
Abstract

This paper proposes an algorithm for parallelization of non-smooth multibody sim-

ulations. In recent decades simulations have become one of the most important meth-

ods in product development. It allows to investigate, analyze and optimize compli-

cated technical systems by methods like parameter variation and numerical optimiza-

tion. But with simulation models getting more and more complex, the computational

costs are steadily rising up, leading to unacceptable long simulation times. One of

the most promising ways to reduce computational time are parallelization methods.

Today, nearly every desktop computer comprises more than one core per CPU, which

can only be used gainfully by developing new parallel algorithms for multibody dy-

namics. Beside existing algorithms like parallel co-simulation, parallelization within

the numerical integrator and parallel O(log(N)) algorithms for tree-structured multi-

body systems, the method presented in this paper proposes the parallel calculation of

the system update (gap-distances, gap-velocities, right-hand-sides, Jacobian-matrices,

etc.). Efficiency is shown by applying the algorithm on one rigid multibody system

and on two flexible multibody systems comprising up to 288 degrees of freedom and

4752 set-valued force parameters.

Keywords: parallel processing, multibody dynamics, parallelization, numerical sim-

ulation.

1 Introduction

The efficient and detailed simulation of complex technical multibody systems is a very

important method in todays research and product development. Current multibody

systems comprise a high number of degrees of freedom as well as uni- and bilateral

constraints which can basically be modeled smooth (single-valued) or non-smooth

1

Paper 5

A Parallelization Algorithm for
Non-Smooth Multibody Dynamics

J. Clauberg and H. Ulbrich
Institute of Applied Mechanics
Technische Universität München, Garching, Germany

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

(set-valued) (see Figure 1).

Non-smooth multibody dynamics [2] thereby plays a special role in two main

points of view. First, because of its ability to depict contacts and friction in a physi-

cally motivated way. Set-valued force laws are used to describe the physical behavior

of the system and require special numerical methods for their solution. Second, the

computational time using set-valued force laws is lower than using single-valued force

laws in the majority of cases. Using a high number of single-valued force laws with

appropriate high stiffness and damping values, leads to numerically stiff equations

of motion. Numerically stiff equations of motion need special time-consuming in-

tegration schemes or small time step sizes. This drawback can be avoided by using

non-smooth force laws in combination with special integration schemes. The probably

most important development in non-smooth multibody dynamics is the solution of the

set-valued force laws by means of the proximal point to a convex set - a mathematical

method from the convex algebra - instead of the formulation as linear complementar-

ity problems [2]. This new approach caused a significantly speedup of the solution of

the set-valued force laws of a factor of about 50 or more. A comparison of different

single- and set-valued force laws can be found in [1]. FOERG ET. AL. compares

different single- and set-values force laws on the example of a large valve-train of a

combustion engine. Using set-valued force laws in combination with a time-stepping

integration scheme is about three times faster as using single-valued force-laws in

combination with a DOPRI5 integration scheme.

State-

Updates

Set-Valued

Laws

Plotting Rest

Spheres in Cup 67,23 % 17,23 % 12,56 % 2,98 %

Triple Woodpecker 94,12 % 0,07 % 1,41 % 4,4 %

Rotorsystem 80,8 % 11,32 % 4,17 % 3,71 %

Table 1: Distribution of Computational Costs

But now, not the solution of the force laws itself is the main time consuming part of

the simulation, but rather the calculations of the system states and variables. In each

time step the system state (gap-distances, gap-velocities, right-hand-sides, Jacobian-

matrices, state-dependent variables, etc.) has to be calculated once or more. This

process is called ”system-update” further on. The distribution of the computational

costs between the system-update, the solution of the set-valued force laws, the data

plotting and the rest is shown in Table 1 for the examples taken into account in this

paper (see Section 3). The algorithm proposed in this paper allows to calculate the

system-update in parallel leading to significantly lower computational times. There

are also several other possibilities to take advantage of multicore architectures. Paral-

lel co-simulations allow to split technical simulation models into different submodels

and to calculate them in parallel [3]. Furthermore, Huber [4] presents a method to

use parallelization within the integration scheme. He proposes to simulate the same

system in parallel with different step-sizes in order to adjust the step-size of the inte-

2

gration scheme or to generate schemes of higher order without dramatically increasing

computational costs. Featherstone [5] proposes a parallel O(log(N)) method for tree-

structured multibody systems called ”divide-and-conquer”-algorithm. This algorithm

is very fast if the number of involved bodies and the number of available CPU cores

are very high. Simulating ”normal” technical systems, ordinary O(N) or even methods

that require the inversion of the mass-matrix (O(N3)) are more adequate.

