
Abstract

The dynamic response of a poroviscoelastic layered soil medium subjected to a ver-
tical harmonic rectangular moving load is proposed analytically. The moving exci-
tation is applied either directly over the surface of the ground or over a track model.
The track model due to Sheng et al. [17] takes into account rail, sleepers, pads and
ballast. A parametric study is proposed in order to assess the influence of the various
parameters on the dynamic response such as load velocity, frequency, porosity and
permeability. A comparison between poroviscoelastic and viscoelastic models is con-
siderd. The amplitude of the displacement response is also given for various values of
beam rigidity in both sub- and super- Rayleigh regimes.

Keywords: moving load, layered medium, railway track, wave propagation, Biot’s
theory, Fourier transform.

1 Introduction

The study of vibrations induced by moving loads is an important area of researches
because of the intensity of railway traffic. In this context, two main points are of in-
terest: the model of the ground and the model used for the track. For the first point,
many researches have been yielded concerning moving loads and modelling the soil
as a viscoelastic medium. Sneddon [1] was among the first to carry out the theoreti-
cal analysis in 2D and 3D geometries under a moving point load. Cole and Huth [2]
introduced then the Mach number to differentiate the case of high load speeds. The
three-dimensional half space subjected to a point load moving with a constant velocity
was considered by Eason et al. [3]. Alabi [4] studied vibrations due to a set of concen-
trated moving vertical forces for low load speeds and due to a moving oblique point
load for speeds up to half the Rayleigh wavespeed [5]. Fourier integral transforms,
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Helmholtz’s decomposition and a change of frame are commonly used for the theo-
retical approach. Krylov [6] focused on the contribution of the Rayleigh wave. Jones
et al. [7] studied the case of a moving rectangular load ovelying an elastic half-space.
De Barros and Luco [8] investigated the response of a stratified viscoelastic half-space
to a moving point load. Both these latter articles demonstrate the possibility of shock
formation in the ground.
In all these works, the ground is considered as viscoelastic media. However, the soil
is composed of a solid skeleton and pore space filled with fluid. Theodorakopoulos
[9] and Niki et al [10] showed that in the case of soft materials, models ignoring the
coupling between fluid and solid may lead to errors, especially for high velocities.
The importance of the interaction between the fluid component and the solid part of
the medium is now generally recognised and poroelastic models have become of main
interest. Using Biot’s theory, Cai et al. [11] presented a semi-analytical approach for
a moving rectangular load of constant amplitude on a poroviscoelastic half-space. A
comparison between viscoelastic and poroviscoelastic models shows that for higher
load speeds, the poroviscoelastic soil displacements are larger than that of the vis-
coelastic soil whereas they are similar for low load speeds [11]. Lefeuve-Mesgouez et
al. [13] proposed a three-dimensional semi-analytical analysis of the vertical displace-
ments induced by a rectangular high-speed moving harmonic load over a totally or par-
tially saturated poroviscoelastic half-pace. Results show that solid displacements are
affected by the effect of the soil saturation.Xu et al. [12] presented a semi-analytical
approach for a similar configuration but on a layered poroelastic half-space. They use
the Transmission and Reflection Matrix method.
The second point of investigation concerns the model used for the railway track. It
may be represented by a simple continuous model using an Euler viscoelastic beam.
Dieterman and Metrikine [14] studied the equivalent stiffness of a half-space inter-
acting with a beam using a two-dimensional model. In the absence of damping, the
stiffness becomes zero at the Rayleigh wavespeed. Lefeuve-Mesgouez et al. [15]
showed differences in the amplitude and distribution of solid displacements and fluid
pressure of a poroviscoelatic layered half-space when the track is implemented on the
ground. Xu et al. [16] show that for the Euler beam overlying a layered poroelastic
half-space, there still exist critical velocities even when the load speed is larger than
the shear wavespeed.
Sheng et al. [17] proposed a more accurate track model composed of a rails, rail
pads and sleepers supported by the ballast. The rails are modelled as an Euler beam.
The sleepers are represented as a distributed mass. The rail pads are modelled as a
distributed vertical spring between the rail beam and the sleeper mass. The ballast
is modelled as a viscoelastic layer with uniformally distributed mass. The ground
is modelled as viscoelastic layers overlying either a half-space or a rigid foundation.
This model is a reference for numerous works. Indeed, it deals with both constant
and harmonic loads. Considering the train-track system composed of rails, sleepers
and ballast, Takemiya [18] and Takemiya et al. [19] studied the dynamic responses
of a track-ground system on a layered elastic soil. Based on Sheng’s model, Picoux
et al. [20] developed a three-dimensional semi-analytical model for the response of
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the ground surface due to vibrations generated by a railway traffic for low vibration
frequencies (in the 5-80 Hz range). Cai et al. [21] coupled Sheng’s analytical model
for the track to a poroviscoelastic half-space. Results for the case of a moving point
load [22] show that dynamic responses of the track-ground system are considerably
affected by the rail rigidity and also by the load speed. Xia et al. [23] presented a
theoretical model of a train-track-soil dynamic interaction for moving-train induced
ground vibration. The model consists of a train submodel, a track submodel and a
subsoil submodel which are coupled through dynamic interactions of wheel-rail and
sleeper-soil, respectively and Green’s functions of the subsoil.
In the works coupling the railway track to the ground, except those of Cai et al.,
Lefeuve-Mesgouez et al. and Xu et al., the soil was considered as an elastic or a
viscoelastic medium. However, as there is underground water in the considered soil
medium, which affects the wave propagation, the poroelastic soil model is more ap-
propriate than the viscoelastic one. Studies combining a more realistic track system
with poroelastic multilayered soil are rather limited.
In this paper, based on the dynamic poroelastic theory of Biot, a semi-analytical ap-
proach is used to investigate the vertical dynamic response of a poroviscoelastic strati-
fied ground. The soil is coupled to a track model and subjected to a vertical rectangular
harmonic moving load. The railway track is based on Sheng’s model which takes into
account rail, sleepers, pads and ballast. The implementation of the beam over the
ground allows to get the effect of the track on the dynamic response. Thus, soil verti-
cal displacements are numerically evaluated for various values of load speed, porosity
and permeability to assess the influence of those parameters on the response of the
poroviscoelastic soil. Comparison between poroviscoelastic and viscoelastic models
is also proposed.

