
Abstract

The non-trivial behaviour of a simple, linear elastic, monoatomic chain is analysed and

then homogeneized/continualized/continuumized by taking into account its dispersive

properties. These are hardly known and provide nontrivial long-range causal features

in the case of an unbounded domain. It is shown that this granular behaviour can be in-

terpreted within continuum models by the presence of pseudo-post-newtonian inertial

forces. The last are usually ignored from the multi-scale numerical coupling methods

that are based on a hypothetical Hamiltonian decomposition of the energy.

Keywords: lattice dynamics, continualization, enhanced continuum model, inertial

forces, wave dispersion, percussion loads.

1 Introduction

With the miniaturization of engineering and the increasing precision of measuring in-

struments, the use of multiscale numerical methods that couple (possibly generalized)

continuum models with atomistic ones increasingly became necessary to account for

and justify the behavior of micro-structures [1]. The dynamic behavior of the simplest

discrete elastic structures is actually already very complex in the linear regime because

of the presence of multiple internal scales of times and lengths [2, 3, 4, 5, 6]. For dis-

crete structures that can be described as atomic lattices, this complexity is embedded

into phonon dispersion relations that are highly non-trivial, but relatively well-known

in some cases although. To describe the behavior of such structures on a macroscopic

scale, many numerical approaches (e.g. finite element method (FEM), generalized

FEM, eXtended FEM, discrete Galerkin method, smoothed-particle hydrodynamics,

quasicontinuum method, etc.) naively rely on the classical continuum (CC) theory

that is non-dispersive as a consequence of neglecting the material intrinsic lengths
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Figure 1: The infinite monoatomic chain.

and times of reaction. The CC theory gives however only a very limited description

of the singular behavior of the discrete microscopic structure, since it is supposed to

handle only waves of deformation with both very long wavelengths and very low fre-

quencies, as illustrated hereafter. Many important physical effects such as acoustic

gaps, dispersion, damping and localization of structural vibration modes [2, 7], and

micro-instabilities [8] are therefore missed. As a matter of fact, all these phenomena

are not relevant to the structures of macroscopic size, but actually become dominant

at the scale of the considered microstructures.

In order to provide a theoretical illustration this work considers a very common an-

alytical model that usually serves of comparison for the developments of generalized

continuum models [3, 9, 10, 11, 12, 13, 14] and numerical coupling methods involv-

ing multi-scales and/or multi-physical models [15, 16, 17, 18, 19, 20, 21]. This con-

cerns the non-trivial dynamic behavior of a simple monoatomic chain with linearly

elastic interactions between nearest neighbour atoms (cf. Fig 1) and its equivalent

(quasi-)continuum modeling. Within the considered granular model the atoms are

only allowed to move colinearly (either longitudinally or transversally to the chain)

with u(t) = {uk(t)}k∈Z denoting the atomic displacements from the homogeneous

lattice equilibrium position. Historically, that discrete model has notably inspired the

Isaac Newton’s works on the calculus of the sound speed in the air, as well as Jean

(I) and Daniel Bernoulli’s works on the analysis of vibrating systems [2, 7]. This aca-

demic model has some dispersive properties/dynamics that are poorly known in the

literature; in particular, they are incompatible with the causal restrictions that [9, 10]

require to consistently generalize the elastic continuum mechanics.

The works in [4]-[6] have proposed a new analysis that is based on our contemporary

mathematical analysis knowledges (Fourier and Laplace transforms, complex analy-

sis, and tempered distributions) to characterize the quasi-continuum dynamics of such

a granular material with its main ingredients: impulse response, spatial and temporal

properties, and spectrum. This work proposes a brief summary of these analyses for an

unbounded domain. Mainly, it is shown in particular that two formulations of contin-

uous accurate interpolations are possible; the first one corresponds to the Eringen and

Kunin models of quasi-continua (EKQ, which are based on the Whittaker-Shannon-

Kotel’nikovs (WSK) interpolation functions but are then valid or accurate only for

unbounded domains); the other is based on a weak spectral multi-polar approximation

(WMPA, which is comparable to a multi-point Padé’s approximation). In terms of

numerical coupling [20], the first continualization method belongs to those method-

ologies assuming the existence of energy potentials, and the second one to the gen-

eralized force-based or virtual power category. Both continualizations involve length
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or/and time scales that are non-arbitrary but are related to the dispersive and attenu-

ation structural properties of the atomic interactions [2]. It is shown that the WMPA

provides an interpolation of the displacement field of the generic discrete model that

superimposes two kinematic contributions: one of them corresponds to the solution

predicted by the EKQ and converges for increasing time to the classical theory of

elastic continuum; the second contribution has for effects to restrict the oscillations of

the first field and vanishes for increasing time. It is shown that a second improved ap-

proximation of the classical theory of elasticity can be artificially taking into account

the simultaneity of the atomic response, associated with the violation of Einstein’s

causality. It is shown that this non-trivial behavior can be interpreted in a continuous

model by the presence of inertial and pseudo-dissipative post-Newtonian forces that

are ignored by most multi-scale numerical coupling methods.

For illustration and clarity, this communication considers only the free motion of an

unbounded chain; no external load is applied and no internal collision is allowed for

time. More general kinematic and loading conditions were considered in [6] while the

case of bounded domains will be presented elsewhere.

2 Free motion of the infinite system

2.1 Equations of motion

Let a > 0 be the reference scale length or lattice parameter of the considered chain

model. The mass of each atom ρa is then defined with a lineic mass density ρ > 0.

Moreover, within the harmonic approximation, the atom interactions are ensured by

weightless springs with elastic stiffness αa defined with an elastic modulus α > 0.