2 Non-Smooth Multibody Dynamics

In the first subsection the mathematical formulation of non-smooth multibody systems

with uni- and bilateral contacts and friction is outlined. For the understanding of the

parallelization method presented in this paper it is not required to describe the set-

valued force laws and their solution in detail, therefore only a brief outline of their

formulation is given in the second subsection.

2.1 Mathematical Formulation

Point of departure of the mathematical description of a uni- and bilateral constrained

non-smooth multibody system is the Measure Differential Equation [2, 6, 7]

~M d~u = ~h(~u, ~q, t) dt + ~W dΛ. (1)

In Equation (1) ~M denotes the mass-matrix, ~h contains all external and gyroscop-

ical forces depending on the generalized velocities ~u, generalized positions ~q and the

time t. Λ describes the force reactions of the set-valued force laws with ~W containing

their directions.

The acceleration measure d~u = ~̇u dt + (~u+ − ~u−) dη consists of a continuous part

~̇u dt and an atomic part (~u+ − ~u−) dη, with the left and right limit ~u−, ~u+ and the

Dirac point measure dη. Analogously, the measure for impulses dΛ = λ dt + Λ dη

can be split into a continuous part λ dt and an atomic part Λ dη. Integrating Equation

(1) under the consideration of the DIRAC delta function [4] yields the equations of

motion of a smooth constrained system

~M ~̇u = ~h(~u, ~q, t) + ~W λ. (2)

as well as the impact equations

~Mi

(

~u+
i − ~u−

i

)

= ~Wi Λi ∀i ∈ N (3)

being valid at times ti of impact.

2.2 Set-Valued Force-Laws

In order to calculate the unknown accelerations ~̇u in Equation (2) and the post-impact

velocities ~u+
i in Equation (3) it is necessary to know the reactions λ and Λi governed

3

B
λ

set-valued
single-valued

g
B

(a) Bilateral constraint.

U
λ

g
U

set-valued
single-valued

(b) Unilateral constraint.

T

N

λ

+ | |μ λ

N- | |μ λ

g
.

T

Coulomb
regularized

(c) Planar COULOMB friction.

Figure 1: Force Laws for Bi- and Unilateral Contacts and Friction.

by the set-valued force laws (~q, ~u, λ, Λi, t) ∈ N . The main advantage of the set-

valued force laws is that they are physically motivated in contrast to single-valued

force-laws (e.g. spring-damper combinations). It is possible to define contacts with

impact laws (e.g. Newton impacts) as well as to model stick-slip effects. On the other

hand, set-valued force laws require special integration schemes such as time-stepping

schemes or event-driven schemes [4].

Figure 1 shows the basic three set-valued force laws used in mechanical multibody

dynamics. A bilateral force law (Figure 1(a)) implies a bilateral constraint of the form

gB = 0, λB ∈ R (4)

with gB the normal distance between the interacting bodies and λB the corresponding

force. The second force law represents a contact in the mechanical point of view

(Figure 1(b)). It is given by the Signorini-Fichera-condition

gU ≥ 0, λU ≥ 0, gU λU = 0, (5)

with gU the normal distance between the interacting bodies and λU the corresponding

force. Furthermore, COULOMB -friction (Figure 1(c)) is taken into account which

can be mathematically formulated by Equation (6) with the relative tangential velocity

~̇gT and the friction coefficient µ. The force in the contact point can be decomposed in

a part λN ∈ {λB, λU} normal to the contact plane and a part tangential λT in friction

direction.
~̇gT = ~0 ⇒ |λT | ≤ µ |λN |

~̇gT 6= ~0 ⇒ λT = − ~̇gT

|~̇gT |
µ |λN |

(6)

For the numerical integration of the system, the impact laws are formulated on

velocity level leading to the substitution of g by ġ+ and λ by Λ. For the solution of the

set-valued force laws the proximal point to a convex set, a method from the convex

algebra, is used [2].

3 Computational Framework and Examples of Use

The parallelization method is implemented in the C++ multibody simulation frame-

work MBSim (developed at the Institute of Applied Mechanics, TU München under

4

the GPL License [8]). All simulations are done under OpenSuse Linux 11.4 running

on a desktop computer with two Intel Xeon E5620 processors (each with four real

cores) and 12 GB RAM. The realization of the parallel code is done with OpenMP

(Open Multiprocessing [9]).