2 Model Description

2.1 Geometry

The geometry under study is presented on Figure 1. The track model is based on
Sheng’s model overlying a layer resting on a rigid half-space. The railway is infinite
in length and is aligned with respect to the x direction. The contact width with the
ground is denoted 2LBal. Parameters of the model are presented in section (2.3).
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Figure 1: Railway track model.

2.2 Governing equations

In the poro(visco)elastic medium, based on the constitutive equations and the conser-
vation of momentum, we obtain for each homogeneous and isotropic layer

σ = (λ0∇.u− β p) I + 2 µ ε,

p = −m (β∇.u +∇.w) ,

∇σ = ρ ü + ρf ẅ,

−∇ p = ρf ü +
a∞ ρf

φ
ẅ +

η

κ
ẇ,

(1)

where u =< ux1 , ux2 , ux3 >t is the solid displacement vector, U =< Ux1 , Ux2 , Ux3 >t

is the fluid displacement vector, w = φ (U− u) =< wx1 , wx2 , wx3 >t is the relative
displacement vector. I is the identity tensor, σ is the stress tensor, ε = 1

2
(∇u +∇t u)

is the linearised strain tensor, and p is the pore pressure. The physical parameters are
: the dynamic viscosity η and the density ρf of the saturating fluid; the density ρs

and the shear modulus µ of the elastic skeleton; the connected porosity φ, the tortu-
osity a∞, the absolute permeability κ, the Lamé coefficient of the dry matrix λ0, and
the two Biot coefficients β and m of the isotropic matrix. The dots and double dots
denote respectively first and second time derivatives.

2.3 Track equations

The model used for the track was first presented by Sheng et al. [17] and is composed
of the rail, the sleepers and the ballast. First, the rail is modelled as an infinite Euler
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viscoelastic beam, for which the cross-section is supposed to be infinitely rigid, as
follows

EIwR(x1, t),x1x1x1x1 +mRẅR(x1, t) + kP [wR(x1, t)− wS(x1, t)] = Q(x1, t) (2)

where wR and wS are the deflections (i.e. vertical displacements) of the rail and the
sleeper respectively, EI the bending rigidity of the rail, mR the mass per unit of length
of the rail. kP represents the spring constant per unit of length of the pads between the
rail and the sleeper.

