
Abstract

The purpose of this paper is an analysis of adiabatic flows using the semi-Lagragian

Galerkin method. In the study presented in this paper, conservations of mass and mo-

mentum of the adiabatic flows are employed as the governing equations. The Birch-

Murnaghan equation is assumed for the equation of state. The semi-Lagrange method

is used, in which the governing equations are divided into the advection and non-

advection calculations. The advection calculation is transformed using the character-

istic method. In both advection and non-advection calculations, the Hermite interpo-

lation function which is complete third order approximation for a triangular element

is used for both the velocity and density.

Keywords: finite element method, density changing, conservation of mass, conserva-

tion of momentum, semi-Lagragian Galerkin method, Hermite interpolation function,

characteristic method.

1 Introduction

The adiabatic flows mean compressible flows assuming adiabatic state. In actual nat-

ural phenomena, almost flows are compressible flows. Considering the fluid flow

around a body, the density changing phenomenon is important. The heat is changed

only inside the computational domain, even if the adiabatic state is assumed.

In the governing equation of the flow problems, the advection term and the diffu-

sion term are included. In case of either term is superior, the characteristic of flows are

different. Depending on the characteristic of flows, the suitable appropriate technique

is required. If the advection term is superior, the computation has an inclination to be

unstable. For preventing this problem, the characteristic method is used in this study.

The terms of temporal differentiation and advection are shown in the form of mate-

1

 
Paper 123 
 
Numerical Analysis of Density Changing Flows using 
the Semi-Lagrange Galerkin Method 
 
K. Fukuyama 
Department of Civil Engineering 
Chuo University, Tokyo, Japan 

©Civil-Comp Press, 2012 
Proceedings of the Eighth International Conference 
on Engineering Computational Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



rial differentiation and transformed by the characteristic method. In addition, in the

semi-Lagrange method, the advection calculation is forwarded by the non-advection

calculation. After having calculated the advection term by the semi-Lagrange method,

the non-advection term is calculated by the implicit method. This technique is called

the semi-Lagragian Galerkin method. In the advection and non-advection calculation,

the Hermite interpolation function is used for velocity and density in this study. The

Hermite interpolation function is composed of 10 degrees of freedom of which func-

tion values at the three nodes, values of the first derivative, and a function value in the

center of gravity. Therefore, the Hermite interpolation function is the complete third

order triangular element. The characteristics of this study has three points. Firstly, the

characteristic method is used. The advection term need not be discretized by the char-

acteristic method. Secondly, the Hermite interpolation function is used. The Hermite

interpolation function which has ten degrees of freedom can be applied to the third

order approximation. Finally, the semi-Lagragian Galerkin method is used.

As an example of numerical analysis in this study, a cavity flow is carried out for

showing that the semi-Lagragian Galerkin method is effective. In addition, as an ex-

ample of numerical analysis, the adiabatic flows are analyzed using semi-Lagragian

Galerkin method in a circular computational area and a circular computational area

which has a body at the center. At the time, the uniform velocity is given in the direc-

tion of tangent to the circle. The exact velocity in the X-direction and Y-direction on

the boundary is calculated by the B-spline.

2 Governing equations

As the governing equation, conservation of mass for density is expressed as:

∂ρ

∂t
+ uiρ,i + ρui,i = 0, (1)

Conservation of momentum is expressed as:

ρ

(

∂ui

∂t
+ ujui,j

)

− τij,j = 0, (2)

τij = −pδij + λδijuk,k + µ(ui,j + uj,i), (3)

In this study, a fluid is assumed as liquid. Therefore, the Birch-Murnaghan equation

of state is applied to the governing equation.
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The equation (4) is differentiated as follows.
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In this study, ∆ρ is variation of density. Therefore, ρ is expressed as:

ρ = ρ0 + ∆ρ,

The equation (1) is expressed as:

∂∆ρ

∂t
+ ui∆ρ,i + (ρ0 + ∆ρ) ui,i = 0, (5)

The equation (2) is expressed as:

(ρ0 + ∆ρ)

(

∂ui

∂t
+ ujui,j

)

− τij,j = 0, (6)

where ui, ρ, µ, ρ0 and p0 are velocity, density, viscosity coefficient, reference den-

sity, and reference pressure respectively. Kronecker delta is denoted by δij . Coefficient

of bulk viscosity is λ, and is expressed as:

λ = −
2

3
µ,

3 Numerical study

3.1 Characteristic method

The position of the virtual fluid particle which was at position x at time t is Xi(xi,t;τ )

at time τ . The trajectory of particle is shown by the following ordinary differential

equations.
dXi

dτ
= ui (Xi (xi, t; τ) , τ) , Xi (xi, t; τ) = xi (7)

The time derivative and advection terms are expressed by the Lagragian derivative

as:
Dui

Dt
=

∂ui

∂t
+ ujui,j =

d

dτ
ui (Xi (xi, t; τ) , τ) |τ=t (8)
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By the characteristic method, the time derivative and advection terms are as follows

in the conservation of mass:

D∆ρ

Dt
=

∂∆ρ

∂t
+ ui∆ρ,i ≡ ∆ρ̇ (9)

Similarly, they are as in the conservation of momentum:

Dui

Dt
=

∂ui

∂t
+ ujui,j ≡ u̇i (10)

The dot expresses as the time differentiation.

