
Abstract

In this paper, we consider the shape optimization of flapping wings in forward flight.

This analysis is performed by combining a gradient-based optimiser with the unsteady

vortex lattice method. The objective is to identify a set of optimised shapes that max-

imise the propulsive efficiency under lift, thrust, and area constraints. The geometry of

the wings is modelled using B-splines. The flow simulations using the optimal wing

shapes indicate that changes in the shape have significant effects on averaged quanti-

ties. The optimal shape configuration substantially increases the time averaged thrust

while, at the same time, it acquires a larger input of aerodynamic power. Increasing

the number of variables (i.e., providing the wing shape with a greater degree of spa-

tial freedom) enables increasingly superior designs. This study should provide better

guidance for shape design of engineered flying systems.

Keywords: unsteady vortex lattice method, flapping wings, B-splines, shape opti-

mization.

1 Introduction

Micro-air vehicles (MAVs) are small flying aeroelastic systems that are expected to

operate in urban environments and confined spaces (i.e., inside buildings, caves, tun-

nels). A variety of missions can be assigned to these systems such as inspection of

harsh environments inaccessible to other types of vehicles. To successfully achieve

the aforementioned missions, these systems must be designed to satisfy stringent per-

formance requirements, such as high maneuverability at low speeds, hovering capa-

bilities, high lift to sustain flight, and structural strength to survive gust loads. These

requirements can be achieved mainly through two propulsion mechanisms: rotating

helicopter blades or flapping wings [1]. Through observing the efficiency of insects
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and birds, it has been concluded that flapping wings offer greater efficiency, espe-

cially at small scales [2–5]. Studying these flying animals as a step toward designing

flapping-wing vehicles has been the topic of many investigations [6–13].

Although it is well known that natural flyers exploit a variety of mechanisms and

aerodynamic aspects to control and manoeuver their flights, experimental observa-

tions do not enable a good understanding of the physical aspects and dynamics of

flapping flight. As such, there is a need to model the unsteady aerodynamic aspects

of flapping-wing vehicles. Computational modeling and simulation are necessary to

evaluate the performance requirements associated with flapping flight and identify the

relative impact of design parameters (e.g., flapping parameters, shape characteristics).

Several computational modeling strategies that are based on variable fidelity physics

have been reported in the literature [14–21]. Willis et al. [22] developed a multifi-

delity computational framework that involves a combination of potential flow models

and Navier-Stokes solver. They showed how the use of models with different levels

of geometric and physical modeling fidelity can be well exploited to ease the design

process of flapping wing systems. Certainly, the higher-fidelity Navier-Stokes sim-

ulations incorporate a more complete physical model of the flapping flight problem,

however, the extensive computational resources and time associated with the use of

these tools limit the ability to perform optimization and sensitivity analyses in the

early stages of MAV design. Thus, to alleviate this burden and enable rapid and rea-

sonably accurate exploration of a large design space, it is fairly common to rely upon

a moderate level of modeling fidelity to traverse the design space in an economical

manner [23, 24]. As such, several research efforts have considered the use of the un-

steady vortex lattice method (UVLM) for the design of avian-like flapping wing in

forward flight [14, 25–28].

In this work, we consider shape optimization of flapping wings in forward flight.

This is performed by combining a local gradient-based optimizer with UVLM. Al-

though UVLM applies only to incompressible, inviscid flows where the separation

lines are known a priori, Persson et al. [16] showed through a detailed comparison be-

tween UVLM and higher-fidelity computational fluid dynamics methods for flapping

flight that the UVLM schemes produce accurate results for attached flow cases and

even remain trend-relevant in the presence of flow separation. As such, in [16] they

recommended the use of an aerodynamic model based on UVLM to perform prelimi-

nary standard design studies of flapping wing vehicles (especially in desirable cruise

configurations where there is no flow separation and substantial wing-wake interac-

tions that would degrade the performance of the vehicle). Furthermore, the associated

simulation time is on the order of few minutes on a desktop. Our objective in this

paper is to identify a set of optimized shapes that maximize the propulsive efficiency

under lift, thrust, and area constraints. The geometry of the wings is modeled using

B-splines. This basis can be used to smoothly discretize wing shapes with few degrees

of freedom, referred to as control points. The locations of the control points consti-

tute the design variables. Results suggest that changing the shape yields significant

improvement in the flapping wings performance. This study is our first stop towards

constructing a framework that will facilitate the design of engineered flying systems.
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2 Aerodynamic Modeling of Flapping Wings

We use the three-dimensional version of the unsteady vortex lattice method (3-D

UVLM) to simulate the aerodynamic response of flapping wings in forward flight.

