
Abstract

Fracture analysis of an isotropic two-dimensional body with a curved crack using the
extended isogeometric analysis (XIGA) is investigated. XIGA is a newly developed
numerical approach which benefits from the advantages of the isogeometric analysis
method and the extended finite element method [1, 2]. It has been successfully applied
for analysis of cracked bodies where the straight crack remains straight in the para-
metric space. In this paper, XIGA is extended for fracture analysis of curved cracks
by adopting specific mapping techniques. Sub-traingles and almost polar techniques
alongside applying blending function method are employed for integration over ele-
ments intersected by the crack. The accuracy of the proposed approach is investigated
for a plate with an arc-shaped central crack with different arc angles.

Keywords: extended isogeometric analysis, curved crack, enrichment functions, lin-
ear elastic fracture mechanics, mapping, stress intensity factor.

1 Introduction

Fracture analysis of an isotropic two-dimensional body with a curved crack using the
extended isogeometric analysis (XIGA) is discussed in this article.

Crack propagation simulation in structural analysis using novel numerical meth-
ods has been an active research topic for the past two decades due to the existence
of singularity at the crack tip and remeshing necessity to accomodate the evolving
geometry. Therefore, a new generation of numerical methods have been developed,
including meshfree methods [3-12] and the extended FEM (XFEM) [13-18] which be-
longs to the class of partition of unity methods (PUM). One of the principal features
of these methods is their capability in the analysis of moving discontinuous problems
such as crack propagation, without remeshing or rearranging of the nodal points. In
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the XFEM, a priori knowledge of the solution is locally added to the approximation
space. This enrichment allows for capturing particular features such as discontinuities
and singularities which are present in the solution exactly.

On the other hand, isogeometric analysis (IGA) is another robust computational ap-
proach recently proposed by Hughes et al. [19, 20]. This method offers the possibility
of integrating the finite element analysis (FEA) into conventional NURBS-based CAD
design tools. In general, it is necessary to convert data between CAD and FEA pack-
ages to analyze new designs during the development. IGA employs complex NURBS
geometry (the basis of most CAD packages) in the FEA software directly. This allows
for models to be designed, tested and adjusted in one go, using a common data set.

The isogeometric formulation using NURBS basis functions has been recently
enriched via XFEM to solve linear fracture mechanics problems with incompatible
meshes while obtaining solutions with higher order convergence rates and high levels
of accuracy [1, 2]. This approach, entitled the extended isogeometric analysis (XIGA)
[2], benefits from the advantages of its origins: XFEM and IGA; while it is capa-
ble of analyzing crack growth problems without any remeshing requirement, complex
geometries can be modeled with few elements and higher order inter-element conti-
nuities are satisfied.

XIGA has been successfully employed for analysis of bodies with straight cracks
in the parametric space and parent element. For improving the accuracy of integra-
tion by the Gauss quadrature rule, the “sub-triangles approach” and the “almost polar
technique” have been utilized for split and crack tip elements, respectively [2]. The
principal difficulty with curved cracks is the special treatment required for the integra-
tion of sub-triangles which one of its sides is not straight in the parametric space.

In this contribution, specific mappings based on the blending function method are
used for integration over the elements cut by a non-straight part of the crack, and
is extended to analysis of structures having curved cracks in the parametric space.
Consequently, no limitation remains for considering arbitrary non-smooth and smooth
strong discontinuities in the XIGA.

In order to impose Dirichlet boundary conditions, the Lagrange multiplier method
is used. Mixed-mode stress intensity factors (SIFs) are evaluated by means of the
interaction integral to determine the fracture properties of domain.

Finally, a plate with an arc-shaped central crack with different arc angles is ana-
lyzed by the proposed method. Comparison of the numerical results with analytical
solutions available in the literature shows the efficiency and validity of the present
approach.