3.2 Semi-Lagrange Galerkin method

The semi-Lagragian Galerkin method divides the governing equations into the advec-

tion and non-advection calculations. The advection calculation can be forwarded. The

values at the upstream point by advection calculation are assumed to be ∆ρ̃ and ũi in

the governing equation.

∆ρn+1 = ∆ρ̃ +
1

2
∆t∆ρ̇n+1 (11)

un+1
i = ũi +

1

2
∆tu̇n+1

i (12)

Therefore, the equation (5) is transformed into equation (13).

2

∆t
∆ρn+1 + (ρ0 + ∆ρ) un+1

i,i −
2

∆t
∆ρ̃ = 0 (13)

Similarly, the equation (6) is transformed into equation (14).

2 (ρ0 + ∆ρ)

∆t
un+1

i +
p0γ

ρ0

ρn+1
v,j δij −µun+1

i,jj −µun+1
j,ij +

2

3
µun+1

k,kjδij −
2 (ρ0 + ∆ρ)

∆t
ũi = 0

(14)

The calculation of upstream point is used non-linear iterative calculation method in

order to give higher precision. The calculation of the upstream point is expressed as:

X n
i = x − un

i ∆t (15)

Xn
i(l) = x −

1

2
{un

i (X n
i ) + un+1

i(l−1)}∆t (16)

un+1
i(0) = un

i , u̇n+1
i(0) = u̇n

i (17)

Iterative calculation number is denoted by l (1Mmax). The figure 1 is shown outline

of the advection velocity. The positions of upstream points of node and center of grav-

ity are Xn
l and Xn

e . The elements which the upstream point belongs are expressed by
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K(Xn
l ) and K(Xn

e ). The function values are updated by the advection calculation at

node and at center of gravity. The element that upstream point belongs is interpolated

by using the Hermite function.

ũi(l) = un
i (Xn

i(l)) +

(

1 −
1

2

)

∆t u̇n
i (Xn

i(l)) (18)
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i (Xn
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)
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i (Xn
i(l))

∂Xk

}

(19)

Figure 1: outline of advection velocity

4 Finite element interpolation

As for the interpolation, the Hermite interpolation function is applied. Figure 2 shows

the Hermite interpolation function. The function value at the nodes of element, value

of the first derivative, and function value at center of gravity are assumed to be de-

gree of freedom. The interpolation is the complete third order element. The Hermite

interpolation function is shown as follows:

H0i = L2
i (3 − 2Li) − 7L1L2L3,

Hxi = L2
i (xjiLj − xikLk) − (xji − xik)L1L2L3,

Hyi = L2
i (yjiLj − yikLk) − (yji − yik)L1L2L3,

H0e = 27L1L2L3,
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xij = xi − xj, yij = yi − yj

where (xi, yi) means the nodal coordinate and H0i, Hxi, Hyi, H0e are interpolation

functions, in which L1, L2, L3, are area coordinates. The permutation is used for

(i, j, k).
The finite element approximation in Ωe of each element is expressed as follows:

ui = HαUαi (20)

Hα =
[

H0i Hxi Hyi H0e

]T
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+ H0eue (21)

The values of the first derivative are:

∂u

∂x
=

∂He

∂x
Ue,

∂u

∂y
=

∂He

∂y
Ue (22)
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∂y
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∂y

]

Each component of the first derivative can be obtained in the following form.



















∂H0i

∂x
= 2biLi(3 − 2Li) − 7(b1L2L3 + b2L1L3 + b3L1L2) − 2biL

2

i
∂Hxi

∂x
= 2biLi(ckLj − cjLk) − b1(ck − cj)L2L3 − b2(ck − cj)L1L3 − b3(ck − cj)L1L2 + (bjck − bkcj)L

2

i

x
∂Hyi

∂x
= 2biLi(bjLk − bkLj) − b1(bj − bk)L2L3 − b2(bj − bk)L1L3 − b3(bj − bk)L1L2

∂H0e

∂x
= 27(b1L2L3 + b2L1L3 + b3L1L2)























∂H0i

∂y
= 2ciLi(3 − 2Li) − 7(c1L2L3 + c2L1L3 + c3L1L2) − 2ciL

2

i

∂Hxi

∂y
= 2ciLi(ckLj − cjLk) − c1(ck − cj)L2L3 − c2(ck − cj)L1L3 − c3(ck − cj)L1L2

∂Hyi

∂y
= 2ciLi(bjLk − bkLj) − c1(bj − bk)L2L3 − c2(bj − bk)L1L3 − c3(bj − bk)L1L2 + (bjck − bkcj)L

2

i

∂H0e

∂y
= 27(c1L2L3 + c2L1L3 + c3L1L2)