Usually, those constants allow to coarsely assess the time ω−1
∗

def
= a

2

√
ρ
α

= a
2c

and the

propagating wave speed limit c
def
=

√
α
ρ

that are specific from the macroscopic view-

point of the classical “homogeneization” based on the long wavelength deformations.

The generalized function theory of causal evolutions [28, 29] provides a natural ad-

equate framework to describe the motion of the chain and to highlight some links with

the weak and strong formulations used in numerical methods. Within this framework,

the free dynamic motion of the chain that is governed by the equation

ρD2
t uk =

α

a2

[
uk+1 + uk−1 − 2uk

]
, for (k, t) ∈ Z× ω−1

∗ R+ (1a)

with the nonzero initial conditions of displacements and velocities

u(0) = {uk(0)}k∈Z and Dtu(0−) = {u̇k(0
−)}k∈Z (1b)

becomes (see [6] for further details)

ρD2
t [Huk] =

α

a2
H

[
uk+1 + uk−1 − 2uk

]
+ ρD

2
t uk , for (k, t) ∈ Z× ω−1

∗ R (2a)
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with the nonzero initial kinematic conditions reinterpreted in terms of localized inertial

forces of percussion

ρaD
2
tu(t) = ρa

[
Dtu(0−) δ+(t) + u(0−) Dtδ+(t)

]
. (2b)

Those last ones are required to move the chain instantaneously from an “artificial rest

state” to the configuration with the given initial displacement and velocity. Those ex-

pressions appropriately involve the generalized partial derivative operator Dt with re-

spect to the time variable t of the Heaviside’s step function H(t)
def
=

{
0 , if t < 0
1 , if t ≥ 0

and the “causal” Dirac’s delta function δ+
def
= DtH. The foregoing mechanical model

is fully characterized by its elastic and kinetic energies, whose the expressions are

well-known. But for the purpose of making comparison the ensuing expression of

external work can be also used [6]

Pr(ρD
2
tu(t),u, t)

def
= a

∑

k∈Z ∫ t

−∞

ρD
2
t uk(t̂) Dt̂uk(t̂) dt̂

= H(t) ρa
∑

k∈Z [
Dtuk(0

−) Dtuk(0
+) − uk(0

−)D2
t uk(0

+)
]
. (3)

2.2 Spectral Characterization

The two problems (1) and (2) can be solved by combining the Laplace’s transform

(LT) on the time variables t ∈ ω−1
∗ R+ and the discrete Fourier’s transform (DFT) on

spatial variables ka ∈ aZ. The first transform is taken like

ỹ(t) → ỹ(ω) =

∫ ∞

0

ỹ(t) e
−iωt

dt ,ℑm(ω) < −ω̌b ≤ 0, (4)

where a sufficiently large constant value ω̌b is taken to ensure the existence of the

integral as a function over a semi-plane of the complex plane ω∗C. Here ℜe(·) and

ℑm(·) denote respectively the real and imaginary parts of the complex number in

argument; i is the principal square-root determination of the imaginary number related

to i2 = −1. The second transform is defined like

y = {yk}k∈Z → y(λ) = a
∑

k∈Z yk e
−ikλa

, ∀λ ∈ K def
=

[
− π/a, π/a

]
, (5)

but, albeit being restricted to the first Brillouin’s zoneK, is assumed to have an analyt-

ical continuation almost everywhere along a−1R and onto a larger subdomain of the

spectral reciprocal complex plane a−1C. The foregoing transforms (4) and (5) have

respectively for inverse formulae

ỹ(ω) → ỹ(t) =
1

2π

∫ −iωb+∞

−iωb−∞

ỹ(ω) e
iωt

dω ,∀ωb > ω̌b ≥ 0 , for t ∈ ω−1
∗ R , (6a)

y(λ) → yk =
1

2π

∫ π/a

−π/a

y(λ) e
ikλa

dλ , for k ∈ Z ; (6b)
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those integrals being defined in the sense of Cauchy’s principal values.

The combined application of the transforms (4) and (5) on Eq.(2a) provides then

Φ(λ, ω) u(λ, ω) = ρD
2
t u(λ, ω) , with D

2
t u(λ, ω) = iωu(λ, 0) + u̇(λ, 0−) (7a)

while the holomorphic function of two complex variables (λ, ω) ∈ a−1C× ω∗C
Φ(λ, ω)

def
=

4α

a2
sin2(λa/2) − ρω2 (7b)

fully characterizes the elasto-dynamical mechanical properties of the discrete material

system. The following equivalence (with q ∈ Z) and characteristic equation

Φ(λ, ω) ≡
4α

a2

[
sin2(λa/2) − sin2(λqa/2)

]
= 0 , for (λ, ω) ∈ a−1C× ω∗C \ C (8)

defines for ω ∈ ω∗R the curves of dispersion [2, 6] that describe the roots {λq(ω)}q∈Z,

those roots being well-defined for ω 6∈ C
def
=

]
−∞,−ω∗

]
∪

[
ω∗,∞

[
like

λ2q(ω) = λo(ω) + 2qπ/a , λ2q+1(ω) = −λ2q(ω) (9a)

λo(ω)
def
= −

2

a
arcsin(ω/ω∗) , with |ℜe(λo)|a ≤ π . (9b)

For each q ∈ Z, the doublet
(
λ2q, λ1−2q

)
lays inside the stripBq

def
=

{
λ = λr + iλi ∈ a−1C ; |λra − 2qπ| ≤ π , (λia, λra) ∈ R2

}
,

the first strip B0 containing in particular the fundamental Brillouin’s intervalK.