2 Extended isogeometric analysis (XIGA)

isogeometric analysis (IGA) [19, 20] has recently been enriched using superior con-
cepts of the extended finite element method (XFEM) [13, 14] for analysis of isotropic
cracked problems [1, 2]. In this new extended isogeometric analysis (XIGA) [2], clas-
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sical IGA space is extrinsically enriched by some additional functions. These func-
tions are obtained from the product of global enrichment functions and some classical
NURBS functions. In this case, discontinuous problems can be efficiently analyzed
so that the remeshing necessity is vanished in moving discontinuous problems, such
as crack propagation simulations. In XIGA, some basis functions are selected to be
enriched by the Heaviside function for modeling crack edges, and by crack tip enrich-
ments for improving the accuracy of solution field near the crack tip. In XIGA, the
solution field is approximated in the form of

uh (ξ1, ξ2) =
∑nen

i=1 Rp,q
i (ξ1, ξ2)ui +

∑nH

j=1 Rp,q
j (ξ1, ξ2) Haj

+
∑nQ

k=1 Rp,q
k (ξ1, ξ2)

∑4
α=1 Qαb

α
k

(1)

where {Rp,q
i (ξ1, ξ2)} are the NURBS basis functions of orders p and q in ξ1 and ξ2

directions, respectively, at the point (ξ1, ξ2) in the parametric space [0, 1]× [0, 1]. {aj}
are the vectors of additional degrees of freedom which are related to the modeling of
crack faces, {bα

k} are the vectors of additional degrees of freedom for modeling the
crack tip, nen is the number of nonzero basis functions for a given knot span, nH is
the number of basis functions that have crack face (but not crack tip) in their support
domain and nQ is the number of basis functions associated with the crack tip in their
influence domain. H is the generalized Heaviside function [21],

H (X) =

{
+1 if (X−X∗) .en > 0

−1 otherwise
(2)

where en is the unit normal vector of crack alignment in point X∗on the crack surface
which is the nearest point to X (ξ1, ξ2).

In eq. (1), Qα {α = 1, 2, 3, 4} are the crack tip enrichment functions whose roles
are reproducing the singular filed around crack tips,
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,
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}
(3)

where (r, θ) are the local crack tip polar coordinates with respect to the tangent to the
crack tip in the physical space.

Readers are referred to [2] for more information about XIGA formulation and im-
plementation.

3 Numerical integration

The Gauss quadrature rule is utilized for numerical integration. For integrating over
elements which are not cut by part of a crack, the usual procedure for isogeometric
analysis [19, 20] is employed. Other elements require special techniques for increas-
ing the accuracy of numerical integration because of existence of discontinuity within
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them. In this contribution, “sub-triangles” and “almost polar” techniques are applied
for split and crack tip elements, respectively.

Firstly, it is needed to map the crack curve from physical space to the parametric
space. A simple way is to consider sufficient points on the crack and map them to the
parametric space using a conventional technique for solving nonlinear algebraic equa-
tions such as the Newton-Raphson method. Then, by applying the B-Spline/NURBS
curve fitting, one can obtain the related knot vector and control points of the crack
curve in the parametric space (see [22]).

Elements cut by the curved crack are split into sub-triangles where some of them
have a curved edge. It is noted that subdivision is only applied to perform the nu-
merical integration and no new degrees of freedom are introduced in such elements.
In addition, an element may contain breakpoints (the points that correspond to the
knots used for crack definition in the parametric space) inside its curved edge. These
points represent continuity reduction points and should be taken into account in the
subdivision process. Figure 1 schematically shows such a subdivision procedure in
the parametric space.

The transformation required for mapping between spaces are shown for some sub-
triangles in Figure 1. Transformation T1 maps the parametric space into the physical
space. T2 transforms the standard triangle parent element to a straight-sided triangle
in the parametric space while T

′
2 transform the standard triangle parent element into

a triangle with a curved edge in the parametric space, as illustrated in Figure 2. By
using the isoparametric mapping and the blending function method, transformations
T2 and T

′
2 are defined as [23, 24],

T2 : ξ =
(
1− ξ1 − ξ2

)
ξ1 + ξ1ξ2 + ξ2ξ3 (4)

T
′

2 : ξ =
1− ξ1 − ξ2

1− ξ1
C

(
λ

(
ξ1

))
+

ξ1ξ2

1− ξ1
ξ2 + ξ2ξ3 (5)

where

λ
(
ξ1

)
= λ1 + (λ2 − λ1) ξ1 (6)

λ1 and λ2 are the parametric values of the curve defined in the parametric space,
corresponding to the points ξ1 and ξ2, respectively.

