
Abstract

The bouncing ball is one of the simplest dynamic systems exhibiting a great variety of

behaviours ranging from periodic to chaotic motion. In this paper, we use optical flow

methods to analyse the the motion of a ball bouncing under the gravity action and ex-

cited by a periodic force. We record the ball motion with a camera, obtain the optical

flow associated with the ball movement and compute the spectrum of the velocities

to assess the behaviour of the system. We also perform a computer simulation of the

bouncing ball system and compare the results with the experimental ones.

Keywords: bouncing ball, optical flow, video analysis, dynamical systems, period

doubling, numerical simulation.

1 Introduction

The bouncing ball dynamical system has been extensively studied since its introduc-

tion by Fermi [1]. It consists in a ball, moving under the gravity action, that bounces

on a membrane vibrating under the action of a periodic force. The model is easy to

realize in practice, allowing the comparison between the theoretical dynamics of the

system, the numerical simulation and the experimental results.

In Section 2 we introduce the dynamical system modeling the bouncing ball prob-

lem, that will be used for the simulations. Section 3 reviews two kinds of optical flow

algorithms for tracking the motion of the objects in a video sequence. In Section 4 we

describe the experimental setup and the process of recording the video sequence to ob-

tain the optical flow. Section 5 is devoted to compare the experimental results against

the simulation results for different observed behaviors of the bouncing ball system. In

the last section, we draw some conclusions and suggest lines of future work.
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2 Bouncing ball models

Most of the authors use an event driven technique to derive a discrete dynamical sys-

tem for the bouncing ball model [2, 3]. The key idea for these models is to compute

the impact time of the ball against the membrane. At that time, the velocity of the ball

instantly changes its direction and even its module if the bound is not elastic. Other

authors propose a continuous time model [4] that allows a continuous change in the

velocity, assuming that the ball bounces against an elastic membrane.

In general, the motion of the impact surface is assumed to be sinusoidal [5], but in

some cases it is simplified to a piecewise linear, quadratic or cubic function, in order

to analytically determine the collision times between the ball and the surface [6, 7, 8].

The model described below for the bouncing ball system appears in [9].

Consider an elastic ball, with coefficient of restitution ǫ, which is kept bouncing off

a vertically oscillating base which vibrates sinusoidally as S(t) = A sin ωt. Between

two successive collisions, the ball motion is governed by a gravitational field g. If

the ball departs from the membrane at time ti, the time of the next impact ti+1 is the

smallest solution ti+1 > ti of the discrete-time dynamics map

A(sin ωti+1 − sin ωti) = Vi(ti+1 − ti) −
1

2
g(ti+1 − ti)

2, (1)

where Vi is the post-impact velocity, which relates to the pre-impact Ui+1 velocity at

time ti+1 through

Ui+1 = Vi − g(ti+1 − ti). (2)

As far as the collision is partially elastic, the ball bounces back instantaneously at ti+1

with a relative positive velocity

Vi+1 − Ṡ(ti+1) = −ǫ[Ui+1 − Ṡ(ti+1)], (3)

where the relative landing velocity Ui+1 − Ṡ(Ti+1) is always negative. Physically,

the coefficient ǫ (defined as the ratio of the relative velocities before and after the

collision and sometimes called restitution coefficient) gives a measure through the

quantity (1 − ǫ2) of the energy lost in the collision. Combining equations (1-3) and

adimensionalizing the time and velocity variables according to ti → ωti ≡ φi and

vi → Viω/g gives the phase and velocity maps

φi+1 = φi + τi,

Γ[sin(φi + τi) − sin(φi)] = viτi −
1

2
τ 2
i , (4)

vi+1 = −ǫ(vi − τi) + (1 + ǫ)Γ cos(φi + τi),
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where Γ = Aω2/g is the dimensionless shaking acceleration and τi the duration of the

flight. The state variables are the phase φi and the velocity vi after the impact. The

dynamics is controlled by two parameters, Γ and ǫ. Due to the periodicity of (4) the

phase φ can be taken modulus 2π.

Our objective is to compare the theoretical model against the measurements ob-

tained from the experimental setup described in Section 4. The main practical diffi-

culty is to precisely detect the times when the ball touches the membrane. In some

devices found in the literature, this time is obtained placing a piezoelectric film on

the vibrating surface [10] or attaching thin and light metallic wires to the ball an to a

Nickel sheet deposited in the base [4]. We have tried a less invasive setup where video

image processing is the main tool to obtain the data of the motion of the ball.

3 Optical flow estimation

Video tracking deals with the problem of following moving objects across a video

sequence [11], and it has many applications as, for example, traffic monitoring and

control [12], [13], robotic tasks, surveillance, etc.. Simple algorithms for video track-

ing are based on the selection of regions of interest in the first frames of the video

sequence, which are associated with the moving objects and a system for estimating

the movement of these regions across the sequence.

