
Abstract

Fracture analysis of orthotropic cracked plates is investigated by applying the recently
developed computational approach, called the extended isogeometric analysis (XIGA)
[1]. A signed distance function and orthotropic crack tip enrichment functions are
adopted for extrinsically enriching the conventional isogeometric analysis approxima-
tion for the representation of significant discontinuities and reproducing the singular
field around a crack tip, respectively. For increasing the integration accuracy, the sub-
triangles and almost polar techniques are adopted for the cut and crack tip elements,
respectively. The interaction integral technique developed by Kim and Paulino [2] is
applied for computing the mixed mode stress intensity factors (SIFs). Finally, an or-
thotropic cracked plate with different orientations of material elastic axes is analyzed
by the proposed scheme and the fracture properties (mixed mode SIFs) are compared
with those of other methods available in the literature.

Keywords: orthotropic media, crack, extended isogeometric analysis, orthotropic
enrichment functions, stress intensity factor, interaction integral.

1 Introduction

In this paper, cracked orthotropic media are analyzed by applying the novel approach
of extended isogeometric analysis (XIGA).

Orthotropic materials such as composites have been increasingly applied in many
engineering applications e.g. aerospace, automobile and marine structures because of
their high strength and stiffness to weight ratios. Considering their strength, they are
applied in thin shell forms while crack initiation is probable to take place in them.
As a result, fracture analysis of such media has been the center of attention for many
researchers in the last few decades.
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Analytical solution of stress and displacement fields for an orthotropic plate with a
crack has already been obtained by Sih et al. [3]. As the analytical methods cannot be
simply employed for complex problems which are common in structural engineering,
numerical methods are better alternatives. Asadpoure and Mohammadi [4] succeeded
in developing orthotropic enrichment functions from the analytical solutions and ap-
plied them in the extended finite element method (XFEM) for analysis of cracked
orthotropic plates. Also, similarproblems have been recently solved by the enriched
element free Galerkin (EFG) method [5].

Complexity of engineering problems and enormous growing of technology in com-
puters have led to the development of several numerical methods. Among them,
XFEM [6, 7] has proved to be a promising powerful tool in modeling fracture prob-
lems because it enables improved approximations of non-smooth solutions such as
those including jumps and singularities. In this approach, for modeling a crack, clas-
sical finite element approximation is enriched by discontinuous function and asymp-
totic crack-tip displacement fields using the framework of partition of unity (PU). In
XFEM, the finite element mesh is not required to conform to the cracks boundaries,
and hence a single mesh suffices for modeling the crack stability and capturing its
evolution.

On the other hand, isogeometric analysis (IGA) is a promising computational scheme,
developed by Hughes et al. [8], that takes advantage of using non-uniform rational B-
splines (NURBS) functions for both geometric description and solution field approx-
imation to exactly represent complex geometries, to increase the order of continuities
between elements, to simplify the refinement process and to improve solution accu-
racy. Isogeometric analysis has been effectively applied to a large variety of problems
[9].

The two powerful approaches of XFEM and IGA have recently been combined to
include the benefits of both [10, 1]. This method which is also called extended iso-
geometric analysis (XIGA) has been successfully applied for simulation of stationary
and propagating cracks in 2D linear-elastic isotropic media.

In this contribution, XIGA is further extended for fracture analysis of cracked
linear-elastic orthotropic materials. For this purpose, the orthotropic enrichment func-
tions applied in XFEM [4] are adopted. The Lagrange multiplier method is utilized
to impose essential boundary conditions. The Gauss quadrature rule is applied for
integration alongside the “sub-triangles approach” and the “almost polar technique”
for split and crack tip elements, respectively [1]. In order to compare the results with
those avalibable in the literature, mixed mode stress intensity factors are calculated
by adopting the interaction integral technique. Finally, an orthotropic cracked plate
considering several orientations of material elastic axes is analyzed to demonstrate the
accuracy and efficiency of the proposed approach.
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2 Fracture mechanics in orthotropic media

The stress-strain law in an arbitrary linear elastic material can be written as

ε = cσ (1)

where εand σ are strain and stress vectors, respectively, and c is the compliance ma-
trix,
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where E, ν and G are Young’s modulus, Poisson’s ratio and shear modulus, respec-
tively. For a plane stress case, the compliance matrix is reduced to the following form:
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and for a plane strain state,

c2D
ij = c3D

ij − c3D
i3 .c3D

j3

c3D
33

for i, j = 1, 2, 6 (4)

Now assume an anisotropic body subjected to arbitrary forces with general bound-
ary conditions and a crack. Global Cartesian coordinate (X1, X2), local Cartesian co-
ordinate (x, y) and local polar coordinate (r, θ), defined on the crack tip, are illustrated
in Fig. 2. A fourth-order partial differential equation with the following characteristic
equation can be obtained using equilibrium and compatibility conditions [11].

