
Abstract

The dynamic behaviour of two iterative derivative-free schemes, Steffensen and M4

methods, is studied in case of quadratic and cubic polynomials. The parameter plane is

analysed for both procedures on quadratic polynomials. Different dynamic planes are

shown when the mentioned methods are applied to particular cubic polynomials with

real or complex coefficients. The property of immersion of the basins of attraction in

all cases is analysed.

Keywords: nonlinear equation, iterative method, derivative-free, complex dynamics,

parameters plane, fixed point, critical point, immersed basin of attraction.

1 Introduction

The application of iterative methods for solving nonlinear equations f(z) = 0, with

f : C → C, gives rise to rational functions whose dynamics are not well-known.

There is an extensive literature on the study of iteration of rational mappings of a

complex variable (see, for example, [1, 2]). The simplest model is obtained when

f(z) is a quadratic polynomial and the iterative process is Newton’s method. The

dynamics of this iterative scheme has been widely studied (see, for instance, [2, 3, 4]).

The analysis of the dynamics of Newton’s method has been extended to other

point-to-point iterative methods, used for solving nonlinear equations with conver-

gence higher than two (see, for example, [5, 6, 7, 8, 9]).

The most of the iterative methods analyzed from the dynamic point of view are

schemes with derivatives in their iterative expressions. Unlike Newton’s methods,

the derivative-free scheme of Steffensen has been little studied. We can find some

dynamic comments on this method in [5, 10].

In this paper, we analyze the dynamics of two derivative-free iterative procedures,
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optimal in the sense of Kung-Traub’s conjecture, of order two and four.

As it is well-known, if we replace the derivative of Newton’s iterative expression

by the progressive finite difference, we obtain Steffensen’s method (see [11]), whose

iterative expression is

zn+1 = zn − f 2(zn)

f(vn) − f(zn)
, n = 1, 2, . . . (1)

where vn = zn + f(zn). As in Newton’s method, Steffensen’s one has quadratic con-

vergence and the same efficiency index. From Kung-Traub’s conjecture, Steffensen’s

method is optimal.

The fixed point operator of Steffensen’s method on a polynomial p(z) is

Sp(z) = z − p2(z)

p(v) − p(z)
. (2)

A common guideline used to improve the local order of convergence is the com-

position of two iterative methods, as shown in [11]. This technique obtains iterative

schemes or order c1 · c2, where c1 and c2 are the convergence order of the involved

methods. The method M4 (see [12]) is obtained by composing Newton’s and Stef-

fensen’s methods and using the Pade’s approximant of degree one in order to avoid

the last evaluation of the derivative. The iterative scheme is

yn = zn − f2(zn)
f(vn)−f(zn)

,

zn+1 = yn − f(yn)f [zn,vn]
f [zn,yn]f [yn,vn]

,
n = 1, 2, . . . (3)

where f [·, ·] denotes the divided difference of order one.

This method is fourth-order convergent and it is optimal from Kung-Traub’s con-

jecture.

The fixed point operator of M4 on p(z) is

Mp(z) = y − p(y)p[z, v]

p[z, y]p[y, v]
. (4)

In order to study the dynamic behaviour of an iterative method when is applied to

a polynomial p(z), it is necessary to recall some basic dynamic concepts. For a more

extensive and comprehensive review of these concepts, see [13, 14].

Let R : Ĉ → Ĉ be a rational function, where Ĉ is the Riemann sphere. The orbit

of a point z0 ∈ Ĉ is defined as

{z0, R(z0), . . . , R
n(z0), . . .} .

The dynamic behaviour of the orbit of a point on the complex plane can be clas-

sified depending on its asymptotic behaviour. In this way, a point z0 ∈ C is a fixed

point of R if R(z0) = z0. A fixed point is attracting, repelling or neutral if |R′(z0)| is
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less than, greater than or equal to 1, respectively. Moreover, if |R′(z0)| = 0, the fixed

point is superattracting.

Let z∗f be an attracting fixed point of the rational function R. The basin of attraction

of an attracting fixed point A(z∗f ) is defined as the set of pre-images of any order such

that

A(z∗f ) =
{

z0 ∈ Ĉ : Rn(z0) → z∗f , n → ∞
}

.