2.3 Spatio-temporal evolution

The solution of the Eq. (1) can be expressed indifferently like (see [6] and also [7, 30,

3]),

uk(t) =
∑

p∈Z [
up(0) DtĜ(ka − pa, t) + u̇p(0

−) Ĝ(ka − pa, t)
]
; (10a)

≡
∑

p∈Z [
up(0) DtĜK(ka − pa, t) + u̇p(0

−) ĜK(ka − pa, t)
]
, (10b)

which for (k, t) ∈ ω−1
∗ R×R+ are equivalent to the solution of Eq. (2)

H(t) uk(t) ≡
∑

p∈Z ∫ t

0

G(ka − pa, t − t̂) D
2
t up(t̂) dt̂ ; (11a)

≡
∑

p∈Z ∫ t

0

GK(ka − pa, t − t̂) D
2
t up(t̂) dt̂ . (11b)
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In Eq.(10) the functions

Ĝ(s, t) = sign(t) G(s, |t|) and ĜK(s, t) = sign(t) GK(s, |t|) (12)

represent respectively the acausal extensions to (s, t) ∈ aR × ω−1
∗ R of the causal

Green function interpolation

G(s, t)
def
=

2H(t)

πω∗

{∫ ω∗

0

sin (ωrt) cos ( s
ℓ−

)

ωr

√
1 − ω2

r

ω2
∗

dωr − sin (
|s|π

a
)

∫ +∞

ω∗

e
−

|s|
ℓ+

sin (ωrt)

ωr

√
ω2

r

ω2
∗
− 1

dωr

}

(13)

and of the causal pseudo-Green function interpolation

GK(s, t)
def
= H(t)

∫ π/a

0

a sin(ω∗t sin(λa/2))

ω∗ sin(λa/2)

cos(λs)

π
dλ . (14)

Those functions are defined with two lengths ℓ±(ω) that are like

a

ℓ−(ω)
def
= cos−1

(
1 − 2

ω2

ω2
∗

)
∈

[
0, π

]
, for ω ∈ [−ω∗ , ω∗] ; (15)

a

ℓ+(ω)
def
= ln

[
2ω2

ω2
∗

− 1 +
2|ω|

ω∗

√
ω2

ω2
∗

− 1

]
≥ 0 , for ω ∈ ω∗R \ [−ω∗ , ω∗] , (16)

which characterize the intrinsic properties of dispersion and attenuation of the con-

sidered periodic granular media [2]. Besides G(s, t) and GK(s, t) are also linked as

G(ka, t) ≡ GK(ka, t) ≡ H(t)

∫ t

0

J2k(ω∗t̂) dt̂ and GK(s, t) ≡
∑

q∈Z sinc(s/a−q) G(qa, t) ,

with the Bessel’s functions of first type with entire order [22]

Jn(τ)
def
=

a

π

∫ π/a

0

cos
(
τ sin(λra)− λrna

)
dλr ≡ (−1)nJ−n(τ) , for (n, τ) ∈ N×R

and the sinus cardinal function [23, 24]

sinc(η)
def
=

sin(πη)

πη
, for η ∈ R .

Figs. 2, 3 and 4 illustrate the interpolations of the free motions of the atoms re-

leased with uk(0
±) = ūδk,0 and u̇k(0

±) = v̄δk,0, based on (13); here ū and v̄ are

given constants, and δk,p denotes the Kronecker’s symbol. For the CC theory, a non-

trivial feature of such a boundary-less granular structure with weightless interaction

springs, and that is embedded into the Bessel function properties, is that localized ini-

tial (kinematic or dynamic) disturbances are redistributed through the infinite structure

with infinite velocity (see [30]) by transiently evanescent phonic waves. Instead, the
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Figure 2: TN and CC displacement fields resulting from various continuum represen-

tations of the discrete initial percussion load ρaD
2
tu = {ρav̄δk,0δ+(t)}k∈Z:

(a) the interpolating displacement field u(s, t) = G(s, t) v̄ (in black) of the section

2.4.3 generated by the initial inertial load density ρD
2
t u(s, t) = ρD

2
t u0(t) δ(s/a)

and the CC solution uc(s, t) = Gc(s, t) v̄ (in green) generated by

ρD
2
t uc(s, t) ≡ ρD

2
t u(s, t), with so κc,1(η) = δ(η);

(b) comparison of those displacement fields with the smooth one

uc(ka, t) = G∗
c,1(ka, t) v̄ (in blue) generated by ρD

2
t uc(s, t) = ρD

2
t u0(t) sinc(s/a),

with so κc,1(η) = sinc(η), for (k, t) ∈ Z× ω−1
∗ R+.

CC theory assumes that the corresponding energy transfered by those fast phonons

are macroscopically negligible and interprets the supersonic transfered energy as infi-

nite and localized along Stokes’ rays [6]. This “supersonic” phenomenon violates the

Einstein’s interpretation of the causality criterion, which may be thought necessary to

consistently generalize the elastic continuum mechanics [10, 9]. Currently, this latter

is expressed with the hyperbolic equations of the CC theory, which in the case of a bar

or vibrating string amounts to the D’Alembert’s elastodynamic wave one

ρD2
t uc = αD2

suc , for (s, t) ∈ aR× ω−1
∗ R+ (17a)

with the nonzero initial conditions of displacements and velocities

uc(s, 0) = ũc(s, 0) and Dtuc(s, 0
−) = Dtũc(s, 0

−) , for s ∈ aR . (17b)

Here Ds is the spatial partial differential operator. Within the theoretical framework

of causal distributions, the governing equation in the CC setting becomes

ρD2
t [Huc] − αD2

s [Huc] = ρD
2
t uc , for (s, t) ∈ aR× ω−1

∗ R . (18a)
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Figure 3: TN and CC displacement fields resulting from continuum representations

of the discrete initial data: uk(0) = ū δk,0 and u̇k(0) = 0. The displacement field

u(s, t) = DtG(s, t) ū is obtained with κ(η) = δ(η) and yields the initial displace-

ment u(s, 0) = DtG(s, 0+) ū = κc,0(s/a) ū (in black); the CC solution uc(s, t) =
ū[κc,0((s + ct)/a) + κc,0((s − ct)/a)]/2 (in green) corresponds to uc(s, 0) ≡ u(s, 0).

