
1

Abstract

A number of software applications developed in Java, such as ones coming from
information retrieval and semantic web research domains, have been faced with the
performance and scalability issues in view of the growing computation demands.
The Message-Passing Interface (MPI) has proved to be an efficient solution for a
wide variety of parallel applications developed with "traditional" high performance
computing languages such as C and Fortran. We demonstrate that the design
features of Java prevent the native MPI realization to massively scale on the
production high performance computing systems. As a reaction on this challenge,
we present a solution that allows the performance issues of the native
implementation to be overcome by integration in the highly-scalable C realization
such as Open MPI. Implementation of the proposed parallelization technique, based
on the domain decomposition, for a pilot Java application (Airhead), which performs
random indexing and search in large semantically annotated text sets, has allowed us
already to improve the performance by up to 33 times on 16 nodes of the test bed
cluster system.

Keywords: semantic web, Java, parallelization, message-passing interface, random
indexing, Open MPI.

1 Introduction

Driven by the concepts of portability and interoperability, Java has become a widely
accepted general-purpose programming language with a large existing code base and
programmer communities. Among others, Java has gained a wide adoption in data-
centric computing such as information retrieval and semantic web that has a
potential demand for parallel and high-performance computing. Whereas the recent
advances of those communities require their Java applications to scale up to the
requirements of the vast and rapidly increasing data, e.g. coming from millions of

Paper 74?

Efficient Parallelization of
Java Applications for Semantic Web
by means of the Message-Passing Interface

A. Cheptsov
HLRS - High Performance Computing Center Stuttgart
University of Stuttgart, Germany

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

2

sensors in Smart Cities domain, Java fairly lacks mechanisms that would enable the
Java applications to scale beyond the single NUMA-node across the network
interconnect of a modern supercomputing system.
At present, the interest in Java is largely shifting towards the exploitation of the
computation power of distributed-memory parallel computers. There are already
some developments such as MapReduce framework's implementation of Hadoop or
parallel programming environment Ibis, which prove that the Java execution
environment can successfully exploit HPC, scaling to sizes unreachable by native
thread-based implementations. However, none of them is near as efficient or well-
developed as found in the Message-Passing Interface (MPI).
MPI has become a de-facto standard in the area of parallel computing for C, C++,
and Fortran applications, providing API that allows processes running on different
nodes of a supercomputing system to be synchronized with each other by means of
messages communicated between or among those nodes. But given the vast problem
sizes addressed by the modern Java applications, and given the emergence of the
new Java communities interested in adopting MPI, it seems natural to explore the
benefits of MPI for Java applications on HPC platforms as well.
Introducing MPI for Java applications poses several challenges. First, the API set
should be compliant with the MPI standard, but not downgrading the flexibility of
the native Java language constructions. Second, the hardware support should be
offered in a way that overcomes the limitation of the Java virtual machine, but
ensures such important features as thread-safety. Third, MPI support should be
seamlessly integrated in the parallel applications' run-time environment. These three
issues of functionality, adaptivity, and usability must be addressed in complex to
make the use of MPI in Java applications practical and useful.
We demonstrate that the design features of Java prevent the native MPI realization
to massively scale on the productional high performance computing systems and
look for solutions of resolving these issues in a way that leverages the advances of
the existing MPI frameworks. The paper is organized as follows. In Section 2, we
present the case study Java application. In Section 3, we describe the parallelisation
technique elaborated for the pilot application; the technique is quite generic and can
be adopted by any other Java application. Section 4 provides implementation details.
Section 5 collects performance evaluation results. Section 6 contains the
conclusions.

2 Case Study Java Application

The tremendous increase of the structured data operations on the Web, observed in
the last few years in Science (e.g. the Linked Life Data repository for biomedical
science concentrating over 4 billion RDF statements), Government (such as Linked
Open Data1 repository containing more as 4 billion statements), Commerce (as
provided by Ontotext2 and other companies), and many other domains, put a number