c11s
4 − 2c16s

3 + (2c12 + c66) s2 − 2c26s + c220 = 0 (5)

where cij (i, j = 1, 2, 6) are the components of c2D. According to [11], the roots of
eq. 5 are always complex or purely imaginary

((
sk = skx + isky, k = 1, 2

))
and

occur in conjugate pairs as s1, s̄1 and s2, s̄2. The two-dimensional displacement and
stress fields in the vicinity of the crack-tip have been derived as [3]
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- Mode II
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where Re denotes the real part of the statement and K1 and KII are stress intensity
factors for mode I and mode II, respectively. pi and qi can be defined by

pi = c11s
2
i + c12 − c16si, (i = 1, 2) (10)

qi = c12si + c22
si
− c26, (i = 1, 2) (11)

3 Isogeometric analysis

Isogeometric analysis is an isoparametric finite element method where the non-uniform
rational B-spline (NURBS) functions are applied as the basis functions. So, for both
geometry description and solution field approximation, NURBS functions are utilized,

X
(
ξ1, ξ2

)
=

ncp∑
k=1

Rp,q
k

(
ξ1, ξ2

)
Pk (12)

uh
(
ξ1, ξ2

)
=

ncp∑
k=1

Rp,q
k

(
ξ1, ξ2

)
uk (13)

where X and uh are vectors of physical coordinates and solution field approximation
of the parametric coordinate (ξ1, ξ2), respectively. {Rp,q

k } are the NURBS functions
of order p in ξ1 direction and order q in ξ2 direction (see Section (3.1)). ncp is the
number of control points and basis functions, {Pi} are the physical coordinates of
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Figure 1: An arbitrary orthotropic cracked body subjected to body force b and traction
t̄.

control points, and {ui} are the control variables. It is noted that the control points are
not necessarily located in the constructed physical geometry.

NURBS shape funtions and the linear elasticity problem formulations are defined
in the following sub-sections.

3.1 NURBS functions

NURBS shape functions of order p in ξ1 direction and order q in ξ2 direction is defined
using tensor product feature as follow,

Rp,q
i,j

(
ξ1, ξ2

)
=

Np
i (ξ1) N q

j (ξ2) wi,j∑n
î=1

∑m
ĵ=1 Np

î
(ξ1) N q

ĵ
(ξ2) wî,ĵ

(14)

where {wi,j} are the weights corresponding to each control point. {Np
i (ξ1)} and{

N q
j (ξ2)

}
are the B-spline basis functions of order p in ξ1 direction and order q in

ξ2 direction, respectively, which are defined in a parametric space
[
Ξ1 ×Ξ2

]
. Defi-

nitions of B-spline shape functions of both directions are the same. In the following,
they are defined in one direction.
Ξ is called the knot vector and has the following form,

Ξ = {ξ1, ξ2, . . . , ξn+p+1} ξi ≤ ξi+1, i = 1, 2, . . . n + p (15)

where n is the number of basis functions and the knots {ξi} are real numbers repre-
senting the coordinates in the parametric space [0,1]. In order to satisfy the Kronecker
delta property at the boundary points, the so-called open knot vectors are utilized
where the first and last knots are repeated p + 1 times.
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B-spline basis functions are defined as:

Ni,0 =

{
1 ξi ≤ ξ ≤ ξi+1

0 otherwise
(16)

Ni,p = ξ−ξi

ξi+p−ξi
Ni,p−1 (ξ) +

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1 (ξ) for p = 1, 2, 3, . . . (17)

Readers are referred to [12] for more information about the NURBS.

3.2 Linear elasticity problem

Strong form of a linear elasticity problem and the boundary conditions are defined in
the following forms:

∇.σ + b = 0 (18)

σ.n = t̄ on Γt (19)

u = ū on Γu (20)

where σ and b is stress tensor and body force vector, respectively. Γt and Γu are parts
of the problem boundary where prescribed traction t̄ and displacement ū are imposed
respectively.