We also introduced the percussion forces (i.e. an instantaneous distribution of inertial

forces)

ρaD
2
t uc(s, t) = ρa

{
Dtũc(s, 0

−) δ+(t) + ũc(s, 0
−) Dtδ+(t)

}
(18b)

where the correspondence between the couple of percussion kinematic fields ũc(s, 0
−)

and Dtũc(s, 0
−), and the couple of localized initial data u(0) and Dtu(0−) must be

specified. This can be assumed into the following classical trial form with two (possi-

bly identical) weight functions κc,n(η) to specify

Dn
t ũc(s, 0

−) =
∑

k∈ZDn
t uk(0

−) κc,n(s/a − k) , for n = 0, 1 . (19)

Lately, for comparison with (3) one can also associate the following work to the fore-

going model

Pc
r (ρD

2
t uc, uc, t)

def
=

∫ t

−∞

∫ ∞

−∞

ρD
2
t uc(s, ť) Dťuc(s, ť) ds dť

= H(t)

∫ ∞

−∞

ρ
{

Dtũc(s,0
−) Dtuc(s,0

+) − ũc(s,0
−) D2

t uc(s,0
+)

}
ds . (20)

Eq. (17a) (resp. (18a)) is known to be the continuous limit of the discrete model (1)

(resp. (2a)). Indeed, it can be deduced by Taylor expanding Eq. (1) (resp. (2a)) while

assuming the existence of a smooth continuous displacement field uc(ka, t) ≈ uk(t)
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for (k, t) ∈ Z × ω−1
∗ R and spatio-temporal variations that are sufficiently slow to be

differentiable, limiting therefore the accuracy/validity of uc(λ, ω) simultaneously to

the longest wavelengths |λ|−1 ≫ a and the smallest angular frequencies |ω| ≪ ω∗

where Φ(λ, ω) ≈ αλ2 − ρω2. Ideally, a successful numerical method for solving

the problem (17) would provide the exact D’Alembert’s traveling wave solution for

(s, t) ∈ aR× ω−1
∗ R

uc(s, t) =
ũc(s + ct, 0−) + ũc(s − ct, 0−)

2
+

1

2c

∫ s+ct

s−ct

Dtũc(ŝ, 0
−) dŝ , (21)

which implies that Dn
t uc(s, 0

±) ≡ Dn
t ũc(s, 0

−) (with n = 0, 1) as long as the chain is

not impacted. Note that a standard, but not necessary suitable (see Eq.(23)), assump-

tion about the approximation trial field is the form

uc(s, t) =
∑

k∈Z uc(ka, t) κc(s/a − k) , for (s, t) ∈ aR× ω−1
∗ R (22)

with the previous weight functions specified as κc,0(η) = κc,1(η) = κc(η).

It turns out that the solution field (21) is equivalent for (s, t) ∈ aR×ω−1
∗ R+ to the

following solution of the problem (18)

H(t) uc(s, t) ≡

∫ t

0

∫ ∞

−∞

Gc(s − ŝ, t − t̂) a−1
D

2
t uc(ŝ, t̂) dŝ dt̂ (23a)

with the causal fundamental solution of (18a)

with Gc(s, t)
def
= ω−1

∗ H
(
t − |s|/c

)
. (23b)

This latter corresponds to the macroscopic asymptote of G and GK when ω∗t → ∞
(with fixed |s|/ω∗at) or when |s|/a → ∞ (with fixed ω∗at/|s|). However, contrary to

G and GK , the function Gc shows two fronts of discontinuity along |s| = ct, which

propagate with the celerity c as illustrated on the figures 2. Similarly, any singularity

of the field uc will propagate following this schema. This statement can be illustrated

with the approximate solution resulting from the pre-initial inertial load in (19). The

expression of the solution (19) can be rewritten like

H(t) uc(s, t) =
∑

p∈Z [
Dtup(0

−) Ĝ∗
c,1(s − pa, t) + up(0

−) DtĜ
∗
c,0(s − pa, t)

]
(24a)

where the acausal function

Ĝ∗
c,n(s, t) = sign(t) G∗

c,n(s, |t|) , for n = 0, 1 (24b)

is defined the causal pseudo-Green function

G∗
c,n(s, t)

def
=

∫ ∞

−∞

Gc(s − ηa, t) κc,n(η) dη ≡ H(t)

∫ t

0

κc,n

(
s+ct̂

a

)
+ κc,n

(
s−ct̂

a

)

2
dt̂ . (24c)
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It follows that the spatial regularity of the interpolating functions κc,n(η) has an im-

pact on the approximation predicted by the CC theory equation (18a) for the discrete

field u(t) in (10). For instance, on the figure 2(b), to mimic the response of the chain

impacted from rest with ρaD
2
tu(t) = {ρav̄δk,0δ+(t)}k∈Z for the percussion force in

(2b) a very singular and a very smooth κc,1(η) were chosen to interpolate in weak

and strong senses. The CC displacement field uc = v̄G∗
c,1 obtained with the infinitely

smooth hat-function κc,1(η) = sinc(η) is continuous contrary to the one uc = v̄Gc

obtained with the singular Dirac’s function κc,1(η) = δ(η) = 1
2
D2

η |η|. In fact, this

yields a limited improvement that results from the nonlocal nature of the smooth iner-

tial loading, which artificially attempts to compensate the limitations imposed to the

wave propagation velocity by the classical elasticity model (18a).