The set of points whose orbits tends to an attracting fixed point z∗f is defined as the

Fatou set, F(R). The complementary set, the Julia set J (R), is the closure of the set

consisting of its repelling fixed points, and establishes the borders between the basins

of attraction.

It is possible to find the fixed and critical points from the fixed point operator asso-

ciated to each method, Op(z) on a polynomial p(z). The fixed points zf verify

Op(z) = z, (5)

and the critical points zc validate

O′

p(z) = 0. (6)

The attracting fixed points z∗f are the points zf such that

|O′

p(zf )| < 1. (7)

If |O′

p(zf )| = 0, the fixed point is superattracting.

Mayer and Schleicher define in [15] the immediate basin of attraction of a superat-

tracting fixed point z∗f , A#, as the connected component of the basin containing z∗f . It

is well-known if z∗f is an superattracting fixed point, the immediate basin of attraction

A# contains at least a critical point.

In order to study the affine conjugacy classes of the iterative methods, the following

relevant result must be mentioned.

Theorem 1 (Scaling Theorem for Newton’s method, [2]) Let g(z) be an analytic func-

tion, and let A(z) = αz + β, with α 6= 0, be an affine map. Let h(z) = λ(g ◦ A)(z),
with λ 6= 0. Let Op(z) be the fixed point operator of Newton’s method. Then,

A ◦ Oh ◦ A−1(z) = Og(z), i.e., Og and Oh affine conjugated by A.

This result allows up the knowledge of a family of polynomials with just the anal-

ysis of a few cases, from a suitable scaling.

For the derivative-free iterative methods whose complex dynamics are going to be

studied, it can be proved that there is no scaling theorem for them, so the dynamics of

the methods will not be generalized in this way. In order to get this aim, the parameter

space will be analyzed in case of quadratic polynomials and, when cubic polynomials

are considered, particular cases are studied.
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So, let us consider an affine map A(z) = αz + β, with α 6= 0. Let also be h(z) =
λ(g ◦ A)(z), with λ 6= 0, and Sh(z) the fixed-point operator of Steffensen’s method

on h(z). Since A(x + y) = A(x) + A(y) − β, A(x − y) = A(x) − A(y) + β and

h(A−1(z)) = λg(z),

A ◦ Sh ◦ A−1(z) = A

(

A−1(z) − λ2 [g(z)]2

h (A−1(z) + λg(z)) − g(z)

)

=

= A(A−1(z)) − A

(

λ2 [g(z)]2

h (A−1(z) + λg(z)) − λg(z)

)

+ β =

= z − α
λ2 [g(z)]2

h (A−1(z) + λg(z)) − λg(z)
=

= z − αλ2 [g(z)]2

g (A (A−1(z) + λg(z))) − λg(z)
=

= z − αλ2 [g(z)]2

g (z + αλg(z)) − λg(z)
.

Then, the operators Sg(z) and Sh(z) are affine conjugated if and only if α = λ =
1. So that, the scaling is not possible. The reason is the derivative-free nature of

Steffensen’s method. Therefore, a relation between a few instances of polynomials

and the complete family behaviour cannot be established. Indeed, a similar result can

be proved for M4.

2 Quadratic polynomials

In this section the Steffensen’s (2) and M4 (4) fixed point methods are studied, when

they are applied to a quadratic polynomial pc(z) = z2 + c. In Steffensen case, the

fixed point operator and the fixed and critical points are introduced as dependent on c,

since the numerator of Spc
(z) is a polynomial of degree 3. Nevertheless, for M4 the

fixed and critical points are obtained in specific cases of c, due to the high degree of

the involved polynomials.

The fixed point operator of Steffensen (2) when is applied to pc(z) = z2 + c is

Spc
(z) =

z3 + z2 + cz − c

z2 + 2z + c
. (8)

It is easy to proof that Spc
(z) satisfies the symmetry property

Spc̄
(z̄) = Spc

(z), ∀c, z ∈ C. (9)

This property implies that the dynamic plane of the iterative method presents one of

the following appearances:

• if Im{c} = 0, there exists a symmetry about the abscissas axis, and
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• if Im{c} 6= 0, there exists a symmetry between the methods applied to polyno-

mials pc(z) = z2 + c and pc̄(z) = z2 + c̄.
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Figure 1: Parameters plane of Spc
(z), Re{c} ∈ (−3, 3), Im{c} ∈ (−3, 3)