Similarly, the Hermite interpolation function is used for density.
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Figure 2: Hermite interpolation function

5 Finite element equation

The Galerkin method is applied to the conservation of mass, equation (13). The finite

element equation of the conservation of mass is expressed as:

Mαβ∆ρn+1
β + (ρ0 + ∆ρ) G′

αβiU
n+1
βi − Mαβ ρ̃β = 0 (23)

Similarly, the Galerkin method is applied to the conservation of momentum, equa-

tion (14). The finite element equation of the conservation of momentum is expressed

as:

(ρ0 + ∆ρ) MαβUn+1
βi −

1

2
κ̄∆tGαiβ∆ρn+1

β δij +
1

2
µ∆tDαjβjU

n+1
βi +

1

2
µ∆tDαjβiU

n+1
βj

−
1

3
µ∆tDαjβkU

n+1
βk δij − (ρ0 + ∆ρ) MαβŨβi = 0(24)

Each matrix is expressed as:

Mαβ =

∫

Ωe

HαHβdΩ, Gαiβ =

∫

Ωe

Hα,iHβdΩ, Dαjβj =

∫

Ωe

Hα,jHβ,jdΩ

Dαjβi =

∫

Ωe

Hα,jHβ,idΩ, Dαjβk =

∫

Ωe

Hα,jHβ,kdΩ, G′

αβi =

∫

Ωe

HαHβ,idΩ

6 Numerical examples

6.1 Case 1 : Analysis of a cavity flow

A numerical study is an analysis of a cavity flow of adiabatic flows using the semi-

Lagragian Galerkin method. Numerical parameters are ∆t = 0.001 and γ = 1.4.
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Reynolds number is 1000 and Mach number is 0.2. A computational domain and

boundary conditions are expressed in Figure 3. The velocity is zero at the corners of

top of the computational domain. The finite element mesh is represented in Figure 4.

Total numbers of nodes and elements are 14,641 and 28,800, respectively.

Figure 3: Computational domain

Figure 4: Finite element mesh

As shown in Figure 5, vectors swirl towards the center. The density distribution

is expressed in Figure 6. In addition, the velocity profile is expressed in Figure 7.

The red line is the result of this study. As shown in Figure 7, the values of this study

are almost equal to Ghia’s values and Erturk’s values. Therefore, the semi-Lagragian

Galerkin method is shown to be effective technique.
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Figure 5: Velocity distribution

Figure 6: Density distribution

Figure 7: Velocity profile
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6.2 Case 2 : Analysis with a circular mesh

A numerical study is an analysis of adiabatic flows with a circular mesh using the

semi-Lagragian Galerkin method. Reynolds number is 250 and Mach number is 0.2.

A computational domain and boundary conditions are expressed in Figure 8. The

uniform velocity is given in the direction of the tangent to the circular computational

domain. The velocity is zero in the normal direction of the tangent to the circular

computational domain. The finite element mesh is represented in Figure 9. Total

numbers of nodes and elements are 9,721 and 19,120, respectively.

Figure 8: Computational domain

Figure 9: Finite element mesh
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The velocity distribution in the quarter of whole domain is expressed in Figure 10.

As shown in Figure 10, the vectors swirl. The density distribution is expressed in

Figure 11. As shown in Figure 11, the density at the center is lower than at the wall.

Figure 10: Velocity distribution in the quarter of whole

Figure 11: Density distribution

6.3 Case 3 : Analysis with a circular mesh which has a body

A numerical study is an analysis of adiabatic flows with a circular mesh which has a

body using the semi-Lagragian Galerkin method. Reynolds number is 250 and Mach

number is 0.2. A computational domain and boundary conditions are expressed in

Figure 12. In the same way in the case 2, The uniform velocity is given in the direction
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of the tangent to the circular computational domain. The velocity is zero in the normal

direction of the tangent to the circular computational domain. Moreover, because the

body is set at the center, the velocity on the body is zero. The finite element mesh is

represented in Figure 13. Total numbers of nodes and elements are 9,223 and 18,046,

respectively.

Figure 12: Computational domain

Figure 13: Finite element mesh

The velocity distribution in the quarter of whole domain is expressed in Figure 14.

In the same way as the case 2, as shown in Figure 14, the vectors swirl. The density

distribution is expressed in Figure 15. As shown in Figure 15, the density near the

body is lower than those close to the wall.
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Figure 14: Velocity distribution in the quarter of whole

Figure 15: Density distribution

7 Conclusion

In this paper, a numerical study of the compressible viscous fluid flow assuming an

adiabatic state using the semi-Lagragian Galerkin method is performed. The Her-

mite function is used for the interpolation. In the state equations, the advection term

is transformed by the characteristic method. The solution is updated by using the

value of the upstream point. The flow problem is analyzed using the semi-Lagragian

Galerkin method with the Hermite interpolation function. As future work, we will

analyse compressible flows with two different densities using the semi-Lagragian

Galerkin method.
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