To show the efficiency of the parallelization method, two academic and one indus-

trial example are taken into account. These examples can be seen in Figure 2.

Spheres in Cup Triple Flexible
Woodpecker

Rotorsystem

Figure 2: Spheres in Cup, Triple Flexible Woodpecker, Rotorsystem

This paper has two main objectives. One the hand hand the efficiency of the pro-

posed parallelization method will be demonstrated on the three examples taken into

account and on the other hand the difference between using single- and set-valued

force laws will be shown by comparing the necessary computational times of the ex-

ample ”Spheres in Cup” using the two kinds of contact mechanics.

3.1 Spheres in Cup

This academic example consists of 96 spheres that are falling into a cup. This config-

uration leads to 96 degrees of freedom and 4752 gap calculations. In each time step

the contact kinematic between 96 spheres and a frustum (cup) and the contact kine-

matic between the spheres themselves must be solved once or more. On the one hand,

the contact kinematic between two spheres is very simple leading to low calculation

times and on the other hand, the contact kinematic between a sphere and a frustum

is little more expensive in the computational point of view leading to little longer

computational times. In Section 6 the update-g method is further examined regarding

the parallelization method. In addition to that, the difference between modeling the

contacts smooth and non-smooth is shown.

3.2 Triple Flexible Woodpecker

This academic example consisting of three woodpeckers each on an elastic pole is of-

ten used in the field of teaching stick-slip effects. By varying the friction coefficient

5

between the woodpecker and the elastic pole, the influence on the dynamic of the sys-

tem can be shown. The contacts between the woodpecker and the pole are modeled

non-smooth. The system comprises 96 degrees of freedom, 24 gap calculations and

54 force parameters. Two update-methods are especially interesting in this example.

The update-g method (calculation of gap distances) and the update-h method (calcu-

lation of the right hand sides). The contact kinematic between a flexible beam and

a point contour is time consuming, because the contact point must be searched by

methods like Newton-solvers. The calculation of the right hand side of this system is

time consuming because of the flexible beam, that is based on a finite element model.

Therefore these two update methods will be further examined in Section 6.

3.3 Rotorsystem

This industrial example from the field of rotor dynamics comprises three flexible ro-

tors (model based on finite elements) that are mounted with bearing clearance and

friction leading to 192 degrees of freedom, 28 gap calculations and 36 force param-

eters. Taking this example into account, the efficiency of the parallelization method

will be demonstrated by applying it to the update-Jac method (calculation of Jacobian

matrices), the update-SDV method (calculation of variables depending on the system

state), the update-h method (calculation of the right hand sides) and the update-M

method (calculation of the mass-matrices of each object within the system).

The specifications of each example are summarized in Table 2, where size of ~g

denotes the number of gap-calculation, size of ~q denotes the number of degrees of

freedom and size of λ denotes the number of force-parameters.

Table 2: Example Specifications

Spheres in Hopper Trip. Flex.

Woodpecker

Rotorsystem

Contact

Mechanics

single- & set-valued set-valued single- & set-valued

Size of q 96 96 192

Size of g 4752 24 28

Size of λ 4752 54 36

4 Parallelization Method

As depicted in the introduction, the proposed algorithm allows to calculate the system-

update in parallel.

The method itself is explained on the example of the ”update-g” method (update-

g calculates all gap distances within the system). In each integration step all gap

6

distances must be calculated once or more, which can be done in parallel. The main

problem of all parallelization methods is the necessary overhead for the management

of the parallelization, which is growing with the number of used cores.

For this reason only operations that need enough computational time should be par-

allelized. Otherwise the parallelized simulation would slow down due to the overhead

of parallelization.

This implies that the decision which gap-functions are calculated in parallel should

depend on the used number of cores and the individual computational cost of the

gap-functions. Equation (7) and (9) describe the update-g functions with n the num-

ber of gap-functions, ~g the gap functions and s, p the indices for serial and parallel

calculation. The algorithm dynamically measures the computational time for each

gap-calculation gi in Equation (7) during the first steps of the simulation and com-

pares the measured time with a defined border between serial and parallel computation

(BorderTime). If the needed time is lower than the BorderTime then the considered

gap-function gi is put in the sequential container ~gs, otherwise in the parallel container

~gp (Equation (9)).

gi = f(~q, ~u, t), i = 1...n. (7)

gi,s = f(~q, ~u, t), i = 1...ns and gi,p = f(~q, ~u, t), i = 1...np (8)

n = ns + np. (9)

The method is summarized in Table 4.