By definition, the fixed points of Spc
(z) are zf1,2

= ±i
√

c. So, the only finite fixed

points are the roots of the polynomial, which favors the method convergence. These

points are classified from the absolute value of the derivative operator in the fixed

points. For both fixed points, |Spc
(zf1,2

)| = 0, so zf1,2
are superattracting fixed points,

denoted as z∗f1,2
. In this case, it is easy to prove that the infinity is also a superattracting

fixed point. The critical points null the derivative operator, as deduced from (6). In

this way,

S ′

pc
(z) = 0 ↔

{

zc1,2
= ±i

√
c,

zc3,4
= −2 ±

√
2 − c.

Note for c = 2, both critical points meet at z = −2.
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Figure 2: Parameters plane of Spc
(z)

Although there is no scaling theorem, it is possible to generalize some behaviours

of the family Spc
(z) with the associated parameters plane. In Figure 1 the parameter
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Figure 3: A periodic orbit for Spc
(z), Re{c} ∈ (−5, 5), Im{c} ∈ (−5, 5)

plane of Spc
(z) is shown, where Re{c} ∈ (−3, 3) and Im{c} ∈ (−3, 3). Two details

of Figure 1 are represented in Figure 2, focussing on the central antenna (Figure 2a)

and the cell (Figure 2b).

The critical point zc4 = −2 −
√

2 − c is always at the basin of attraction of the

infinity, A(∞). The parameter plane in Figure 1 reports the basin of attraction that

contains the critical point zc3 = −2 +
√

2 − c. When c is in the yellow region of

Figure 1, zc3 ∈ A(z∗f1
). If c is in the purple region, zc3 ∈ A(z∗f2

). The pink region

places both critical points in A(∞).

For every value of c, there is convergence to one of the superattracting fixed points,

including the infinity, although periodic orbits can be found (see Figure 3).

The fixed point operator of M4 (see 3) when is applied to pc(z) = z2 + c is

Mpc
(z) =

Npc
(z)

Dpc
(z)

, (10)

where Npc
(z) = z10+7z9+(16+3c)z8+(15+12c)z7+(5+2c2)z6−(31c+6c2)z5−

(23c+48c2 +2c3)z4− (43c2 +20c3)z3 +(3c2−32c3−3c4)z2 +(3c3−9c4)z−c3−c5

and Dpc
(z) = (z4 +4z3 +(3+2c)z2 +4cz+c2−c)(2z3 +3z2 +2cz−c)(z2 +2z+c).

As in Steffensen’s method, M4 satisfies the symmetry property

Mpc̄
(z̄) = Mpc

(z), ∀c, z ∈ C. (11)

Respect to the critical points, the analysis of the respective parameter plane has showed

that zc1 = −1 +
√
−c remains in the basin of attraction of z∗f2

, and also zc2 =

−1 −
√
−c ∈ A(z∗f1

). As no other explicit critical points have been found, due to

the complexity of the expression (10), different cases of Mpc
(z) are studied.

The fixed point operator of M4, when is applied to p1(z) = z2 + 1, is

Mp1
(z) =

z10 + 7z9 + 19z8 + 27z7 + 7z6 − 37z5 − 73z4 − 63z3 − 32z2 − 6z − 2

z(z + 1)2(z3 + 4z2 + 5z + 4)(2z3 + 3z2 + 2z − 1)
.

(12)
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By applying (5), the fixed points of Mp1
(z) are

zf1,2
= ±i, zf7,8

= −0.939241 ± i0.884754,
zf3,4

= −0.0247075 ± i0.347611, zf9,10
= −2.51928 ± i1.27208.

zf5,6
= −0.516776 ± i0.987314,

By evaluating the fixed points over the modulus of the derivative of Mp1
(z), the fixed

points are classified in (super)attracting, repelling or neutral points. In this case, the

fixed points zf1,2
= z∗f1,2

are superattracting, and the rest of fixed points zf3−10
are

repelling. Then, the dynamic plane has two basins of attraction, A(z∗f1
) and A(z∗f2

).
In this way, when an initial value in any of both basins is taken, the orbit of this value

converges to its corresponding superattracting value. The only superattracting fixed

points are the polynomial roots, favoring the method convergence.