1 http://www.data.gov/
2 http://ontotext.com/

3

of requirements to the software packages using those data. The massive amount of
data, in particular described by RDF (Resource Description Framework) 3 – a
standard model for data interchange on the web, is a key challenge for many
Semantic Web applications. Given that Java is widely used in the Semantic Web,
not surprisingly, we chose the Semantic Web domain when looking for the large-
scale applications that would potentially benefit from the distributed parallelisation.
As one of the most challenging application areas of the Semantic Web, in terms of
the allocated resources, we identified the random indexing [1].
Random indexing is a distributional statistic technique used for extracting
semantically similar words from the word co-occurrence statistics in the text data,
based on high-dimensional vector spaces. Random indexing is a promising
technique offering new opportunities for a number of large-scale Web applications
performing the search and reasoning on the Web scales. The prominent examples of
applications using random indexing are query expansion and subsetting. Query
expansion [2] is used in information retrieval with the aim to expand the document
collection returned as a result to a query, thus covering the larger portion of the
documents. Subsetting (also known as selection) [3], on the contrary, deprecates the
unnecessary items from a data set in order to achieve faster processing. Both
presented problems are complementary, as change properties of the query to best
adapt it to the search needs.
The main complexity of the random indexing algorithms lies in the following:

 High dimensionality of the underlying vector space. The vector space
consists of context vectors whose relative directions are assumed to indicate
semantic similarity. A typical random indexing search algorithm performs
traversal over all the entries of the vector space. This means, that the size of
the vector space to the large extent defines the search performance. The
modern data stores, such as Wikipedia4, or FactForge5, consolidate many
billion of statements and result in vector spaces of a very large
dimensionality.

 High call frequency. Both indexing and search over the vector space is
typically a one-time operation, which means that the entire process should be
repeated from scratch every time new data is encountered.

Due to the above-mentioned reasons, random indexing over large data sets is
computationally very costly, with regard to both execution time and memory
consumption. The latter is of a special drawback for performing random indexing on
the mass computers. So far, only relatively small parts of the Semantic Web data
have been successfully indexed and analyzed.
One of the most successful software packages for random indexing, widely
recognised in the Semantic Web community, is Airhead [4], developed in University
of California. Airhead is a Java library performing both random indexing and search.
Currently, Airhead is able to take full advantage of a multi-core environment.
However, the algorithm can not be executed on a distributed parallel system, such as
a cluster of workstations or a supercomputer, which makes processing terabytes of

3 http://www.w3.org/RDF/
4 http://wikipedia.org
5 http://factforge.net/

4

text increasingly infeasible. As a workaround, we have developed an MPI version of
the application that performs the search on the most similar words to the given one
in the semantic vector space.

3 Parallelisation approach

Random indexing search is performed over the entries of the semantic vector space
according to the schema depicted in Figure 1a. All the vectors are processed
independently and concurrently. The trivial parallelisation can be achieved by
mapping the contiguous sets of vectors in the vector space to a parallel block, each
running on a compute node. The execution on single nodes is followed then by a
synchronization to wait for other parallel blocks and gather the partial results of all
the blocks. The division of the vectors among the parallel blocks is specified by the
domain decomposition (Figure 1b). The domain decomposition ensures the optimal
load balancing among the compute nodes and therefore the highest performance of
the parallelised algorithm.

Computation of the Cosine
with the given vector

Problem domain (vector space) sem. vector

Selection of the vectors
with max. cosines

Computation of the Cosine
with the given vector

Selection of the vectors
with max. cosines

Syncronisation

Parallel
block 1

Parallel
block 2

Computation of the Cosine with the given vector

Problem domain (vector space) sem. vector

Selection of the vectors with max. Cosines

 a) b)
Figure 1: The sequential (a) and parallel (b) realisation of the implemented random
indexing algorithm; in the example n=3 words are selected which vectors are the

most similar to the given word.

The results of the search in the part of the vector space, assigned to the parallel
block/process, are stored in the block’s memory space and can not be accessible
from another block. However, this is needed to perform the final selection among
the results of each of the blocks. For this purpose, all the partial outputs might be
gathered, in one of the blocks (the “root” one), where then the final selection is
performed. The necessity of passing the results (n selected words) from each block
to the root one as well as the following final selection prevents the parallelised
application performance from super-linear scalability. Nevertheless, the optimal
realisation of the synchronisation allows the parallel algorithm to minimise the
computation overhead of this operation in total execution time.

5

4 Distributed Parallelisation with MPI

4.1 Introduction to MPI

MPI is a wide-spread process-oriented implementation standard for parallel
applications [5], implemented in many programming languages, also including Java
[6]. Each MPI processes has an own memory space and communicates with the
other process/processes to access its/there data. In MPI, each process is identified by
means of its rank, which is unique within a group of processes involved in the
execution (Figure 2).

int my_rank = MPI.COMM_WORLD.Rank();
int total_processes = MPI.COMM_WORLD.Size();
System.out.println(“Process ” + my_rank + “ out of ” + total_processes);

Figure 2: Requesting the rank of the process and the size of the group (number of

the involved processes), following the Java specification of MPI.