Q is the applied moving load. For a load distributed over a non-zero width, Q(x1, t) =
−Q0 exp(iωt)

2a
if

| x |=| x1 − ct |< a.
The sleepers can be modelled using the concept of continuous mass: vertical dis-

placements generated by a moving load are almost identical when taking into account
a discrete or uniformly distributed distribution of sleepers, see Vostroukhov et al. [24].
Consequently, for the sleepers, the model is written as follows

mSẅS(x1, t) + kP [wS(x1, t)− wR(x1, t)] = FS(x1, t) (3)

where FS stands for the sleeper vertical force per unit of length acting on the ballast,
and mS the mass per unit of length of the sleeper.

To finish, at the top and the bottom of the ballast, from Suiker et al. [25], the
following equations are written

mB/6[2ẅS(x1, t) + ẅB(x1, t) + kB[wS(x1, t)− wB(x1, t)] = −FS(x1, t) (4)
mB/6[ẅS(x1, t) + 2ẅB(x1, t) + kB[−wS(x1, t) + wB(x1, t)] = FB(x1, t) (5)

where FB represents the vertical force per unit of length exerted by the ballast on the
soil and wB the vertical displacement of the ballast. kB and mB are the spring constant
per unit of length and the mass per unit of length of the ballast. Dampings in pads and
ballast are taken into account using a modified hysteretic damping with constants ηP

and ηB.

2.4 Interface conditions

The interface conditions between the ballast and the ground, for x3 = 0, are written
as follows:

σ33(x1, x2, x3 = 0) =
−FB

2Lbal

if | x2 |< Lbal (6)

σ13(x1, x2, x3 = 0) = 0 σ23(x1, x2, x3 = 0) = 0 (7)
p(x1, x2, x3 = 0) = 0 (8)

u3(x1, x2, x3 = 0) = wB(x1) (9)
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3 Semi-analytical solution

Pressure and stress components are eliminated from Eqs. (1), giving a (u, w) second-
order wave formulation

(λ0 + µ + m β2)∇(∇.u) + µ∇2 u + m β∇(∇.w) = ρ ü + ρf ẅ,

m β∇(∇.u) + m∇(∇.w) = ρf ü +
a ρf

φ
ẅ +

η

κ
ẇ.

(10)

The solid and relative displacements in Eqs. (10) can be expressed by

u = ∇ϕ +∇ ×Ψ, w = ∇ϕr +∇ ×Ψr, (11)

where ϕ and ϕr are scalar potentials, and Ψ and Ψr are vector potentials.
We then introduce the moving frame of reference defined as x = x1− ct, y = x2, z =
x3 and use Fourier transforms over space variables x and y, defined as follows

g(x, y) =

∫ +∞

−∞
g(kx, ky)exp(ikxx)exp(ikyy)dkxdky (12)

g(kx, ky) =
1

4π2

∫ +∞

−∞
g(x, y) exp(−ikxx) exp(−ikyy)dxdy (13)

Mass, stiffness and damping matrices are introduced as follows

[KP ] =

[
λ0 + 2µ + mβ2 Mβ

mβ m

]
[KS] =

[
µ 0
0 0

]
[M ] =

[
(1− φ)ρs + φρf ρf

ρf
a∞ρf

φ

]
[C] =

[
0 0
0 η

κ

]
Applying the double Fourier transform and considering a harmonic load, decoupled
ordinary differential systems are obtained in the wavenumber domain, (14) and (15),
relative respectively to compressionnal waves P1 and P2 (Helmholtz scalar potentials
ϕ and ϕr) and shear wave S (Helmholtz vector potentials Ψ and Ψr), see [13].