Parallelization Algorithm

1. time measurement: measure computational time ti for i = 1...n of gi = f(~q, ~u, t)
2. decision between serial and parallel computation

a) if ti of gi ≤ BorderTime: add gi to ~gs (serial computation)

b) if ti of gi > BorderTime: add gi to ~gp (parallel computation)

3. perform calculation

a) compute gi,s for i = 1...ns sequentially

a) compute gi,p for i = 1...np in parallel

Table 3: Parallelization Algorithm

In contrast to other areas of simulation like finite elements or CFD (computational

fluid dynamics), multibody dynamics is characterized by very small and fast individ-

ual calculations, for example gap calculations. For this reason, the main purpose of

the proposed parallelization algorithm is to keep the overhead for the parallelization as

low as possible as mentioned before. The partitioning into a sequential and a parallel

container is just the first step of the whole parallelization method. This step ensures

that only calculations that need enough computational time are parallelized. But due

to the fact that the individual calculations in the parallel container need different cal-

culation times (the calculation times can vary by several powers of ten), some kind

7

of load balancing is needed. Normal dynamic load balancing algorithms like the ones

provided by OpenMP are not completely suitable. Therefore, new semi-dynamic load-

balancing algorithms based on Karmarkar-Karp Heuristics and Greedy Algorithms are

under current research by the author.

5 Discussion

As depicted in Section 3 the parallelization method is applied to the three examples

”Spheres in Cup”, ”Triple Flexible Woodpecker” and ”Rotorsystem”.

For closer examination of the influence of the criteria number of cores and Border-

Time to the efficiency of the parallelization method, the update-g method (calculation

of gap distances) of the example ”Spheres in Cup”, the update-g method (calculation

of gap distances) of the example ”Triple Flexible Woodpecker” and the update-M (cal-

culation of the individual mass matrix distributions to the global mass matrix ~M) of

the example ”Rotorsystem” are taken into account.

5.1 Spheres in Cup: Update-g Method

As depicted in Section 3, the gap calculation of the example ”Spheres in Cup” are

characterized by the very fast solution of the contact kinematic between two spheres

and the little slower contact kinematic between a sphere and a frustum.

Spheres in Cup

Size of q 96

Size of g 4752

Size of λ 4752

Figure 3: Specifications and Analysis of the ”Spheres in Cup”

These fast gap calculation leads to the assumption that the overhead due to paral-

lelization should be relatively small. This assumption can be confirmed by Figure 3. It

shows the normalized calculation time of the simulation (only the update-g method is

8

parallelized) depending on the BorderTime and the number of cores. The calculation

time is normalized to the sequential simulation time on one core.

The optimum lies at a BorderTime of about 3 ·10−6sec and three cores. Using more

than two cores leads to a too large overhead for the management of the parallelization.

Using a BorderTime larger than about 7·10−6sec leads to an empty parallel calculation

container, because nearly all gap calculation are faster than 7 · 10−6sec.

5.2 Triple Flexible Woodpecker: Update-g Method

Triple Flexible
Woodpecker

Size of q 96

Size of g 24

Size of λ 54

Figure 4: Specifications and Analysis of the ”Triple Flexible Woodpecker”

Figure 5 shows the same information for the simulation of the ”Triple Flexible

Woodpecker”.

The gap calculation within the example ”Triple Flexible Woodpecker” can be di-

vided in two categories. The contact kinematic between the woodpecker and the flex-

ible beam is certainly time consuming because the contact point must be numerically

searched on the flexible contour. All other gap calculation within the system are rela-

tively easy leading to low computational times.

Figure 4 shows that the number of cores should be seven and the BorderTime

should be about 7 · 20−6sec. This can be explained by the mentioned to classes of

contact kinematics. Choosing the BorderTime smaller than 20 · 10−6sec would mean

that also the easy gap calculations within the system would be calculated in paral-

lel. This would lead to a lower speedup because the necessary overhead due to the

parallelization would be larger than the saved time.

But the parallelization overhead is negligible compared to the necessary calculation

time for the contact kinematics between the flexible beam and the woodpecker. There-

fore, a high number of cores is usable. Using seven cores rather than eight cores is

9

better, because the used computer comprises only eight cores and the operating system

also needs computational resources.