While the improvement obtained with the smooth field can also been observed in

the energy introduced into the mechanical system, with notably Pc
r(ρD

2
t uc, uc, t) =

Pr(ρD
2
tu,u, t), it is however loading and weight dependent [6]. Indeed, one can con-

sider for instance the same Cauchy’s problems with u(0) = 0 and Dtuk(0
−) = v̄δk,0

while the CC approximation is indifferently initialized with Dtũc(s, 0
−) = v̄κc,1(s/a)

or ρaD
2
t uc(t) = ρaDtũc(s, 0

−) δ+(t), and the more popular FEM weight function

κc,1(η) = [1 − |η|]H(1 − |η|). It comes then Pc
r(ρD

2
t uc, uc, t) = 2

3
Pr(ρD

2
tu,u, t).

Section 2.4.3 provides further comparisons and details on these dependencies.

2.4 Analogous quasi-continua

The problem of building a continuous model that is equivalent to the granular model

includes the task to formulate a system of integro-differential equations, with respect

to the two variables (s, t) ∈ aR×ω−1
∗ R, between the continuous field u(s, t) interpo-

lating the discrete displacement field u(t) = {uk(t)}k∈Z like

u(ka, t) = uk(t) , for (k, t) ∈ Z× ω−1
∗ R , (25)

and a load density f(s, t) that is linked in some sense to those acting onto the discrete

structure, f(t) = {fk(t)}k∈Z [3]-[6]. The reasoning provided in [4]-[6], and repeated

hereafter for self-containedness, still holds whether the considered applied load f are

external or generated as the percussion force ρaD
2u in (2b) by initial kinematic con-

ditions.

2.4.1 Additional criteria of interpolation

From a spectral viewpoint, a crucial step is the substitution of the (7a) in the space

a−1C× ω∗C of spectral variables (λ, ω) by an equation of interpolation

Φ†(λ, ω) u†(λ, ω) = f †(λ, ω) (26)

which itself allows to replace the DFT (5) and its inverse (6b) the integral Fourier

transform FT and its inverse

y(s) → y†(λ) =

∫ ∞

−∞

y(s) e
−iλs

dλ ; y†(λ) → y(s) =
1

2π

∫ ∞

−∞

y†(λ) e
iλs

dλ . (27)
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The interpolation fields u(s, t) and f(s, t) are then inferred from u†(λ, ω) and f †(λ, ω)
via (4), (6a) and (27).

The constraint (25) still left however a large choice of the functions Φ†(λ, ω) and

f †(λ, ω) whose the analogs Φ(λ, ω) in (7b) and f(λ, ω) =
∑
k∈Z fk(ω) e

−iλka
are no-

tably 2πa−1-periodic in λ ∈ a−1C. To restrict the choice, an equivalence is addi-

tionally imposed for the resultants of the either external or initial inertial acting loads

∫ ∞

−∞

f(s, t) ds ≡ a
∑

k∈Z fk(t) , for t ∈ ω−1
∗ R (28a)

and furthermore an equivalence between the load works is also wished

Pc
r (ρD

2
t u(t), u, t) ≡ Pr(ρD

2
tu(t),u, t) . (28b)

In particular the continuum load work can be expressed like (20).

Within the framework of distribution theory, there exist then at least two natural

choices for the loading fields f(s, t) that satisfy (28a) while keeping the interpolation

ansatz f(s, t) ≡
∑
k∈Z fk(t) κ(s/a − k) for (s, t) ∈ aR× ω−1

∗ R:

one is the singular Dirac’s comb distribution where κ(η) = δ(η)
def
= D2

η
|η|
2

for η ∈ R
so that

∫ βa

−βa

f(ka + s, t) ds ≡ afk(t) ,∀β ∈ ]0, 1[;

the second one is the regular distribution where κ(η) = sinc(η) (if the resulting cardi-

nal series converges in the sub-space of continuous functions with λ-support spectral

inK) so that f(ka, t) = fk(t).

Since the acting load distribution f(t) can be arbitrary, the desired interpolation

property (25) can be reformulated as a restriction on the spectral functions describing

the material elasticity and inertia Φ†(λ, ω) alone. Thus, in the singular load interpola-

tion case it is convenient to take as a measure of concordance

∫ −iωb+∞

−iωb−∞

∫ ∞

−∞

ei(λka+ωt)

Φ†(λ, ω)
dλ dω ≡

∫ −iωb+∞

−iωb−∞

∫ π/a

−π/a

ei(λka+ωt)

Φ(λ, ω)
dλ dω (29)

and in the regular load interpolation case

∫ π/a

−π/a

∫ −iωb+∞

−iωb−∞

ei(λka+ωt)

Φ†(λ, ω)
dω dλ ≡

∫ π/a

−π/a

∫ −iωb+∞

−iωb−∞

ei(λka+ωt)

Φ(λ, ω)
dω dλ . (30)

Those formulations take into account the order of application of the transforms (4)

and (5) upon Eq.(2a) and that allow to identify the right hand side double integrals in

(29) and (30) with 4π2G(ka, t) and 4π2GK(ka, t), respectively.

2.4.2 Strong spectral approaches

For the smooth loading choice (30), two types of spectral functions of elasticity and

inertia Φ†(λ, ω) satisfying (30) are frequently proposed (e.g. [25, 26, 3, 27]). A first

11



one corresponds to

Φ†(λ, ω) ≡ Φ(λ, ω) , (31)

and the second one to

Φ†(λ, ω) ≡ 1B0
(λ) Φ(λ, ω) , with B0

def
=

{
λ ∈ a−1C ; |ℜe(λ)a| ≤ π

}
(32)

while 1B0
denoting the characteristic function of the domainB0. The quasicontinuum

spectral model (31) has been adopted by Eringen [26], while the model (32) is the

one chosen by Kunin [3]. In both cases, to be exact and to not produce singularities

(see [6]), the functions u(s, t), ρaD
2
t u(s, t) and f(s, t) must be limited to Whittaker-

Kotel’nikov-Shannon’s (WKS) functions of interpolation [23, 24], which assumes the

spectra u†(λ, ·), ρaD
2
t u

†(λ, ·) and f †(λ, ·) supported byK for λ ∈ a−1R.