(
−

(
d2

dz2
− k2

x − k2
y

)
[KP ]− (ω − kxc)

2[M ] + i(ω − kxc)[C]

) {
ϕ
∗

ϕ
r∗

}
=

{
0
0

}
(14)

(
−

(
d2

dz2
− k2

x − k2
y

)
[KS]− (ω − kxc)

2[M ] + i(ω − kxc)[C]

) {
Ψ
∗

Ψ
r∗

}
=

{
0
0

}
(15)

The star exponent denotes the amplitude of the function considered: ϕ(kx, ky, ω) =
ϕ
∗
(kx, ky) exp(iωt). Vertical components kzPj of the compressional wavenumber vec-

tors kPj are obtained from the dispersion relation (16).

det
[
(k2

x + k2
y + k2

zPj)[KP ]− (ω − kxc)
2[M ] + i(ω − kxc)[C]

]
= 0, j = 1, 2 (16)
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with j = 1, for the P1 wave and j = 2 for the P2 wave, k2
Pj = k2

x + k2
y + k2

zPj .
Similarly, vertical component kzS of the shear wavenumber vector kS is obtained

k2
zS = −k2

x − k2
y +

(ω − kxc)
2

µ
([(1− φ)ρs + φρf ] + ρf G(ω, kx, ky)) (17)

with k2
S = k2

x + k2
y + k2

zS .
The exact stiffness matrix approach is based on vectors of transformed displace-
ment and stress components, see [26], defined as u

∗
=< u

∗
x, u

∗
y, iu

∗
z, iw

∗
z >t and

Σ
∗

=< σ
∗
xz, σ

∗
yz, iσ

∗
zz, −ip

∗
>t. Analytical expression for the vector of transformed

displacements is then given by the solution of the matrix system, see [15][
ST SRZ(hn)

−ST Z(hn) −SR

][
QT QRZ(hn)

QT Z(hn) QR

]−1

︸ ︷︷ ︸
Tn

(8×8)

{
u∗(z=zn−1)

u∗(z = zn)

}
=

{
Σ
∗
(z=zn−1)

−Σ
∗
(z = zn)

}
(18)

where QT/R, ST/R and Z(hn) are 4×4 matrices, hn denotes the nth layer’s depth. The
superscripts T and R stand for transmitted and reflected waves respectively. In the
case of the half-space (hs), only the transmitted terms are kept and Ths = ST ( QT )−1.
Then a classical assembling technique between the porous layers uses the continuity
of stresses and displacements at each interface. The resulting matrix system has di-
mension 4(N + 1) × 4(N + 1) for a three-dimensional problem, with N the number
of different layers. In the resulting vector Σ

∗
, all terms equal zero, except σzz(z = 0)

that is linked to the track using the interface condition.
Considering the track equations (2, 3, 4 and 5), they are modified firstly by the

change of variables, secondly by the Fourier transform but only on the x space vari-
able, and thirdly by the elimination of FS

∗
(kx, ω). Consequently, the rail-sleeper-

ballast system behavior is governed by 3 equations as follows

A1(kx, ω)wR
∗(kx, ω)− kP wS

∗(kx, ω) = A2(kx) (19)
kP wR

∗(kx, ω) + A3(kx, ω)wS
∗(kx, ω) + A4(kx, ω)wB

∗(kx, ω) = 0 (20)
A4(kx, ω)wS

∗(kx, ω) + A5(kx, ω)wB
∗(kx, ω) = −FB

∗
(kx, ω) (21)

with

A1(kx, ω) = EIk4
x −mR(ω − kxc)

2 + kP

A2(kx) = Q
∗
(kx)

A3(kx, ω) = mS(ω − kxc)
2 + mB/3(ω − kxc)

2 − kP − kB

A4(kx, ω) = mB/6(ω − kxc)
2 + kB

A5(kx, ω) = mB/3(ω − kxc)
2 − kB

where Q
∗
(kx) = −Q0

sin(akx)
akx

for a load distributed over a non-zero width.
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In the previous system, (wR
∗, wS

∗, wB)∗ and FB
∗

are unknowns. To obtain FB
∗
,

another equation is thus needed. It is obtained with the interface condition between
the ballast and the ground (6):

σzz |z=0(kx, ky, ω)∗ = −FB
∗
(kx, ω)

sin(kyLbal)

kyLbal

(22)

Moreover, the Fourier transform of displacement continuity between the ballast
and the ground (9), written along the mean line (y = 0, z = 0), can be expressed as
follows [

1

2π

∫ +∞

−∞
wB

∗(kx, ω) exp(ikxx)dkx

]
z=0

=[
1

4π2

∫ +∞

−∞

∫ +∞

−∞
uz

∗
(kx, ky, ω)∗ exp(ikxx) exp(ikyy)dkydkx

]
y=z=0

from which it comes

[wB
∗(kx, ω)]z=0 =

[
1

2π

∫ +∞

−∞
uz

∗
(kx, ky, ω)dky

]
z=0

(23)