One of the main problems in the processing of image sequences is the optical flow

estimation from two consecutive frames. The goal of this problem is to compute a

2D motion field that, in general, is the projection of the 3D velocities of the different

objects moving in the image onto the image plane. For this computation is generally

assumed that the brightness remains constant from one image to the following one.

Based on this assumption many methods have proposed for the optical flow estima-

tion [14]. Despite their differences, many of these techniques can be decomposed in

three steps: 1) Prefiltering or smoothing to extract signal structure of interest, 2) The

extraction of basic measurements, such as spatio-temporal derivatives or local corre-

lations, and 3) Integration of these measurements to produce a 2D flow field.

Some of the main methods for the optical flow estimation are the so-called dif-

ferential methods, where the optical flow estimation is based on computing spatial

and temporal image derivatives [15]. These techniques can be classified into local (or

sparse) methods, which may optimize some local energy-like expression and global

(or dense) methods, which attempt to minimize a global energy functional. We will

review briefly the fundamentals of one of each kind of methods. First, we will review

a very popular sparse method known as the Lucas and Kanade method [16], [17] and

then, the dense method proposed by Farnebäck [18].
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3.1 Lucas and Kanade’s algorithm

Lucas and Kanade’s algorithm is a differential algorithm. This algorithm is based

on what is called the optical flow restriction. To obtain this equation we denote the

intensity of a frame at time t in the pixel (x, y) by I(x, y, t) and assume that there

exists a unknown translation (vx, vy), in such a way that

I (x + vx, y + vy, t + 1) = I(x, y, t) .

Using the first order approximation of Taylor expansion, we impose the restriction

∂I

∂t
(x, y, t) +

∂I

∂x
(x, y, t) vx +

∂I

∂y
(x, y, t) vy = 0 , (5)

which is known as the optical flow restriction. There are two unknown components

in (5), and we have only a linear equation. Thus, further constrains are necessary to

determine the components of the optical flow vx and vy.

Fist step in Lucas and Kanade’s algorithm is to select a pixel of interest to be

followed and a neighbourhood of this pixel Ω. The velocity of the pixel considered is

determined minimizing the expression

∑

~x∈Ω

W 2 (~x)

(

∂I

∂x
(~x) vx +

∂I

∂y
(~x, t) vy +

∂I

∂t
(~x, t)

)

, (6)

where W (~x) is a window function that weights the importance of each pixel in Ω. If

n pixels are considered in Ω, the solution of this problem satisfies the system [14]

AT W 2Av = AT W 2b , (7)

where

v = (vx, vy)
T ,

A =
(

~∇I (~x1, t) , . . . , ~∇I (~xn, t)
)

,

W = diag (W (~x1) , . . . ,W (~xn)) ,

b = −

(

∂I

∂t
(~x1, t) , . . . ,

∂I

∂t
(~xn, t)

)

.

In typical implementations the different images are previously filtered using a Gaus-

sian filter to attenuate temporal aliasing and quantization effects, and the partial deriva-

tives are approximated using central finite differences formulas.

3.2 Farnebäck’s algorithm

Another algorithm used to compute the optical flow is Farnebäck’s algorithm [18].

This algorithm is based on the idea of polynomial expansion to approximate some

4



neighbourhood of each pixel of the image. Here we are only interested in quadratic

polynomials,

I (x) = xT AX + bT x + c . (8)

The coefficients of this quadratic approximation are computed using a least squares fit

efficiently implemented by a hierarchical scheme [19].

To compute the displacement of a given pixel x between two consecutive frames

we assume that

I1 (x) = xT A1X + bT
1 x + c1

and

I2(x) = I1(x + v) = (x + v)T A1(x + v) + bT
1 x + c1

= xT A1x + (b1 + 2A1v)T + vT A1v + b1v + c1

= xT A2x + bT
2 x + c2 .

In this way, the following relations have to be satisfied

A2 = A1 (9)

b2 = b1 + 2A1v (10)

c2 = vT A1v + vT v + c1 (11)

and to obtain v the following system has to be solved,

2A1v = b2 − b1 . (12)

In practical implementations, the condition (9) is not satisfied and an approximate

matrix

A =
1

2
(A1 + A2)

is considered and the optical flow estimation is obtained by solving the system

Av = ∆b , (13)

where

b =
1

2
(b2 − b1) .

This method can be implemented in an iterative process based in a multi-scale

displacement estimation [18].

4 Experimental setup

Our system is based on recording the ball motion by means of a video camera. This

allows to simplify the experimental environment.

The bouncing ball model consists in a particle bouncing on a vibrating surface.