Communication between or among the MPI processes performs by means of
messages. In case of such an object-oriented language as Java, a message encloses
any object, including a single variable, an array, or a class. For the latter, a type
casting operation is required on the receiver’s side to match the “Object” type to the
needed one.
The message can be transmitted either between two processes, a sender and a
receiver (point-to-point communication), or among several processes involved in a
group (group communication). The table below summarises the main MPI
operations for Java used in the parallel version of the described application.

Communication Description
Point-to-point communications (between two nodes)

MPI.COMM.Send
MPI.COMM.Recv Synchronous send/receive of a message

Collective communications (among many/all nodes)
MPI.COMM.Bcast Broadcast of a message from the specified

node/process to all the other processes in the group
MPI.COMM.Gather Gather of a message from all the nodes/processes in the

group by the specified process
Table 1: Main MPI communication operations for Java

For more detailed information about the MPI communications, please refer to [6].

4.2 MPI libraries for Java

Among the available implementations of MPI for Java, we considered the following
two in this paper as being the most popular and sustainable at the moment:

 mpiJava
 MPJ Express

6

mpiJava [7] is an outcome of the HPJava project. The main feature of mpiJava is
that it extents a native MPI library by wrapping its MPI calls (mainly for C and
Fortran) to the Java interfaces (Figure 3).

Java Application

JNI C/Fortran Interface

Native MPI
library call

MPI call

mpjdev for
Open MPI

Native MPI
library call

mpjdev for
MPICH …

Figure 3: Architecture of mpiJava.

Thanks to its flexible architecture, mpiJava is portable to any platform that provides
compatible Java development and native MPI environments. The lightweight
realization of the JNI interfaces ensures the minimum overhead when executing the
native MPI calls. A great variety of underlying MPI libraries are supported by
mpiJava, including such popular ones as Open MPI, MPICH, LAM and others. The
mpiJava’s APIs has become de-facto a standard specification for Java language.
MPJ Express [8] is a relatively new development, promising in terms of installation
and maintenance ease. Unlike mpjJava, MPJ Express provides an own realisation of
the MPI calls, which might be benefitial for some cases6. Among the main benefits
of MPJ Express are also such as ease of application deployment and debugging on
the user’s home machine, no need in underlying native MPI installation for C or
Fortran, and MPI via multithreading support.
In order for a Java application to make use of the both described MPI libraries, no
changes in the application code are needed. In our evaluation, we successfully used
both mpiJava and MPJ Express for implementation of the parallel algorithms.

4.3 Realisation for Airhead

According to the domain decomposition in Figure 1b, each process is assigned to a
subdomain, the boundary elements of which are calculated dynamically based on the
MPI process’s rank in the communication group (Figure 4).

int domain_begin = VectorSpace.size() * (my_rank);
int domain_end = VectorSpace.size() * (my_rank + 1);

Figure 4: Using MPI for calculating size of the processes’ subdomains.

6 See some benchmarking results at http://mpj-express.org/performance.html

7

Besides the vectors assigned, each subdomain also requires the vector containing the
given searched word. Thus, the process whose subdomain contains the given word’s
vector must replicate its value over all the other processes. The replication schema
as well as the Java code for this operation are presented in Figure 5.

…

…

0 (root) 1 2

0 (root)

n

1 2 n

step 1 - sending the vector from the partition containing
the given word to the root process (e.g. rank 0)

step 2 - replicating the vector among all the processes

if (MPI.COMM_WORLD.Rank() == 0) {

//check whether the process contains the searched vector
if (searched_vector == null) {

MPI.COMM_WORLD.Recv(searched_vector, 0, 1, MPI.OBJECT,
MPI.ANY_SOURCE, 1);

}

}
else
if (vector != null)

MPI.COMM_WORLD.Send(vector_tosend, 0, 1, MPI.OBJECT, 0, 1);

MPI.COMM_WORLD.Bcast(searched_vector, 0, 1, MPI.OBJECT, 0);
 a) b)

Figure 5: Expansion of the searched word’s vector to the distributed vector space‘s

partitions: a) replication schema b) Java code.