In order to adopt the “almost polar technique”, an additional transformation T3

needs to be applied for the sub-triangles, where one of their vertices coincides with
the crack tip,
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Figure 1: Sub-triangulation in the parametric space and transformation required for
mapping between spaces.

Figure 2: Transformations from the standard triangular parent element into straight-
sided and one curved edge triangles in the parametric space.
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Figure 3: Transformation T3 from a square into a triangle with the crack tip on its
vertex.

T3 :
ξ1 = 1

2

(
1 + ξ̃1

)
ξ2 = 1

4

(
1− ξ̃1 + ξ̃2 − ξ̃1ξ̃2

) (7)

4 Numerical simulation

An arc-shaped crack in an infinite plate under uniaxial tension is considered. A finite
plate model, sufficientlty large with respect to the crack length is simulated, as shown
in Figure 4. The analytical stress intensity factors, as given in [25], are:

KI = σo

2

√
πR sin β

[
[1−sin2(β/2) cos2(β/2)] cos(β/2)

1+sin2(β/2)
+ cos (3β/2)

]
KII = σo

2

√
πR sin β

[
[1−sin2(β/2) cos2(β/2)] sin(β/2)

1+sin2(β/2)
+ sin (3β/2)

] (8)

where R is the radius of the circular arc and 2β is the subtended angle of the arc. The
computations are performed for R = 0.25 and different values ofβ (30°, 45°, 60°).

NURBS basis functions of cubic order are used for analysis of the problem. 4×4
Gauss quadrature, sub-triangles technique with 13 Gauss points in each sub-triangle
and almost polar technique with 4×4 in each sub-triangle are used for integration. The
Lagrange mutiplier method is utilized for imposition of essential boundary conditions
(see [2]). For selection of crack tip enrichment basis functions, the topological enrich-
ment scheme is applied (see [2]).

A structured mesh containing 2209 elements in a narrow band near the crack is
used, as illustrated in Figure 5. The mesh size in the vicinity of the crack is he =
10/ (9× 39), and away from the crack is he = 10/9. The total number of control
points is 2500. The adopted discretization is clearly not the best choice, but in order
to obtain an optimal one, error estimation and adaptive procedures are required, which
are under development by the authors.
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Figure 4: Arc-shaped crack under far-field uniaxial tension.

(a)

(b)

Figure 5: Discretization of the plate: (a) whole view; and (b) near the crack tip.
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Figure 6: Errors (%) of mixed-mode SIFs for different ratios of interaction integral
radius r to a = R sin β when β = 30°.

Figure 7: Errors (%) of mixed-mode SIFs for different ratios of interaction integral
radius r to a = R sin β when β = 45°.

The mixed-mode stress intensity factors are computed for different choices of the
radii in the domain integral computations and the errors (%) are shown in Figures 6,
7 and 8 for β = 30°, 45° and 60°, respectively. The XIGA results are in good agree-
ment with the reference solution. The use of appropriate path-independent integrals
for curved (circular arc- shaped) cracks [26] is required to further improve the SIF
computations.
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Figure 8: Errors (%) of mixed-mode SIFs for different ratios of interaction integral
radius r to a = R sin β when β = 60°.

5 Conclusion

XIGA has been further extended for fracture analysis of curved-shape cracked bod-
ies. Specific mapping techniques based on the blending function method are applied
for more accurete integration over split and crack tip elements where the crack is not
straight in the parametric space. As a result, no limitation remains for considering
arbitrary non-smooth and smooth strong discontinuities in the XIGA. Results of frac-
ture analysis of the plate containing arc-shaped central crack shows the validity and
accuracy of the proposed approach.
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