5.3 Rotorsystem: Update-M Method

Rotorsystem

Size of q 192

Size of g 28

Size of λ 36

Figure 5: Specifications and Analysis of ”Rotorsystem”

Figure 5 shows the normalized computational time for the calculation of the update-

M method of the ”Rotorsystem” depending on the BorderTime and the number of

cores. The computational time is normalized to the sequential calculation time of the

update-M method.

This figure expresses that the speedup due to parallelization of the update-M pro-

cess is essentially depending on the BorderTime and the number of cores. For exam-

ple, if the number of cores is to high, the overhead due to parallelization may be too

large and if the BorderTime is chosen too high, too little gap calculations are done in

parallel.

It can be concluded that the possible speedup is essentially depending on the Bor-

derTime and the number of cores. The optimal choice of the two parameters should

be done by the algorithm itself which is topic of current research.

6 Results

In this section the results of applying the method to different update-processes of the

three examples are shown. The optimal choice of the parameters BorderTime and the

number of cores is chosen and the computational time for purely sequential calculation

and parallel calculation is measured. The results are recapitulated in Table 4, 5 and 6.

10

6.1 Spheres in Cup: Parallelization Method

considered

update-process

optimal parameters

(BTa,coresb)

part of

wholec

seq.

time

par.

time

speedup

update-gd (3,2) 74,78% 10,09s 7,12s 27,26%
(a): BorderTime [10

−6s] , (b): number of cores for computation
(c): Part of the computational time of the considered update-process of the whole computational time
(d): calculating each gap distance within the system

Table 4: Results of Applying the Parallelization Algorithm to the ”Spheres in Cup”

Table 4 shows that the parallelization method is able to reduce the computational

time of the update-g method about 26,27% using two cores and a BorderTime of

3 · 10−6sec.

6.2 Triple Flexible Woodpecker: Parallelization Method

considered

update-process

optimal parameters

(BTa,coresb)

part of

wholec

seq.

time

par.

time

speedup

update-gd (20,8) 70,8% 11,57s 2,13s 81,60%

update-he (1,4) 14,62% 2,12s 0,76s 64,15%
(a): BorderTime [10

−6s] , (b): number of cores for computation
(c): Part of the computational time of the considered update-process of the whole computational time
(d): calculating each gap distance within the system, (e): calculating right-hand-sides h for each object

Table 5: Results of Applying the Parallelization Algorithm to the ”Triple Flexible

Woodpecker”

Table 5 shows that with the proposed algorithm it is possible to reduce the com-

putational time of the update-g process of the ”Triple Flexible Woodpecker” by about

81,60% and of the update-h process by about 64,15%. The update-g methods uses

8 cores and a BorderTime of 20 · 10−6sec, the update-h method uses 4 cores and a

BorderTime of 1 · 10−6sec.

6.3 Rotorsystem: Parallelization Method

The results of for the system ”Rotordynamics” are depicted in Table 6. The com-

putational time for the update-StateDependentVariables process (update-SDV) can be

reduced by about 64%, of the update-Jacobians (updateJac) by about 42%, of the

update-h by about 27% and of the update-M by about 52%.

11

considered

update-process

optimal parameters

(BTa,coresb)

part of

wholec

seq.

time

par.

time

speedup

update-Jacf (50,7) 10,8% 1,01s 0,59s 41,58%

update-SDVg (1,4) 14,62% 2,12s 0,76s 64,15%

update-he (10,3) 7,28% 0,44s 0,32s 26,80%

update-Mh (1,6) 11,4% 0,39s 0,19s 51,28%
(f): calculating the necessary Jacobian matrices
(g): calculating variables depending on the system state
(h): calculating the mass-matrix of each object within the system

Table 6: Results of Applying the Parallelization Algorithm to the ”Rotorsystem”

It can be summarized that the efficiency of the parallelization method depends on

the system type. Some systems are more suitable for this method, others only show

average speedup results. Even more potential can be seen in combining the proposed

parallelization algorithm with the mentioned parallelization within the numerical in-

tegrator and parallel co-simulation. This is also topic of future research.

6.4 Spheres in Cup: Smooth- and Non-Smooth Mechanics

Furthermore, the system ”Spheres in Cup” is well suited to shows the difference be-

tween smooth- and non-smooth contact mechanics regarding the computational time.

Therefore, the system ”Spheres in Cup” is first modeled using smooth contact me-

chanics (single-valued force laws) and second modeled using non-smooth contact me-

chanics.