Noting u
∗|}z=0 the transformed vertical solid displacement for a unit vertical harmonic

stress σ
∗
zz|z=0 = 1, such as [T ]{u∗|}z=0} =< 0, 0, i, 0, ..., 0 >t, one gets

uz
∗|z=0 = u

∗|}z=0 σzz
∗
|z=0 = −u

∗|}z=0FB
∗
(kx, ω)

sin(kyLbal)

kyLbal

(24)

Consequently, combining relations (22), (23) and (24), the coupling of the ballast and
the ground gives

wB
∗(kx, ω) = −

(
1

2π

∫ +∞

−∞
u
∗|}z=0(kx, ky, ω)

sin(kyLbal)

kyLbal

dky

)
FB

∗
(kx, ω)(25)

wB
∗(kx, ω) = −A6(kx, ω)FB

∗
(kx, ω) (26)

A6(kx, ω) is obtained using a Gauss-Legendre quadrature technique. Physically speak-
ing, A6 represents the flexibility of the poroviscoelastic soil subjected to the force ap-
plied by the ballast (and therefore the track structure) in the transformed domain. As
the integrand is an even function, one can write

A6(kx, ω) =
1

π

∫ +∞

0

u
∗|}z=0(kx, ky, ω)

sin(kyLbal)

kyLbal

dky

Thus we get four unknowns (wR
∗, wS

∗, wB
∗ and FB

∗
) for four equations (19, 20, 21,

25). From this system, it is of interest to get the expression for F
∗
B as follows

FB
∗
(kx, ω) =

−kP A2A4

A1A2
4A6 + (1− A5A6)(A1A3 + k2

P )
(27)

Once FB
∗
(kx, ω) has been determined, the stresses are determined with (22) and

included in the poroviscoelastic multilayered formulation of the ground (18) to address
the solid and relative displacements in the soil. From system (19-21), deflection of the
rail, sleeper or ballast can also be deduced.
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4 Parametric study

4.1 Case of a soil directly subjected to a rectangular load

The first case under consideration concerns a poroviscoelastic layer resting on a rigid
half-space with λhs = 2.33×1011 Pa, µhs = 1011 Pa. The system is considered without
track. The applied load is rectangular with dimensions 2a × 2b = 0.3 × 0.3 m. The
layer’s depth is H = 18 m. A double Fast Fourier Transform (FFT) algorithm is used
to perform the inverse transform with respect to kx and ky. To compute the inverse
transform accurately with a discrete transform, the integrals must be truncated at suf-
ficiently high values to avoid aliasing, while the mesh of the calculated functions must
be fine enough to represent well details of the functions. To satisfy these requirements,
we used 2048 × 2048 points and |kx, ky| < 120 m−1 for a frequency f = 64 Hz, for
instance.
Parameters of the saturated poroelastic half-space are selected refer to Theodorakopou-
los [9]: λ0 = 2.33×108 Pa, µ = 108 Pa, ρs = 1816 kg/m3, ρf = 1000 kg/m3, φ = 0.4, β
= 1, m = 5.56 GPa and a∞ = 1.
Corresponding Rayleigh, shear, first compressional and second compressional wave
speeds are given by : vR = 243 m.s−1, vS = 260 m.s−1, vP1 = 19 m.s−1 and vP2 = 2006
m.s−1, respectively.

4.1.1 Influence of porosity

As it is known in Biot’s theory, porosity is one of the governing parameters of a porous
medium. It is thus of interest to study the effect of this physical parameter on the
displacements of a poroviscoelastic soil. Figures 2 and 3 show the normalized maxi-
mum vertical soil displacements varied with load speed for various values of porosity
and for two values of hydraulic permeability K where K = k

η
. The displacement is

normalized with respect to the displacement response calculated for zero load speed
which are similar in each case. In addition, the load speed c is normalized with re-
spect to shear wavespped cS which is given by 247 m/s and 260 m/s for φ = 0.2 and
0.4, respectively. Two values of frequency are considered, f = 1 Hz and f = 64 Hz
corresponding to the quasi-static and the dynamic regime, respectively.