Realisation of the main algorithm (Figure 1b) remains mainly unchanged. The only
adaptation needed is specification of the vector space’s domain to be searched in by
each of the MPI processes, based on the values from Figure 4. After the search is
finished, the partial outputs of each of the MPI processes are to be collected by the
root process, as shown in Figure 6.

Object local[] = variable_to_gather;
Object common[] = new Object[comm_size];
MPI.COMM_WORLD.Gather(local, 0, 1,

 MPI.OBJECT, common, 0, 1, MPI.OBJECT, 0);
if (my_rank == 0) // only for the root process

for (int i=0; i<comm_size; i++) {
Map<Double,String> map =
 (Map<Double,String>) common[i];

…//further processing
}

Figure 6: Gathering the partial search results by the root process using MPI.Gather
operation.

5 Performance evaluation

Performance of the parallelised algorithms was evaluated on the three test data sets
taken from the random indexing application developed in LarKC. The data sets’
parameters are described in Table 2.

8

Vector
space

Nr. of
entries

Size on the
disk, GB Description

LLD 0,5 M 0,65 A subset of
Linked Life Data

Wiki1 1 M (low
density,
terms only)

1,6 A term set from
Wikipedia
articles

Wiki2 1 M (high
density,
entire
documents)

16 A document set
from Wikipedia
articles

Table 2: Benchmarked Vector Spaces

The evaluation was performed on two compute clusters of High Performance
Computing Center Stuttgart – BW-Grid and Nehalem. BW-Grid offers compute
nodes of Xeon “Harpertown” architecture (2,83GHz CPU freq., 12GB RAM). BW-
Grid deploys MPJ-Express v.3.6, supporting communication over Gigabit Ethernet.
Nehalem provides Intel “Nehalem” based compute nodes (2,8GHz CPU freq., 16GB
RAM). Nehalem deploys mpiJava on top of native Open MPI v.1.3.6
implementation, supporting communication through Infiniband interconnect.
Configuration of 1, 2, 4, 8, and 16 compute nodes were benchmarked to evaluate the
scalability of the developed algorithms (Table 3).

a) b)

2714,60,163,71016

12,332,248208

6,759,11613354

4,5880,5827592

1395-833091Wiki2

7,862,80,520,751,216

54,40,231,32,38

2,977,40,0824,64

1,6513,313,88,92

122-4181Wiki1

9,7520,20,70,616

6,722,90,1611,28

4,244,60,231,82,44

2,477,90,033,342

119,5-6121LLD

TotalMPI
comm.SearchLoading

Speed
-up,

times

Time, s.Number of
compute

nodes

Vector
Space

2714,60,163,71016

12,332,248208

6,759,11613354

4,5880,5827592

1395-833091Wiki2

7,862,80,520,751,216

54,40,231,32,38

2,977,40,0824,64

1,6513,313,88,92

122-4181Wiki1

9,7520,20,70,616

6,722,90,1611,28

4,244,60,231,82,44

2,477,90,033,342

119,5-6121LLD

TotalMPI
comm.SearchLoading

Speed
-up,

times

Time, s.Number of
compute

nodes

Vector
Space

4.818,40,20,916,816

2.5350,221,533,38

1.25710,282,7674

1890,354,8812

n.a.1Wiki2

7.83,90,640,542,716

5.65,50,420,64,48

3.49,10,0390,767,84

1.816,90,0270,9915,42

130,501,528,51Wiki1

7.52,80,3750,651,616

5.53,80,220,92,38

3.46,20,21,44,14

210,80,0282,57,72

12104,714,71LLD

TotalMPI
comm.SearchData set

load

Speed-
up,

times

Time, s.Number of
compute

nodes

Data
set

4.818,40,20,916,816

2.5350,221,533,38

1.25710,282,7674

1890,354,8812

n.a.1Wiki2

7.83,90,640,542,716

5.65,50,420,64,48

3.49,10,0390,767,84

1.816,90,0270,9915,42

130,501,528,51Wiki1

7.52,80,3750,651,616

5.53,80,220,92,38

3.46,20,21,44,14

210,80,0282,57,72

12104,714,71LLD

TotalMPI
comm.SearchData set

load

Speed-
up,

times

Time, s.Number of
compute

nodes

Data
set

Table 3: Performance characteristics for parallel realisation of airhead search: a)
BW-Grid b) Nehalem

The evaluation reveals that the MPI realisation allows the random indexing
application to dramatically improve its performance. The maximum speed-up of
about 27 times was achieved on 16 Nehalem nodes for the largest of the tested data
sets (Wiki2). Good scalability of the parallelised algorithm over increasing number
of compute nodes was observed for the both testbed configurations (Figure 7).