The elastodynamic equations characterized by (26), (31) and (32) read either as

follow for (s, t) ∈ aR× ω−1
∗ R+

ρD2
t u(s, t) =

∫ ∞

−∞

Ks(
s − š

a
) D2

šu(š, t) dš (33a)

= −

∫ ∞

−∞

Ls(
s − š

a
) u(š, t) dš (33b)

with the initial kinematic conditions Dn
t u(s, t) = ρa

∑
k∈ZDn

t uk(t) sinc(s/a − k)
(for n = 0, 1). It can also be expressed as follows for (s, t) ∈ aR× ω−1

∗ R
ρD

2
t u(s, t) = ρD2

t [H(t) u(s, t)] −

∫ ∞

−∞

Ks(
s − š

a
) H(t) D2

šu(š, t) dš (34a)

= ρD2
t [H(t) u(s, t)] +

∫ ∞

−∞

Ls(
s − š

a
) H(t) u(š, t) dš (34b)

with the percussion load

ρaD
2
t u(s, t) = ρa

∑

k∈ZD
2
t uk(t) sinc(s/a − k) . (35)

Those equations involve the following functions of elasticity for η ∈ R
Ks(η)

def
=

1

2π

∫ ∞

−∞

Φ†(λ, 0)

λ2
e
iηλa

dλ and Ls(η)
def
=

1

2π

∫ ∞

−∞

Φ†(λ, 0) e
iληa

dλ .

The kernel model (31) leads then to the following functions of elasticity

Ks(η) =
α

a

|η + 1| + |η − 1| − 2|η|

2
≡

α

a
H(1 − |η|)

[
1 − |η|

]
(36a)

Ls(η) =
α

a3

[
2δ(η) − δ(η + 1) − δ(η − 1)

]
. (36b)

In fact, the integro-differential equation (34) endowed with the kernel (36b) can be

expressed more simply like

ρD
2
t u(s, t) = ρD2

t [H(t) u(s, t)] − αH(t)
u(s + a, t) + u(s − a, t) − 2u(s, t)

a2
.

12



Similarly to the models developed in [31, 32], the absence of spatial differentiation

Dsu(s, t) in that equation entails that its solutions u(s, t) are continuous only if the

initial (and load) conditions are sufficiently smooth (see [6]); consequently, this ex-

cludes the Dirac’s singular loading field and therefore the localized impacts.

The kernel model (32) leads to the following functions of elasticity for η ∈ R
Ks(η) =

α

a

[
(η + 1)S̃i(η + 1) + (η − 1)S̃i(η − 1) − 2η S̃i(η) −

4 cos(η π)

π2

]
(37a)

Ls(η) =
4α

a3

η2 − 1/2

η2 − 1
sinc(η) (37b)

with S̃i(η)
def
=

∫ η

0

sinc(η̌) dη̌. The use of the integro-differential equation (34) en-

dowed with (37) requires infinite domains of integration, and so is not adequate for

bounded domains. Other drawbacks related to the support of the loads must also be

mentioned (see [6]).

Despite of these drawbacks, for the WKS smooth interpolation fields, the dynami-

cal continuum models described by Eqs. (33) also allow to recover however the exact

kinematic and energy state related to the discrete model described by Eq. (1) (see [6]).

Within the WKS smooth interpolation field space, the formal solution of the dynamic

equation (34) is as follows for both kernel choices (31) and (32)

H(t) u(s, t) ≡
∑

p∈Z ∫ t

0

GK(s − pa, t − t̂) a−1
D

2
t up(t̂) dt̂ . (38)

For (s, t) ∈ aR× ω−1
∗ R+, this is equivalent to the following field that solves (33)

u(s, t) =
∑

p∈Z [
DtĜK(s − pa, t) up(0) + ĜK(s − pa, t) u̇p(0

−)
]

(39)

defined with the antisymmetric extension of the causal “pseudo-fundamental” solution

GK in (14).

2.4.3 The weak spectral approach

The formulation (29) is based on a weak multipolar approximation (WMPA) devel-

oped in [4, 6] inspired by the Mittag-Leffler’s rational expansion series of the mero-

morphic spectral function [Φ(λ, ω)]−1 on a−1C×ω∗C\C. The truncating approxima-

tion according to Eq. (29) yields the following weak multipoint Padé’s approximation

function [6]

Φ†(λ, ω) = α
[
λ2 − λ2

o

]
sinc(λoa/π) ≡ ρa

[
G†(λ, ω)

]−1
. (40)

By inverse transforms of the spectral equation (26) with this kernel, the equation of

dynamic motion can be expressed finally as follows for (s, t) ∈ aR× ω−1
∗ R

ρD
2
t u(s, t) =

[
1+

1

ω2
∗

D2
t

] ∫ t

0

[
D3

t̂ Υ1(t̂) u(s, t−t̂)−DtΥ2(t̂) D2
s u(s, t−t̂)

]
dt̂ (41a)

13



where the following initial inertial load of percussion is used to (re-)generate initial

kinematic states

ρaD
2
t u(s, t) = ρa

∑

k∈ZD
2
t uk(t) δ(s/a − k) . (41b)

The integrals in Eq. (41a) use the following stiffness and mass distributions

Υ1(t) ≡ Υ̃1(ω∗t)
def
= ρH(t)