The critical points are obtained by forcing the derivative of the fixed point operator

to be null.

zc1−6
= ±i, zc10,11

= −0.899354 ± i0.750718,
zc7 = 0.143866, zc12,13

= −0.776073 ± i0.944697,
zc8 = −0.241736, zc14,15

= −1 ± i,

zc9 = −2.02613, zc16,17
= −3.26257 ± i1.78652.

The dynamic plane of M4 when it is applied to polynomial p1(z) = z2 +1 is shown in

Figure 4b. The orange basin of attraction belongs to the fixed point z∗f1
= i, while the

blue one belongs to the root z∗f2
= −i. Let us note that the roots of the polynomial are

always plotted with white stars. Unlike Steffensen’s method, the infinity has no basin

of attraction in M4. So, every point of the dynamic plane belongs to one of the basins

of attraction of the roots, except for the Julia set.

When M4 is applied to p−1(z) = z2−1, the numerator of the fixed point operator is

a polynomial of degree 10 and 10 fixed points are obtained. The only superattracting

points are the roots of the polynomial, i.e., z∗f1,2
= ±1; the other fixed points are

repelling. In Figure 5b the dynamic plane of Mp−1
(z) is on view.

The fixed point operator of M4 on p0(z) = z2 is

Mp0
(z) =

z4 + 6z3 + 10z2 + 5z

(z + 2)(2z2 + 9z + 9)
. (13)

The degree of the numerator decreases compared with the operators associated to

c = ±1. One of the four fixed points is the root of p0(z), that is the only superattracting

point. We can see its dynamic plane in Figure 6b.

When p±i(z) = z2±i, there are 10 fixed points. The fixed points of pi(z) and p−i(z)
are conjugated. As in previous cases, the roots of p±i(z) are the only superattracting

fixed points, and the rest are repelling. In this way, Mpi
(z) has its basins of attraction

at z∗f1,2
= ±

√
−i and Mp−i

(z) at z∗f1,2
= ±

√
i. The dynamic plane of both methods is

displayed in Figures 7b and 8b, respectively.

In order to describe rigorously the different behaviours observed, let us define an

immediate basin of attraction A#
1 as immersed in other basin of attraction A#

2 when
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(b) M4

Figure 4: p1(z) = z2 + 1
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(b) M4

Figure 5: p−1(z) = z2 − 1

it is possible to find two points of A#
2 such that the line that connect both points goes

across A#
1 .

The dynamic planes associated to Steffensen’s and M4 method when they are ap-

plied to quadratic polynomial pc(z) = z2+c are shown in Figures 4-8, taking different

values of c, and represented in the region Re{z} ∈ (−5, 5) and Im{z} ∈ (−5, 5).
Moreover, the basin of attraction of zf1

= i
√

c is pictured in blue, and the correspond-

ing one of zf2
= −i

√
c is in orange. The basin of attraction of the infinity is in black,

when it exists.

When the dynamic planes of Steffensen’s method are studied according to the pa-

rameters plane, the critical point zc1 = −2 +
√

2 − c is in the basin of attraction

A(z∗f1
), A(z∗f2

) or A(∞) when the c value is in the yellow, purple or pink region of

Figure 1, respectively. Wherever the c value is, zc2 is always in A(∞).

Moreover, A(z∗f2
) is immersed in A(z∗f1

) when the c value belongs to the yellow

or purple region from parameters plane. This is the case of c equals to −1 and ±i

(Figures 5a, 7a and 8a). If a c value of the pink region is taken, A(z∗f1
) and A(z∗f2

) are

not immersed, as in Figure 4a, where c = 1. The same immersion behaviour happens

for each case of M4 method.

It can be concluded that the stability of M4 method is greater than Steffensen’s.

8



IRe{z}

II
m

{z
}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) STF

IRe{z}

II
m

{z
}

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) M4

Figure 6: p0(z) = z2
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(b) M4

Figure 7: pi(z) = z2 + i

When any point on the Fatou set is chosen in M4, the orbit converges to one of the

superattracting fixed points, because there is no basin of attraction in the infinity.