This aerodynamic tool is capable of simulating incompressible and inviscid flow past

moving thin wings and capturing the unsteady effects of the wake, but not the vis-

cous effects, flow separation at the leading-edge, and extreme situations with strong

wing-wake interactions. Unlike standard computational fluid dynamics schemes, this

method requires meshing of the wing planform only and not of the whole flow do-

main. Thus, UVLM reduces the demand for computational resources. These features

make it competitive to perform optimization studies that require many simulations.

Features of the used UVLM solver include the following

• The shape of the wing is generated based on B-spline representation.

• The wing surface is discretized into a lattice of vortex rings. Each vortex ring

consists of four short straight vortex segments, with a collocation point placed

at its center.

• For rigid wings, the grid points position is specified by applying a sequence of

rotations (pitching and flapping).

• The no-penetration condition is imposed at the collocation points (i.e., the nor-

mal component of the velocity at each collocation point due to wing-wing in-

teractions, wake-wing interactions, free-stream velocities, and wing rotations

should vanish). Using the Biot-Savart law to compute velocities in terms vortic-

ity circulations Γ yields a linear system of equations

Awi−wi · Γwi = −Awa−wi · Γwa + Vn (1)

where Awi−wi and Awa−wi are wing-wing and wake-wing influence matrices,

respectively, and Vn is a vector collecting the normal component of the velocity

at each collocation point due to the wing motion [14].

• The vorticity is introduced into the wake by shedding vortex segments from the

trailing edge. These vortices are moved with the fluid particle velocity and their

individual circulation remains constant (i.e., Γt+∆t
wa = Γt

te).

• The pressure is evaluated at each collocation point based on the unsteady Bernoulli

equation and then integrated over the wing surface to compute the aerodynamic

forces and power.

Further details of the derivation, implementation, and verification of this method

and aerodynamic loads computation are provided in [14, 27, 29, 30].
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3 Modeling of Wing Shape: B-splines Representation

3.1 B-spline curves and surfaces

B-splines are piecewise polynomials based on the Bernstein basis. The basis functions

of degree p, denoted by Ni,p(ξ), associated to a non-decreasing set of coordinates

called the knot vector X = {ξ1, ξ2, . . . , ξn+p+1} are defined recursively as

Ni,0(ξ) =

{

1, ξi ≤ ξ < ξi+1

0, otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ), p > 0

for i = 1, . . . , n and p ≥ 1. Knot multiplicities reduce the continuity of the basis at

the location of the multiplicity. If a multiplicity of k knots is used, the continuity on

the basis is Cp−k at that knot. Consequently, the basis becomes interpolatory at knots

with multiplicity p whereas knot multiplicity of p + 1 makes the basis discontinuous

and is used at the end points to make the knot vector open.

The B-spline curve of degree p with control points P1, . . . ,Pn is defined on the

interval [a, b] = [ξp+1, ξn+1] as the linear combination of the control points and basis

functions

C(ξ) =
n

∑

i=1

Ni,p(ξ)Pi

The piecewise linear interpolation of the control points is called the control polygon. A

feature of B-spline curves is that the curve defined by the basis and control points will

lie inside of the convex hull of the control polygon. This makes the control polygon

useful for approximating the rough character of a curve.

A B-spline surface is defined using tensor products of B-spline basis functions

written in two parametric coordinates ξ, η. If Ni,p and Mj,q denote basis functions

of degree p and q associated to the knot vectors X = {ξ1, ξ2, . . . , ξn+p+1} and Y =
{η1, η2, . . . , ηm+q+1} and Pij , i = 1, . . . , n, j = 1, . . . ,m is a net of control points in

three-dimensional space, the B-spline surface is defined as

S(ξ, η) =
n

∑

i=1

m
∑

j=1

Ni,p(ξ)Mj,q(η)Pij

B-splines have long been used in the computer aided design community to model

curves and surfaces. The reader is referred to [31–34] for more details on B-splines.

3.2 Wing shape parametrization

In Figure 1, we plot the wing geometry model based on B-splines representation. To

enable changes in the wing shape, the control points that define the curvatures of the
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leading and trailing edges (blue spheres) are allowed to move along y-direction and

those that specify the wing tip (green spheres) are allowed to move in both x and y
directions. The interior points are distributed so that the camber line is preserved at

each cross section once the locations of the control points at the edges are specified.