{
1 −

∫ ∞

ω∗

ω∗ cos(ωrt)

ω2
r

√
ω2

r

ω2
∗
− 1

dωr

}
, (42a)

Υ2(t) ≡ Υ̃2(ω∗t)
def
= αH(t)

{
1 −

∫ ∞

ω∗

4 cos(ωrt) dωr

ω∗

[
a2

ℓ2
+

+ π2
]√

ω2
r

ω2
∗
− 1

}
. (42b)

They satisfy Υ1(0) = Υ2(0) = DtΥ1(0) = D2
t Υ1(0) = 0 and tend to Υ̃1(+∞) ≡ ρ

and Υ̃2(+∞) ≡ α. The classical wave equation (18a) can be inferred from (41a)

by passing to the limit with (a, ω−1
∗ ) → (0, 0) while keeping ω∗a = 2c finite. The

temporally-nonlocal (TN) continuum model (41a) possesses a complex internal in-

ertia and elasticity reminiscing a modeling of continuum mechanics enhanced with

hereditary or memory properties proposed in [33] for composite and heterogeneous

materials. However as for the discrete model, this new continuum remains spatially

local (which underlies that boundary conditions will remains too) and does require

only the classical initial conditions. Hence, an analytic comparison between the pre-

dictions of this dynamic model and those of a finite chain for various loading condi-

tions are possible as shown in a future communication. Lately, contrarily to those of

the subsection 2.4.2, the TN model (41a) admits singular loading. In particular for

the singular inertial load (41b), the final expression of the formal solution of the TN

dynamic equation (41a)

H(t) u(s, t) ≡

∫ t

0

∫ ∞

−∞

G(s − ŝ, t − t̂) a−1
D

2
t u(ŝ, t̂) dŝ dt̂ (43)

can be viewed as a restriction onto (s, t) ∈ aR× ω−1
∗ R+ of the field

u(s, t) =
∑

p∈Z [
DtĜ(s − pa, t) up(0) + Ĝ(s − pa, t) u̇p(0

−)
]

(44)

defined with the antisymmetric extension of the causal fundamental solution with

G(s, t) in (13). Albeit the continuum inertial load representation of the initial condi-

tions is singular, one can check however that the solution (44) is a regular continuous

interpolation of the original discrete solution u in (10), since for n = 0, 1

Dn
t u(s, 0−) =

∑

p∈Z DtĜ(s−pa, 0−) Dn
t up(0

−) and Dn
t Ĝ(s−pa, 0±) ≡ Dn

t G(s−pa, 0+) .

The singular load (41b) is relevant to accurately recover the free motion field and

14
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Figure 4: TN and CC displacement fields resulting from smooth continuum represen-

tations of the discrete initial data: uk(0) = ū δk,0 and u̇k(0) = 0.

the corresponding discrete energy state from this TN model prediction [6]. Although,

relatively good approximations at sufficiently large times can be qualitatively obtained

with other weight functions not fulfilling the interpolation criteria (28), due to the non-

trivial inertia and elasticity of the TN model. Indeed, if one replaces δ(η) in (41b) by

a regular interpolating weight function κ(η), then the solution (43) reads like

H(t) u(s, t) =
∑

p∈Z [
Dtup(0

−)G∗(s − pa, t) + up(0
−)DtG

∗(s − pa, t)
]

(45a)

15



with the following pseudo-Green function

G∗(s, t)
def
=

∫ ∞

−∞

G(s − ηa, t) κ(η) dη . (45b)

For illustration, for the discrete initial data u(0) = {ū δk,0}k∈Z and u̇(0) = 0, the

solution (43) that simply reads like u(s, t) = G(s, t) ū (see Fig. 3) can be compared

to the continuum solution (45) obtained with κ(η) = κc,0(η) = sinc(η) (see Fig. 4(a))

and κ(η) = κc,0(η) = [1 − |η|]H(1 − |η|) (see Fig. 4(b)). The resulting displace-

ment field u(s, t) = DtG
∗(s, t) ū (in black) may be interpreted as corresponding to

a non-interpolating initial displacement field u(s, 0) = DtG
∗(s, 0+) ū. Comparisons

with the related CC approximations (in green) corresponding to ũc(s, 0) = uc(s, 0) =
κc,0(s/a)ū or equivalently to the percussion load (18b) ρaD

2
t uc(s, t) = ρaD

2
t u0 κc,0

are also provided. The expressions (21), (23a), and (24) of those approximations can

also be simply read as uc(s, t) = ū[κc,0((s + ct)/a) + κc,0((s − ct)/a)]/2. As ob-

served, the behaviours of the regular-κ(η) approximations in (45) converge towards

the interpolation (44) where therefore κ(η) = δ(η). This is not the case with the CC

model owing to its dispersive-less nature. In fact, comparing Fig. 3 and Figs. 4 shows

that the agreement with the discrete theory is rather poor. The relevance of the choice

of kernel κc,0 in the CC theory can also be mentionned regarding the energy equiva-

lence for the considered initial problems [6]. Indeed, for instance the smooth weight

function κc,0 = sinc(η) provides Pc
r(ρD

2
t uc, uc, t) = π2

6
Pr(ρD

2
tu,u, t), while κc,0 =

[1−|η|]H(1−|η|) provides the energy equivalence Pc
r (ρD

2
t uc, uc, t) = Pr(ρD

2
tu,u, t) .