As shown in figures 2 and 3, all the curves are similar, specifically for the case a
fine soil (K = 10−9m3s/kg) and f = 1 Hz for which all the curves reach a maximum
at about c = 0.93vs (figure 2 b). This peak corresponds to a load velocity near the
Rayleigh-wave velocity (cR = 243 m/s). For this value of permeability and for the dy-
namic regime (f = 64 Hz), lower amplitude of the response is given by a lower value
of porosity when it corresponds to a higher value of porosity for a more permeable
soil (K = 10−7m3s/kg) and for f = 1 Hz (figure 3 (b)).
Two peaks appear in the case of a dynamic regime for a fine material (K = 10−9m3s/kg).
The first peak corresponds to value of the load speed around the Rayleigh-wave speed.
From figure 3 (a), values of the normalized displacements are similar for the dynamic
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(a) (b)

Figure 2: Variation of the normalised maximun soil vertical displacement versus load
speed for various values of porosity, K = 10−9m3s/kg: (a) f = 64 Hz, (b) f = 1 Hz.

(a) (b)

Figure 3: Variation of the normalised maximun soil vertical displacement versus load
speed for various values of porosity, K = 10−7m3s/kg: (a) f = 64 Hz, (b) f = 1 Hz.

regime, until c/vs = 0.45. For a coarse material (K = 10−7m3s/kg) and in the case of
a quasi-static regime, figure 3 (b) shows a gap between peaks of the curves. For the
dynamic regime, the gap occurs before the peak.
Finally, figures 2 and 3 reveal that for both the coarse and the fine soils, the effect
of porosity on displacement response is limited only for values of velocity near the
Rayleigh wavespeed and no change is observed with change of porosity even for high
values of load velocity. This was also seen by Theodorakopoulos [9], in the 2D case
and for a constant amplitude.

4.1.2 Influence of permeability

This section concerns the influence of permeability on the displacement response.
Figure 4 presents the variation of the normalized maximum soil displacements versus
load speed for various kinds of soils and for f = 64 Hz and f = 1 Hz. For the sake of
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comparison, displacements response of a viscoelastic medium is also presented. Two
kinds of viscoelastic continuum are studied, both having values for λ0 and µ given in
section (4.1). For the first one, denoted as viscoelastic 1, ρs = 1816 Kg/m3 and for the
second one, denoted as viscoelastic 2, ρs = 1490 Kg/m3 issued from the expression :
ρ = (1− φ)ρs + φρf .
Values of the maximum vertical solid displacements umax

sz corresponding to zero load
speed c = 0, for f = 64 HZ are 1.00× 10−05 m for K = 10−9m3s/kg, 1.16× 10−05 m
for K = 10−7m3s/kg and 1.19× 10−05 m for the two viscoelastic soils. For f = 1 Hz,
values of umax

sz are 1.25 × 10−05 m for K = 10−9m3s/kg and 1.30 × 10−05 m for K =
10−7m3s/kg. Values of the shear wavespeed vS are equal to 235 m/s, 259 m/s and 260
m/s, for viscoelastic 1, viscoelastic 2 and poroviscoelastic soils, respectively.
In the dynamic regime, except the curve corresponding to a more permeable soil (K
= 10−7m3s/kg) which presents one peak, two peaks occur in all the others. The first
one is given for a value of c = 0.93vS and corresponds to the Rayleigh wave velocity.
In the quasi-static regime (f = 1 Hz), all the curves are similar and present a peak
for values of the load velocity near the Rayleigh wavespeed. Otherwise, the surface
displacement response of the viscoelastic ground is higher than the poroviscoelastic
one. This phenomenon was also seen by Theodorakopoulos [9] and for a constant am-
plitude. Indeed, no difference is shown between curves corresponding to viscoelastic
soils.
It is also clear from the previous figure that the normalized displacements decrease
with decreasing permeability, in the quasi-static regime (f = 1 Hz), except for values
of the load speed near the Rayleigh wavespeed for which displacements are higher for
a lower permeability (K = 10−9m3s/kg). This may be due to the reduced capacity of
the fluid to undertake part of the applied load.