The control point represented by black sphere is kept fixed.

Figure 1: Wing geometry model based on B-spline representation. Spheres are used

to represent the control points and arrows denote their perturbation directions.

4 Shape Optimization

In this section, we consider cambered rectangular wings with an aspect ratio of six

(baseline case). The cambered wing has a NACA 83XX cross-sectional profile as

studied previously by Stanford and Beran [14] and Ghommem et al. [27]. The sym-

metric flapping motion (about the wing root) is prescribed as given by:

φ(t) = Aφ cos(ω t), (2)

where φ is the flapping angle and the flapping amplitude Aφ is set equal to 45◦. Fur-

thermore, the wing root is placed at a fixed angle of attack (pitch) of 5◦. A reduced

frequency κ = 0.1 is used. The reduced frequency is defined as

κ =
ω

U∞

·
c

2
,

where ω is the flapping frequency, c is the chord length, and U∞ is the freestream

velocity. The transient variations of the lift and thrust over one flapping cycle predicted

by the current UVLM and those obtained by Stanford and Beran [14] are shown in

Figure 2. A good agreement can be clearly observed. The untwisted flapping wing

case constitutes the baseline case of the optimization studies conducted next. We note

that for the twisted wing case, the twisting is sinusoidal (out-of-phase with respect to

the flapping motion) and varies linearly along the span so that the maximum twist is

obtained at the tip with an amplitude equal to 45◦.
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Figure 2: Lift and thrust computed from UVLM for one flapping cycle, with and with-

out wing twisting: comparison with results obtained by Stanford and Beran [14]. Six

elements are used along the chordwise direction and ten are used along the spanwise

direction (for half wing).
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4.1 Problem formulation

Flapping wings must be designed to satisfy some performance requirements such as

capability to generate required aerodynamic forces to hold the body, sustain forward

flights, and survive gust loads. In particular, wing shapes selection constitutes an im-

portant component in the design process. As such, we adopt the B-splines representa-

tion to model the wing shape and combine UVLM with a gradient-based optimization

algorithm to conduct series of optimization studies. This would help in identifying a

suitable set of wing shapes that enable efficient flights. The optimization problem is

formulated as follows:

maximize η

subject to:























xmin ≤ x ≤ xmax,
L∗ ≥ L∗

bl,
T ∗ ≥ T ∗

bl,
max | θi −

π
2
|≤ θcr,

A ≤ Abl,

(3)

where x is the vector of design parameters describing the perturbations introduced to

the locations of the control points,

L∗ = L/(0.5ρU2
∞

), T ∗ = T/(0.5ρU2
∞

), and P ∗ = P/(0.5ρU3
∞

)

are the normalized lift, thrust, and aerodynamic power, respectively, A is the wing’s

area, and the overline denotes a time-averaged quantity over a flapping cycle. The

wing geometry is constrained by bounding the feasible perturbations of the loca-

tions of the control points (± 0.5 · c). Here, the main objective is to maximize the

cycle-averaged propulsive efficiency of the wing under lift and thrust constraints. The

propulsive efficiency id defined as the ratio of the propulsive power over the aerody-

namic power [14, 27]. The area of the wing is also restricted to be smaller or equal

to a baseline value (i.e., the area of a cambered rectangular wing with an aspect ra-

tio of six). Besides, we add a constraint to monitor the angles θi of each element to

avoid large distortions and curvatures of the mesh grid that would degrade the pre-

dictive capability of the aerodynamic model and also may give rise to undesirable (in

cruise flapping flight) unsteady flow effects (e.g., flow separation, substantial wing-

wake interactions). θcr is set equal to 15◦. The optimization problem is solved with

the globally convergent method of moving asymptotes (GCMMA) [35, 36], where the

algorithm is supplied with numerically-computed gradients based on the first-order

backward Euler scheme for both the objective function and the constraints. Several

optimization runs are conducted where we vary the number of design variables and

the polynomial order of the basis functions employed in the B-splines representation.

These simulations ellucidate the effect of the design parameters on the numerical re-

sults.
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4.2 Results and discussion

We consider the case where the B-splines representation is based on a single element.