3 Conclusion

This paper highlighted some key points of the derivation of enhanced quasicontinuum

models that can be closely based on the dispersive vibrational properties of lattices

and periodic material systems. These new insights may help in the numerical simu-

lations coupling of continuum and discrete/molecular modeling, which is in general a

non-trivial task. In the current practice, the continuum model often relies on the CC

mechanics, mistakenly. The use of the CC model entails, for instance, that the high

frequencies coming from the discrete media cannot avoid to be reflected by fixed or

moving interfaces (like fronts of discontinuity or model separation) instead of being

transmitted [34, 17, 18, 21]. This pinpoints the need for enhancing continuum me-

chanics to catch the micro-structural effects due to the discreteness of the material

properties in lattices and other periodic systems and that are particularly important in

the high-frequency regime.

The construction of enhanced continuum mechanics involves to adopt pertinent in-

ertial and stiffness terms and characteristic micro-structural length and time scales.

This paper has shown which can be taken into account for building a quasi-continuum

model that is equivalent to a simple, periodic, linear elastic monoatomic chain. In

particular, it has been shown that a memory-dependent quasi-continuum model is

able to correctly capture the non-trivial physical phenomena of wave dispersion in
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the micro-structured spring-mass lattice, which are overlooked by the CC theory and

its finite-element discretization. Comparisons between this TN model and some of the

enhanced continuum models proposed in the literature up to this date were proposed

in [6]. Unlike the other ones, the TN model assumes some modifications of the classi-

cal elasto-dynamic Newton’s law model that do not increase the number of initial and

boundary conditions of the mechanical evolution problem. Other similar construc-

tions that are under investigation for other non-simple lattices and atom motions will

be presented elsewhere.
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ment dynamique d’un réseau atomique de simple micro-structure”, 10eme Col-

loque National en Calcul des Structures.

[6] M. Charlotte, L. Truskinovsky, “Lattice dynamics from a continuum view-

point”, J. Mechanics and Physics of Solids, PII : S0022-5096(12)00058-0, DOI

: 10.1016/j.jmps.2012.03.004, 2012.

[7] A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova, “Theory of lattice

dynamics in the harmonic approximation”, Academic Press, New-York, 1971.

[8] M. Charlotte, L. Truskinovsky, “Linear chain with a hyper-pre-stress”, J. Mech.

Phys. Solids, 50, pages 217-251, 2002.

[9] A. Metrikine. “On causality of the gradient elasticity models”, J. Sound and

Vibration, 297, pages 727-742, 2006.

[10] H. Askes, A.V. Metrikine, A.V. Pichugin, T. Bennett, “Four simplified gradient

elasticity models for the simulation of dispersive wave propagation”, Philosoph-

ical Magazine, vol 88(28-29), pages 3415-3443, 2008.

[11] J.D. Kaplunov, A.V. Pichugin, “On rational boundary conditions for higher-

order long-wave models”, IUTAM Symposium on Scaling in Solid Mechanics,

IUTAM Bookseries, Vol 10, pages 81-90, 2009.

[12] A. Metrikine, H. Askes. “One-dimensional dynamically consistent gradient

elasticity models derived from a discrete microstructure, Part1: generic formula-

tion”. European J. Mech. A/ Solids, 21, pages 555-572, 2002.

[13] A. Metrikine, H. Askes, “One-dimensional dynamically consistent gradient

elasticity models derived from a discrete microstructure, Part2: static and dy-

namic response”, European J. Mech. A/ Solids, 21, pages 573-588, 2002.

17



[14] P. Rosenau, “Hamiltonian dynamics of dense chains and lattices: or how to cor-

rect the continuum”, Phys. Lett. A, 311, pages 39-52, 2003.

[15] M. Ortiz, R. Philips, E.B. Tadmor, “Quasicontinuum analysis of defects in

solids”, Phil. Mag. A, vol 73, pages 1529-1563, 1996.

[16] V. B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, M. Ortiz.

“An adaptive methodology for atomic scale mechanics: The quasicontinuum

method”, J. Mech. Phys. Sol., 47, pages 611-642, 1999.

[17] H.S. Park, W.K. Liu. “An introduction and tutorial on multi-scale analysis in

solids”, Comput. Meth. Appl. Mech. Engrg., 193, pages 1733-1772, 2004.

[18] Park H.S., Karpov E.G., Liu W.K., Klein P.A., “The bridging scale for two-

dimensional atomistic/continuum coupling”, Philosophical Magazine, Taylor &

Francis, Vol. 85, No. 1, 1, pages 79-113, 2005.

[19] R.E. Miller, E.B. Tadmor, “The quasi-continuum method:overview, applications

and current directions”, J. Computer-Aided Materials Design, 9, pages 203-239,

2002.

[20] R. Miller, E.B. Tadmor, “A unified framework and performance benchmark of

fourteen multiscale atomistic/continuum coupling methods”, Modelling Simul.

Mater. Sci. Eng., vol 17, n5, 2009.

[21] S. Tang , T.Y. Hou, W.K. Liu. “A mathematical framework of the bridging scale

method”, Int. J. Numer. Meth. Engng., 65, pages 1688-1713, 2006.

[22] M. Abramowitz, I. A. Stegun, “Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables”, New York: Dover Publications, ISBN

978-0-486-61272-0, eds. 1972.

[23] R. J. II Marks. “Introduction to Shannon Sampling and Interpolation Theory”,

Springer-Verlag, New York, 1991.

[24] J.R. Higgins, “Sampling Theory in Fourier and Signal Analysis. Foundations”,

Clarendo Press, Oxford, 1996.

[25] A.C. Eringen, “Linear theory of nonlocal elasticity and dispersion of plane

waves”, Int. J. Eng. Sci., 10, pages 425-435, 1972.

[26] A.C. Eringen, “Nonlocal field theories”, In Continuum Physics (Edited by A.C.

Eringen), Academic press, New York, 4, pages 205-267, 1976.

[27] D. Rogula, “Introduction to nonlocal theory of material media in: Nonlocal the-

ory of elastic media”, CISM Courses, Springer, Berlin, 268, 123-222, 1982.
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