The version using smooth contact mechanics is integrated by a common ”state of

the art” ode solver (LSODE) and the non-smooth version is integrated by a fixed step-

size, half-explicit time-stepping integration scheme. The half-explicit time-stepping

integration scheme has no step-size control. Therefore, the system was integrated with

a little lower time step size than the average time step size a time-stepping integration

scheme with step size adjustment ([4]) would suggest.

The results concerning the computational time are summarized in Table 7.

These results do not claim to provide a complete comparison of smooth- and non-

smooth contact mechanics. Its only aim is to show that non-smooth contact mechanics

is one promising way to reduce computational time. The parallelization method pro-

posed in this paper can be applied to both, smooth- and non-smooth multibody dynam-

ics and can therefore help to further reduce the computational time within multibody

dynamics.

The result of this small comparison is very similar to the one from FOERG ET. AL.

[1] (see Section 1). The non-smooth version of the ”Spheres in Cup” in combination

with a half-explicit time-stepping integration scheme is about three times faster as the

12

LSODE (non-stiff) LSODE (stiff) Time-Stepping(f)

time norm.(h) 1,00 n.p.(i) 0,36

speedup 1,00 n.p.(i) 2,80
(f): a step size of 5e

−5sec was used
(h): normalized to the computational time of the LSODE (non-stiff)
(i): LSODE with ”stiff”-option stuck during the integration

Table 7: Comparison of Computational Times of Smooth- and Non-Smooth Contact

Mechanics

smooth version in combination with a common ”state of the art” LSODE integrator.

This fact can be explained by the numerical stiffness of the equations of motion

using smooth contact mechanics. The contacts are modeled with a contact stiffness

of 1 · 107 N
m

. It is for this reason that the LSODE integrator needs smaller step sizes

compared to the time-stepping integration scheme.

7 Summary

Beginning with a brief outline of non-smooth multibody dynamics and set-valued

force-laws, different parallelization methods are shortly described. Furthermore, an

internal parallelization algorithm for multibody dynamics is proposed which allows

an effective parallelization of the system-update (calculation of gap-distances, gap-

velocities, Jacobian matrices, state-dependent variables, etc.). It is explained that it is

very important that not all calculations can be done in parallel due to the inevitable

overhead of parallelization methods. Efficiency is shown on three examples. Two

academic systems comprising up to 4752 contacts and 96 degrees of freedom and

an industrial system from the field of rotor dynamics comprising four flexible rotors

mounted with bearing clearance and friction. The results show that by applying the

parallelization method is possible to significantly reduce the computational time for

the update processes. Taking one academic example into account the effects of the

set-valued force laws on the computational costs are explained.

References

[1] M. Förg et. al., ”Contacts within Valve Train Simulations: a Comparison of Mod-

els”, JSME Technical Journal, 1(1), 2006.

[2] F. Pfeiffer, ”Mechanical System Dynamics”, in ”Lecture Notes in Applied and

Computational Mechanics”, Springer, Berlin, 2005.

[3] M. Friedrich, H. Ulbrich, ”A Parallel Co-Simulation For Multibody Systems”,

in ”Proceedings of the 2nd South-East European Conference on Computational

Mechanics”, Rhodos, Greece, 2009.

13

[4] R. Huber, H. Ulbrich, ”Integration of Non-Smooth Systems using Time-Stepping

based Extrapolation Methods and DAE Solver Combined with Time-Stepping”,

in ”Proceedings of the 2nd South-East European Conference on Computational

Mechanics”, Rhodos, Greece, 2009.

[5] R. Featherstone, ”A Divide-and-Conquer Articulated-Body Algorithm for Paral-

lel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm”, in

”The International Conference on Robotic Research”, Vol. 18, 867-875, 1999.

[6] M. Förg, ”Mehrkörpersysteme mit mengenwertigen Kraftgesetzen - Theorie und

Numerik”, Dissertation, Technische Universität München, 2008.

[7] J. Clauberg et. al., ”Simulation of a Non-Smooth Continuous System”, in ”Vibra-

tion Problems ICOVP - Proceedings in Physics”, 978-94-007-2068-8, Springer,

Berlin, 2011.

[8] MBSim - Multi-Body Simulation Software. GNU Lesser General Public Li-

cense, http://code.google.com/p/mbsim-env/

[9] OpenMP - Open Multiprocessing, http://openmp.org

14

