ࢈ሺܨ   ݁ݖ݅݉݅݊݅ܯ  ൌ ሺ ଵ݂ሺ࢈ሻ, ڮ , ௠݂ሺ࢈ሻሻ (6) 
 
subject to 
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  (7) 

 
where fi(b) is the jth objective function, ࢈ ൌ ሺܾଵ, ڮ , ܾ௡ሻ  is the design variable 
vector, ܾ௜

௟௢௪௘௥ and  ܾ௜
௨௣௣௘௥ represent the lower and upper boundary of the ith design 

variable bi and gk(b) the kth constraint. 
Unlike single objective optimization approaches, the solution to this problem is 

not a single point, but a family of points known as the Pareto-optimal set. Typically, 
there are many Pareto optimal solutions for a multi-objective problem. Thus, it is 
often necessary to incorporate user preferences for various objectives in order to 
determine a single suitable solution. The weighted sum method for multi-objective 
optimization problems [13] continues to be used extensively not only to provide 
multiple solution points by varying the weights consistently, but also to provide a 
single solution point that reflects preferences presumably incorporated in the 
selection of a single set of weights. In this work, using the weighted sum method to 
solve the multi-objective optimization problem entails selecting random scalar 
weights wj and minimizing the following composite objective function: 
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If all of the weights are positive, as assumed in this study, then minimizing Equation 
(8) provides a sufficient condition for Pareto optimality, which means that its 
minimum is always Pareto optimal. 

For a shape optimization application, the GA process begins by randomly setting 
an initial population of possible individuals, where each individual represents a graft 
geometry. The successive populations maintain the same number of individuals as it 
evolves throughout successive generations. Each individual is referred to as a 
chromosome containing the binary representation of its design variables referred to 
as genes of the chromosome to which genetic operators are applied. Operators such 
as selection, crossover, mutation and elimination supported by an elitist strategy are 
considered to ensure that fitness of the forthcoming generations is always improved 
[14, 15]. The optimization scheme includes the following steps: Coding, the design 
variables expressed by real number are converted to binary number; Initialization, 
individuals of an initial population are produced randomly each representing a 
random geometry within the design variable space; Evaluation, fitness of each 
individual is evaluated using a defined optimization goal and individuals are ranked 
according to their multi-objective fitness value; Selection of the progenitors, one 
from the best-fitted group (elite) and another from the least fitted; Crossover, this 
operator builds a new chromosome by a multipoint combination technique applied 
to the binary string of two selected chromosomes; Mutation, the implemented 
mutation is characterized by changing a set of bits of the binary string corresponding 
to one variable of a randomly selected chromosome from the elite group; 
Elimination, deletion of the worst solutions with low fitness simulating the natural 
death of low fitted individuals. The original size population is recovered and a new 
population obtained; finally, Termination, checking the termination condition. If it is 
satisfied, the GA is terminated. Otherwise, the process returns to step Selection. 
 
4.1 Shape optimization objective functions 
 
Regarding the choice of suitable objective functions for the graft optimization 
problem, several different approaches have been pursued in the literature. The most 
frequently considered quantities in the context of blood flow are based on either 
shear stress or the flow rate. Unlike the situation at the suture line where injury and 
graft-artery compliance mismatch play a main role, the development of the IH on the 
host artery floor is thought to be purely caused by fluid mechanics factors. The two-
dimensional wall shear stress (WSS) magnitude is expressed such as:  
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where nx and ny are respectively the x- and y-components of the outward drawn unit 
normal vector at the boundary.  High WSS gradient (WSSG) values are expected at 
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the floor occurring at the end-to-side distal area where there is flow recirculation and 
stagnation resulting from the flow impingement. The WSSG is essentially a tensor, 
and considering the tensor entries that tangentially affect the endothelial cells the 
two-dimensional the objective function can be expressed as 
 
 ଵ݂ሺ࢈ሻ ൌ ଵ

ே౳
∑ ԡܹܵܵܩԡே౳

ଵ  (11) 
 
where ୻ܰ is the number of boundary points on the floor optimization section. 