Thus, the number of control points increases with the order of polynomials. Table

1 provides a summary of the efficiency η, lift L∗, thrust T ∗, aerodynamic power P ∗,

and area ratio A/Abl obtained for the optimal configurations for different polynomial

orders. The optimal results show that changing the wing shape would allow to achieve

higher lift and propulsive efficiency but also more power is needed to be introduced

to the flying system. In Figure 3, we show the progress that the gradient-based op-

timizer GCMMA makes in maximizing the propulsive efficiency when considering

different polynomials for the B-splines basis functions. The GCMMA optimization

tool is observed to identify a maximum within few iterations (∼ 40 iterations). The

optimization algorithm GCMMA was supplied with different starting points and led to

the same optimal points. This robustness indicates that the objective function (propul-

sive efficiency) associated with the flapping flight is approximately quasiconcave so

that GCMMA is insensitive to the initial guess. This observation is not valid for ar-

bitrary design spaces associated with flapping problem [30]. As expected, increasing

the polynomial order (i.e., specifying more control points) yields optimal shapes that

enable flapping flights with higher efficiencies. The use of linear polynomials which

yields a tapered wing ameliorates the flapping performance. The area convergence

histories, shown in Figure 3(b), indicate that the area constraint is active for all cases.

Figure 4 provides the set of optimal shapes obtained for different polynomials. A no-

ticeable change in the wing shape can be observed and this is accompanied with an

improvement in the propulsive efficiency.

Wing shape NDV η L∗ T ∗ P ∗ A/Abl

Baseline shape 0 0.191 4.171 0.196 1.028 1

Optimal shapes Linear 6 0.311 5.021 0.413 1.327 1

Quadratic 8 0.347 4.882 0.502 1.446 1

Cubic 10 0.353 5.061 0.472 1.336 1

Quartic 12 0.360 5.012 0.501 1.393 1

Table 1: Baseline vs. optimal results.

The lift, thrust, and aerodynamic power, that develop over the flapping wing at κ =
0.1 for both the baseline and optimal cases, plotted as function of the flapping angle φ
are given in Figure 5. As expected, the bulk of the useful aerodynamic forces (positive

lift and thrust) is generated during the downstroke. In particular, peaks of thrust and

lift are reached near the middle of the downstroke phase. Positive lift is produced

during both strokes, as the angle of attack induced by the flapping motion is smaller

than the fixed pitch angle (5◦) at the wing root, and thus the lift remains positive

through almost the entire cycle. The optimal shape does not alter the phases of the

aerodynamic quantities, since the effective angle of attack does not vary significantly

over the flapping cycle. Nevertheless, it is able to increase the time-averaged lift,
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Figure 3: The efficiency and normalized area values at the best point found versus the

number of iterations from GCMMA using different polynomials.

thrust, and power (as seen in Table 1), as well as their peaks as shown in Figure 5.

The vorticity in the wake was generated on and shed from the wing at an earlier

time. As such, the wake is usually referred as the ”historian” of the flow. Thus,

examining the wake pattern and vorticity distribution can be helpful to determine the

reasons why the obtained optimized shapes produce efficient flapping flights. The

vorticity circulation strength of the wakes obtained for the baseline and optimal wing

shapes is given in Figure 6. Clearly, the overall strength of the wake has increased in

comparison with the baseline case, as the average aerodynamic power has increased

as shown in Table 1. In particular, stronger pockets of high circulation are observed

in the wake aft of the optimal shape at the middle of the down and upstrokes (i.e.,

φ ≈ 0◦). Furthermore, we remark that the vortex tip swirl is more pronounced for the

baseline shape. So, the optimal shape managed to reduce the tip vortex effect and then

produces higher thrust.

5 Conclusion

In this paper, we study the shape optimisation of flapping wings in forward flight.

This was performed by combining the unsteady vortex lattice method with a gradient-

based optimizer while using B-splines representation to model the wing geometry.

The wing shape plays an important role in the performance of flapping flight, in par-

ticular, the curvatures at the leading and trailing edges. The optimization pushes the

design to a shape configuration with substantial increase in the time-averaged thrust,

while the average aerodynamic power is increased, resulting in a significant increase

in the propulsive efficiency.

This work was concerned solely with the assessment of the aerodynamic perfor-

9



Figure 4: Optimal wing shapes.

mance of rigid flapping wings when considering different shapes. Implementing a

full aeroelastic framework that couples a nonlinear shell model and UVLM to test the

obtained optimal shapes and check their superiority over the baseline configuration is

the topic of our current research effort. Preliminary simulation results to validate the

shell formulation are presented in [37].
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