About the symmetries of Steffensen (9) and M4 (11) expressions, it is easy to check

the abscissas symmetry for methods with c ∈ R (Figures 4-6). In Figures 7 and 8 the

symmetry is between the methods, because c values are conjugated.

3 Cubic polynomials

Now, we are going to analyze the dynamic behaviour of the derivative-free schemes

Steffensen and M4 on cubic polynomials, showing their similarities and differences.

The fixed point operator of Steffensen’s method when it is applied to the polyno-

mial qc(z) = z3 + c is

Sqc
(z) =

z7 + 3z5 + 2cz4 + 2z3 + 3cz2 + c2z − c

z6 + 3z4 + 2cz3 + 3z2 + 3cz + c2
. (14)

It can be proved that the operator Sqc
(z) satisfies the symmetry property

Sqc̄
(z̄) = Sqc

(z), ∀c, z ∈ C, (15)
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(b) M4

Figure 8: p−i(z) = z2 − i

that will be observed in the different dynamic planes. As in case of quadratic polyno-

mials, five particular cases of qc(z) = z3 + c are studied, taking into account that the

infinity is a superattracting point, also for cubic polynomials.

When q1(z) = z3 + 1 the fixed points of the operator are

zf1
= −1, zf2

= i2/3, zf3
= −i4/3. (16)

These fixed points zf1,2,3
= z∗f1,2,3

are superattracting, and coincide with the roots of

the polynomial q1(z). The dynamic plane has four basins of attraction, A(z∗f1
), A(z∗f2

),
A(z∗f3

) and A(∞).

By applying (6) to the operator Sq1
(z), the critical points are

zc1 = −1, zc5,6
= −0.295567 ± i0.649277,

zc2 = i2/3, zc7,8
= 0.283565 ± i1.34654

zc3 = −i4/3, zc9,10
= −0.573381 ± i1.44982,

zc4 = −0.471717, zc11,12
= 0.821242 ± i1.71625.

(17)

The dynamic plane of Sq1
(z) is shown in Figure 9a. The three basins of attraction,

A(z∗f1
), A(z∗f2

) and A(z∗f3
), are pictured with orange, green and blue colors, respec-

tively. The basin of the infinity is in black.

If c = −1 in (14), the numerator of the fixed point operator is a polynomial of

degree 7 (as in c = 1). Three finite superattracting fixed points are obtained. All of

them are the roots of q−1(z) = z3 − 1, i.e., z∗f1
= 1, z∗f2

= −i1/3 and z∗f3
= i2/3. The

four basins of attraction and the rest of the dynamic plane of Sq−1
(z) are represented

in Figure 10a.

Applying (2) to q0(z) = z3, the degree of the numerator is 5. In this case, there is

an only superattracting finite fixed point in zf1
= z∗f1

= 0. In Figure 11a the dynamic

plane of Sq0
(z) is represented.

The last two cases correspond to q±i(z) = z3± i. The polynomial of the numerator

of Sq±i
(z) is of degree 7. The only finite superattracting points are the three roots.

These roots are conjugated between Sqi
(z) and Sq−i

(z). According to the property
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(b) M4

Figure 9: q1(z) = z3 + 1

(15), Figures 12a and 13a (the dynamic planes of Sqi
(z) and Sq−i

(z), respectively) are

symmetrical.

When M4 is applied to polynomial qc(z) = z3 + c, the Mqc
(z) general expression

is

Mqc
(z) =

Nqc
(z)

Dqc
(z)

, (18)

where Nqc
(z) is a polynomial of degree 39 and Dqc

(z) a polynomial of degree 38.

This operator satisfies the symmetry property

Mqc̄
(z̄) = Mqc

(z), ∀c, z ∈ C. (19)

When the fixed points are evaluated in the modulus of the derivative of Mq1
(z), the

superattracting behaviour of zf1
= −1 and zf2,3

= 0.5000 ± i0.8660 is obtained (so,

zf1,2,3
= z∗f1,2,3

). Their basins of attraction can be observed in Figure 9b. The rest

of the fixed points are repelling. By applying (6) to the operator Mq1
(z), 76 critical

points are obtained, three of which agree with the roots of q1(z).