(a) (b)

Figure 4: Variation of the normalised maximun soil vertical displacement versus speed
load for various values of permeability: f = 64 Hz, (b) f = 1 Hz.
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4.2 Case of a soil incorporating the Sheng’s model

Consider now, the case of a poroviscoelastic soil with introducing a railway track (see
figure 1). Soil dynamic responses are investigated for a frequency load f = 64 Hz.
Dimensions of the rectangular applied load are 2a× 2b = 0.3× 1.6 m. The load width
corresponds to the ballast width. With parameters used here, an FFT algorithm with
4096× 4096 points and a range of |kx, ky| < 40 m−1 is used.
Parameters for the track are those used by Picoux et al. [20] : E = 2.11× 1011 N.m−2,
I = 3055 cm4, mR = 60.34 kg.m−1, ms = 191 kg.m−1, kp = 60× 106 N.m−2, ηp = 0.2,
mB = 1200 kg.m−1, kB = 3.15× 108 N.m2, ηB = 1 and 2Lbal = 1.6 m.

4.2.1 Influence of permeability
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Figure 5: Amplitude of the normalized maximum vertical solid displacement
with/without track for various values of permeability: f = 64 Hz.

Figure 5 compares the normalized maximum soil displacements versus load velocity,
for various values of permeability. Values of the maximum vertical solid displace-
ments umax

sz corresponding to zero load speed c = 0 in the case of a soil with a track,
are: 0.97 × 10−06 m and 1.01 × 10−06 m for K = 10−9m3s/kg and K = 10−7m3s/kg,
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respectively. In the case of a soil without track, umax
sz is given by 3.24 × 10−06 m

and 3.71 × 10−06 m for K = 10−9m3s/kg and K = 10−7m3s/kg, respectively. The
effect of the beam on the soil displacement response is important and the amplitude
is obviously reduced when taking into account the presence of a track. In this case,
the response curves present the same trends for any value of permeability, even for
high load velocity. Indeed, in this case, curves present a minimum for a correspondig
velocity to c = 1.1vS = 286 m/s which corresponds to the range of a super-Rayleigh
regime. When the track is omitted, the effect of permeability is more noticeable and
the displacements become higher for a low permeability. This phenomenon was also
observed in the case of a load with dimensions 2a × 2b = 0.3 × 0.3 m (see section
4.1.2). For a low permeability, the first peak occurs for a load speed near the Rayleigh
wavespeed (c = 0.9vS).

4.2.2 Effect of beam rigidity

The track rigidity is an important factor and it has an obvious effect on the rail fatigue
and the rail service life. The effect of rail rigidity on the vertical soil displacements
are shown in figure 6, with a frequency load f = 64 Hz.
Whether the load is moving in both the sub- and super-Rayleigh regimes, soil displace-
ment decreases prominently with increasing the beam’s stiffness. Moreover, they are
more important for MR = 0.5, except for the case of a stiffer beam where the amplitude
of vertical displacements remains approximately equal for both regimes. Nevertheless,
the amplitude is higher behind the load in the case of a super- Rayleigh regime. A sec-
ond peak appears for MR = 1.5 beyond x > 0, in the case of a softer beam which
corresponds to the critical beam speed. In the case of a stiffer beam, both critical
velocities approach each other and further emerge, resulting in one critical resonance
speed. This was also seen by Suiker et al. [27] in the case of a beam coupled to a
half-plane. The authors noted that the number of critical states can arise, depending
on the beam’s stiffness.

(a) (b)

Figure 6: Effect of beam rigidity on the soil vertical displacement: (a) MR = 0.5, (b)
MR = 1.5.
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5 Conclusion

Based on the dynamic poroelastic theory of Biot, a semi-analytical approach has been
presented in this paper, to study the dynamic response of a poroviscoelastic layered
ground induced by a vertical harmonic rectangular moving load. The moving excita-
tion is applied either directly over the soil surface or over the Sheng’s track model. The
track model which takes into account rail, sleepers, pads and ballast was coupled to a
poroviscoelastic layer resting on a rigid half-space. However, the bresults have shown
effects and relative importance of the numerous parameters involved, such as poros-
ity, permeability, frequency and speed of the moving load. A comparison between
viscoelastic and poroviscoelastic models has been also proposed. The implementation
of the track allowed to get the effect of beam on the dynamic vertical response. Nu-
merical results have been presented in the spatial domain for sub- and super- Rayleigh
regimes, when varying stiffness of the beam. Nevertheless, for further studies, it is of
interest to take into account the influence of other parameters such as the mass of the
railway track components on both the deflection of the soil and the track. The applied
load may be also considered with other geometries.
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