9

Figure 7: Performance speed-up of the parallel realisation on the parallel
architectures (for the Wiki1 data set).

Along with qualitative performance improvement, the parallel realisation enables
much larger data sets to be processed using the random indexing technique in scope
of the available resources. As shown in Table 2, we were unable to execute the
sequential application on a single BW-Grid node (marked as “n.a.”) due to RAM
limitation of a single node. The parallelisation by means of MPI allows the
application not only to share the computation load among the nodes of a parallel
system, but also to consolidate the resource characteristics of the single nodes to fit
to the experiment requirements (mainly defined by the size of the vector space). For
example, even on a generic cluster, such as BW-Grid, the overall amount of RAM is
enough for processing even the largest data sets available at the moment of
preparing this paper with random indexing.

6 Conclusions and further research

Since there have been many large-scale scientific applications implemented in Java,
for which performance becomes a major challenge, much interest has recently arisen
around enabling High Performance Computing for such applications. Similar to any
other programming language, parallelisation is a key factor in achieving the
necessary performance and scalability over the required problem size for Java
applications. For some domains, such as Semantic Web, parallelisation is the only
way of developing successful and scalable applications.
The Message-Passing Interface is the most efficient technique of implementation of
parallel applications, also introduced in Java. Nevertheless, for a long time this
technique was underestimated in use for Java developments due to many reasons;
perhaps main of them is complexity of applying a process based programming
model. This paper is an attempt to close the gap between Java and MPI. Presenting a
common parallelisation strategy, which is based on domain decomposition, we

10

implemented the parallel version of the search operation from the Airhead library
with MPI, based on the sequential code. The described technique allows any other
Java developer to apply parallelism to his/her application with the minimum
knowledge about MPI. For the tested application, we achieved a speed-up of almost
33 times on 16 compute nodes, as compared with the sequential version. Moreover,
the parallel implementation allowed us to perform a complex experiment on the
resource, whose capacities were not enough to run the sequential version of the
application. With our experience we would like to encourage other researchers to
apply the MPI-based parallelization for their Java applications as well.
In our performance tests, we used different hardware and software resource
configurations to demonstrate the robustness of the chosen approach. We aimed at
not comparing the available MPI implementations for Java, but rather demonstrating
the efficiency of the developed parallelisation techniques, in order to promote the
MPI based parallelisation approach into the wider communities. However, the
applications will definitively benefit from the optimal configuration of the HPC
system they are deployed on.
It is also worth mentioning that MPI is not unique in its goal of enabling HPC for
Java applications. The newly emerging parallelisation paradigms, such as Hadoop
realization of MapReduce7, offer a promising view at developing efficient parallel
applications as well. Our next step will be in-depth investigation and comparison of
different parallelisation technologies and elaborating an optimal strategy to be
followed by the developer willing to start parallelising his/her sequential application
from scratch.

Acknowledgment

We thank Open MPI consortium for the support with integrating Java bindings as
well as the LarKC project (http://www.larkc.eu) for the proposed test use case.

References

[1] M. Sahlgren. An introduction to Random Indexing, in Methods and

Applications of Semantic Indexing Workshop at the 7th International
Conference on Termonology and Knowledge Engineering, TKE 2005,
Citeseer, 2005.

[2] Efthimis N. Efthimiadis. Query Expansion. In: Martha E. Williams (ed.),
Annual Review of Information Systems and Technology (ARIST), v31, pp
121–187, 1996 - An introduction for less-technical viewers.

[3] Bastian Quilitz, Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL. 5th European Semantic Web Conference (ESWC2008)

7 http://en.wikipedia.org/wiki/MapReduce

11

[4] Jurgens and Stevens, (2010). The S-Space Package: An Open Source Package
for Word Space Models. In System Papers of the Association of
Computational Linguistics.

[5] The MPI standard
http://www.mcs.anl.gov/research/projects/mpi/standard.html

[6] The Java API for MPI
http://www.hpjava.org/theses/shko/thesis_paper/node33.html

[7] Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum and Geoffrey
Fox. MPJ: MPI-like Message Passing for Java. Concurrency: Practice and
Experience, Volume 12, Number 11. September 2000

[8] Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ Express: Towards
Thread Safe Java HPC. IEEE International Conference on Cluster Computing
(Cluster 2006), Barcelona, Spain, 25-28 September, 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