If (18) is applied to polynomial q−1(z) = z3 − 1, the numerator of the fixed point

operator is a polynomial of degree 39. The superattracting fixed points are the roots of

q−1(z), i.e., z∗f1
= 1 and z∗f2,3

= −0.5± 0.866. The other 36 fixed points are repelling.

The dynamic plane of Mq−1
(z) is shown in Figure 10b.

When c = 0, the numerator of the fixed point operator is a polynomial of degree

21. The only superattracting fixed point is the root of the polynomial q0(z), z∗f1
= 0.

The dynamic behaviour of Mq0
(z) can be observed in Figure 11b. The repelling fixed

points belong to the Julia set.

Replacing the c parameter by pure imaginary values, such that c = ±i, the fixed

point function associated to M4 method when is applied to q±i(z) = z3 ± i has a

polynomial of degree 39 in the numerator. The only superattracting fixed points are

the roots of q±i(z), i.e., z∗f1
= ±i and z∗f2,3

= 0.8660 ∓ i0.5. In Figures 12b and 13b

is represented the dynamic plane of Mqi
(z) and Mq−i

(z), respectively. The repelling

points belong to the Julia set.
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Figure 10: q−1(z) = z3 − 1
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Figure 11: q0(z) = z3

Summarizing, the dynamic planes of Steffensen’s and M4 methods when they are

applied to cubic polynomial qc(z) = z3 + c are represented in Figures 9-13, with

different values of c. As in quadratic polynomials, the superattracting fixed points are

plotted with white stars. Its basins of attraction are drawn in blue, orange and green.

The basin of attraction of the infinity is black, if it exists.

When Steffensen and M4 methods are compared in terms of stability, the conver-

gence region of the fourth-order method is greater than the second-order one. The

basin of attraction of the infinity –superattracting in Steffensen– disappears in M4.

Applying M4, every point on the complex plane converge to either of the roots of

qc(z), but the Julia set.

The symmetry property on the abscissas axis is an evidence in Figures 9-11, where

the c value is real. Furthermore, Sqi
(z) and Sq−i

(z) (Figures 12a and 13a) on the one

hand, and Mqi
(z) y Mq−i

(z) (Figures 12b and 13b), on the other hand, are symmetrical

between them.

It is interesting to note that, as the absolute value of c increases, M4 method tends

to the dynamic behaviour of Newton, as it is showed in Figure 14.

The immediate basins of attraction of every Steffensen case are not immersed. In

M4 method, the basins of attraction are immersed in c = ±i cases. In the rest of
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Figure 12: qi(z) = z3 + i
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Figure 13: q−i(z) = z3 − i
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Figure 14: Mqc
(z) when qc(z) = z3 + c, c = {±10,±i10}.

particular cases there is no immersion. As the modulus of c increases for pure imagi-

nary values, the basins of attraction are not immersed (see Figures 14c and 14d, where

c = ±i10, respectively).

4 Conclusions

The only superattracting fixed points of M4 method are the roots of the polynomial

whose fixed point operator is applied to. There is one more superattracting fixed

point in Steffensen’s method: the infinity. The existence of the basin of attraction of

the infinity in Steffensen’s method – for either quadratic or cubic polynomials – is

a problem to ensure the stability. Nevertheless, M4 method eliminates the basin of

attraction of the infinity and has full convergence in the complex plane, but the Julia

set.

When the c values of pc(z) = z2 + c and qc(z) = z3 + c are real, the symmetry

property allows up the study of Im(z) ≥ 0 semiplane to obtain the complete plane

dynamic behaviour. Also, if Spc
(z), Mpc

(z), Sqc
(z) or Mqc

(z), for c ∈ C has been

studied, the dynamic plane of Spc̄
(z), Mpc̄

(z), Sqc̄
(z) or Mqc̄

(z) is immediate.

A useful tool for the dynamic analysis of the methods is the parameters plane. It

has been obtained for both methods in quadratic polynomials. In Steffensen’s method,

14



the parameters plane sets in which basin of attraction is one of the critical points.

Moreover, it states if the basins of attraction are immersed or not. The immersion

behaviour in quadratic polynomials for Steffensen’s and M4 methods is analogous.

However, when the fixed point operators are applied to cubic polynomials, for small

modulus complex values of c the immersion behaviour of Steffensen and M4 are not

similar.
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