4 Extended isogeometric analysis

Isogeometric analysis method has been recently developed for fracture analysis of
isotropic cracked bodies using the concept of extended finite element method (XFEM)
[10, 1]. Ghorashi et al. [1] called this promising method “extended isogeometric
analysis (XIGA)”. In the XIGA approach, cracks can be defined independent of the
mesh and can propagates without the necessity of remeshing. This is achieved by
extrisically enriching the solution field approximation (eq. (13)),

uh (ξ1, ξ2) =
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i=1 Rp,q
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∑nH

j=1 Rp,q
j (ξ1, ξ2) Haj

+
∑nQ
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∑4
α=1 Qαb

α
k

(21)

where nen is the number of non-zero basis functions defined at the parametic coordi-
nates (ξ1, ξ2). nH is the number of basis functions whose support domains are cut by
crack but do not contain the crack tip and nQ is the number of basis function whose
support domains include the crack tip. aj and bα

k are vectors of additional DOFs
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that are related to the modeling of crack faces and crack tips, respectively. H is the
generalized Heaviside function,

H (X) =

{
+1 if (X−X∗) .en > 0

−1 otherwise
(22)

where en is the unit normal vector of crack alignment in point X∗on the crack surface
which is the nearest point to X (ξ1, ξ2).

In eq. (21), Qα {α = 1, 2, 3, 4} are the crack tip enrchment functions whose roles
are reproducing the singular filed around crack tips. In this paper, the following or-
thotropic crack tip enrichment functions developed by Asadpoure and Mohammadi
[4], which were defined based on the analytical solution (equations 6, 7, 8, 9), are
adopted,

{Qα}4
α=1 = {

√
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2

√
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√
r cos θ2

2

√
g2 (θ), . . .√

r sin θ1
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√
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√
r sin θ2

2

√
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(23)

where

θi = arctan
[

siy sin θ

cos θ+six sin θ

]
, (i = 1, 2) (24)

gi (θ) =
√

(cos θ + six sin θ)2 + (siy sin θ)2, (i = 1, 2) (25)

where six and siy are real and imaginary parts of si computed by eq. 5. It is noted that
the third and fourth functions in the right-hand side of the equation 23 are discontinu-
ous across the crack faces while the others remain continuous.

5 Numerical example

The proposed method is applied for analysis of a finite rectangular orthotropic plate
with an edge crack subjected to uni-axial tension. The plate is considered in the plane
stress state and several orientations of material elastic axes are studied. The propor-
tions of width to height and crack length to width are equal to 0.5 (see Fig. 2). The
plate is composed of a graphic-epoxy material with orthotropic properties as:

E1 = 114.8 GPa , E2 = 11.7 GPa , G12 = 9.66 GPa , ν12 = 0.21

NURBS basis functions of cubic order are applied. 1296 control points and 1089
elements are used for modeling the problem, as illustrated in Figs. 3 and 4. Minimum
and maximum sizes of elements are [w × h] /272 and [w × h] /27 around the crack tip
and far from it, respectively.

7



Figure 2: Geometry and loading.

In order to increase the integration accuracy, sub-triangles and almost polar tech-
niques are utilized for integration over elements cut by crack and contain the crack tip,
respectively (see [1]). For imopition of essential boundary conditions, the Lagrange
multiplier method is adopted (see [1]).

For comparing the obtained results with those available in the literature, the stress
intensity factor (SIF), which is among the important parameters of representing the
fracture properties of a crack, is calculated. For this purpose, the technique developed
by Kim and Paulino [2] is employed. Effects of changing the material elastic angle
on mixed mode SIFs in the plate are probed. The comparison of results between the
proposed method and the results of the enriched element free Galerkin (EFG) [5],
extended finite element method (XFEM) [4] and boundary element method (BEM)
[14], is shown in Fig. 5.

It is seen that the results are in good agreement with those obtained by other meth-
ods. The results show that the trend of mode I SIF changes around β = 45°. It has
an increasing trend in the span of β = 0° to β = 45° and then decreases in the span
of β = 45° to β = 90° and reaches a value around its initial value, i.e. when β = 0°.
The turning point for the mode II SIF is about β = 30°.

6 Conclusion

In this paper, the newly developed XIGA has been further extended to analysis of
cracked orthotropic plates. The recently proposed crack-tip orthotropic enrichment
functions have been employed in the XIGA method to increase the approximation
accuracy near the crack-tip. For imposition of essential boundary conditions, the La-
grange multiplier method has been utilized and in order to increase the integration
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Figure 3: Distribution of control points: whole view and around the crack tip .
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Figure 4: Distribution of elements : whole view and around the crack tip.
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(a)

(b)

Figure 5: The effect of various inclinations of elastic material axes on the mixed mode
SIFs: a) normalized mode I SIF ( KI

σo
√

πa
) , b) normalized mode II SIF ( KII

σo
√

πa
).
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accuracy around the discontinuous and singular fileds, ’sub-triangles’ and ’almost po-
lar’ techniques are adopted.

A cracked orthotropic plate with different orientations of material elastic axes have
been analyzed using the proposed approach. Results of mixed-mode stress intensity
factors (SIFs) have been compared with the reference results and proved the accuracy
and efficiency of the proposed method.
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