The development of disease occurs preferentially in regions close to the proximal 
and distal anastomosis and their after effects are more critically correlated with the 
long-term effectiveness of bypass graft procedures [16]. For each simulation of an 
idealized bypass graft four domains of enhanced reversed flow and long residence 
time zones were identified:  Ω௜

,כ ݅ ൌ 1, … ,4, being Ωଵ
כ   and Ωଶ

כ   the reversed flow and 
the long residence time zones near the proximal junction and  Ωଷ

כ   and Ωସ
כ   the 

reversed flow and the long residence time zones near the distal junction, 
respectively. Reversed flows were assigned whenever negative longitudinal 
velocities are detected and long residence time zones when a significant area has 
associated mean velocities lower than 5 mm s-1. Then minimizing long residence 
times corresponds to maximize the summation of the simulated longitudinal velocity 
 ,at each elementary element of that critical domain ܠܞ
 
 ଶ݂ሺ࢈ሻ ൌ െ ∑ Ω೔ܠܞ

ሻ࢈ሺכ   , ݅ ൌ 1, … ,4  (12) 
 

Using scalar weights randomly generated, the following composite function 
  
 ࣘሺ࢈ሻ ൌ ଵݓ ଵ݂ሺ࢈ሻ ൅ ଶݓ ଶ݂ሺ࢈ሻ    (13) 

 
is considered for the optimization problem investigated in this work. The fitness 
function to be maximized by the GA is then defined as: 
 
ܶܫܨ  ൌ ܣ െ ࣘሺ࢈ሻ െ ܲ    (14) 

 
being A is a positive integer to ensure positiveness and P a value to penalize design 
vectors that do not conform with constraints as given in Eq. (5). 
 
 
5  Shape optimization results and discussion 
 
In this project the goal is to search the optimal shape of an artificial graft using a 
multi-objective genetic algorithm. The associated design vector considers three 
geometric parameters: the suture line dimension, D, the width of the prosthesis, Wp, 
and the distance from the near wall of the graft to the near wall of the artery, H.  

Mesh of a simplified version of a sinusoidal bypass graft is shown in Figure 2 
(flow direction going from left to right). The graft is symmetric and meets the host 
artery with a side-to-end proximal anastomosis and an end-to-side distal 
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anastomosis.  Wall shear stress gradient is a critical hemodynamic parameter that 
should be considered, as high WSSG values indicate the presence of disturbed flow 
conditions such as separation and reattachment, stagnation point and re-circulation. 
These flow patterns occur at the end-to-side distal anastomosis IH prone sites. For 
the WSS and WSSG calculations involved in the optimization process, the location 
on the artery of the wall opposite to the end-to-side distal junction is presented in 
Figure 2. 
 

 
 

Figure 2. Mesh and end-to-side WSS location for the model 
 

As a compromise between computer time and population diversity, parameters 
for the genetic algorithm were taken as Npop = 12 and Ne = 5 for the population and 
elite group size, respectively. The number of bits in binary codifying for each design 
variable is Nbit = 5 making a chromosome of 15 genes. This will correspond to a 
solution accuracy of 0.16 mm for variables D and Wp and 1mm for variable H. The 
GA termination has been defined by fixing the total number of generations as 300. 
For each generation 6 new individuals (five from crossover plus one from mutation) 
are created, so 6 new blood flow numerical simulations are needed for every new 
generation. With a CPU time of 6 seconds for a typical finite element simulation is 6 
seconds the total time for an optimization run is around 3 hours. One obtained 
optimal bypass geometries corresponds to parameters  
 

 
ܦ ൌ 12.7 ݉݉ 
ܪ ൌ 19.8 ݉݉

݌ܹ ൌ 11.65 ݉݉
 (15) 

 
.  
Simulation results for the optimized bypass graft are presented in Figures 2 and 3.  

 

 
 

Figure 3. Velocity contours for the optimal graft model 
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Peripheral arterial disease is estimated to affect millions individuals in the world. 
Arterial duplex imaging provides direct anatomic and physiologic information, but it 
does not provide information regarding the overall hemodynamics. Duplex imaging 
distinguishes between a stenosis and an occlusion, determines the length of the 
disease segment and patency of the distal vessels, evaluates the results of 
intervention (angioplasty, stent placement, bypasses), diagnoses aneurysms and 
pseudo-aneurysms of peripheral vessels such as the carotid arteries. From this study 
recommendations to vascular surgeons on how to consider their arterial anastomoses 
cannot be expected; however future recommendations will be potentially made once, 
among others, the blood transient nature is accounted for in the optimization 
process. The study reported herein establishes the methodology as a viable means of 
achieving optimal artificial graft shapes.  
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