In our experiment, the particle is a table tennis ball that bounces on the membrane
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Figure 1: Experimental setup

of a loudspeaker. The loudspeaker is driven by a sinusoidal voltage with controlled

amplitude. This signal is provided by a function generator and amplified by an audio

amplifier to excite the vibration (see Figure 1). The vibrating frequency has been fixed

to 30 Hz, using the amplitude as control parameter.

We have used a digital camera link Mikrotron Eo Sens-MC1362, that captures up to

1600 frames per second (fps). In the experiments we have registered videos at 430 fps,

with frames of 256×380 pixels. The camera mounts an objective Goyo Optical Inc.

(focal 12.5 mm, F1.3). In order to obtain the best resolution, the camera was placed

close to the trajectory (at a distance about 20 cm). This has forced us to illuminate

the scene with a light source of 500W, allowing to perform the exposition with a low

diaphragm aperture (f/n↑), so reducing the minimum focusing distance. The registered

images were sent to a computer running MS Windows 7, throughout a x64 xCelera-

CLFull board, inserted in a PCI Expressx4 slot of the computer. The camera has been

calibrated using a camera calibration toolbox for MATLAB [20].

The interest of the design is that not only allows to determine the impact time within

a margin of error of 1/430 s, but also allows to track the ball along its trajectory.

The experiences are recorded in an avi file and then, the optical flow is obtained by

the methods introduced in Section 3.

In the Lucas Kanade’s method, we select some points in the region of interest of the

first frame of the video sequence. These points are followed along the entire sequence

and their trajectories are suitably filtered. Besides finding the spectra of the velocities,

we can approximately draw the position of the ball along the time.

Farnebck’s is a global method computes the flow all the pixels in the image. We use

this algorithm to obtain the spectrum of the motion. We select a region in the frame,

find the average flow of the pixels of the region in each frame and compute the fast

Fourier transform of the mean flow along the sequence. The analysis of the spectrum
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Figure 2: Membrane motion
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Figure 3: At 1.5 V, the ball rests in contact with the membrane

is used to check the dynamical behavior of the ball and compare it with the tracked

trajectory.

5 Results

After calibrating the camera, we record the loudspeaker membrane without the ball,

to determine the amplitude of the free vibration and check the accuracy of the tracking

algorithm. The amplitude is also used for tuning the simulation.

As it is seen in Figure 2, the tracked motion of the membrane closely follows a

sinusoid.

5.1 Driving voltage 1.5 V

Letting the ball rest on the membrane and setting the driving voltage to 1.5 V, the ball

oscillates remaining in permanent contact with the membrane. Figure 3 is obtained

superimposing a sinusoid vibrating at 30Hz of frequency and the amplitude of the

membrane with the position the point of the ball selected for tracking. As you can see,

its trajectory closely approximates the sinusoid.

Computing the spectrum of the mean flow of the sequence, we obtain a clear dom-

inant frequency equal to the frequency of the loudspeaker (see Figure 4).

It is well known that the bouncing ball system is very sensitive to the initial con-

ditions. With the same voltage 1.5 V, dropping the ball from a short distance to the
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Figure 4: Simple oscillation with frequency 30 Hz at 1.5 V
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Video tracking

Figure 5: At 1.5 V, starting from a different position, the ball bounces at each period

membrane, it enters a periodic mode bouncing at the same frequency as the mem-

brane. In the Figure 5, you can compare the ball motion obtained by video analysis

with the corresponding simulation. The simulation shows an initial transient until the

bounces become regular. This interval has not been recorded in the experiment.

Both modes of vibration are easy to distinguish in practice, because is the first case

the vibration is silent whereas when the ball bounces, it produces a regular audible

sound. Although the trajectories in the two modes are very different, their spectra are

very similar.

5.2 Driving voltage 1.9 V

Gradually increasing the amplitude, the system looses stability and suffers a bifurca-

tion around 1.8 V. At 1.9 V, in most cases, the dominant frequency is 15 Hz, because
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Figure 6: Chirping mode at 1.9 V
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Figure 7: Spectrum of the flow in mute mode at 1.9 V

the system is in its double period mode. We have analyzed different modes of motion

of the experimental system with the loudspeaker feed at this voltage.

The resting state observed at 1.5 V almost persists at 1.9 V, where the ball enters a

partially mute chirping mode. Figure 6 shows the result of the flow computations on a

video sequence of the ball in this mode. The irregularities are due to the fact that the

period and amplitude of the bounces are close to the spatial and temporal resolution

of the video recording system.

In this mode, the spectrum is slightly less smooth, but the dominant frequency is

not altered by the small jumps of the ball, as it can be seen in Figure 7.

With the loudspeaker driven at the same voltage, forcing the ball to bounce, one

can observe two different states of the system, both in the doubled period regime.

In the first one, the bounces are regular and span two periods each (see Figure 8).

The spectrum for this state is shown in Figure 9. The fundamental frequency has

changed to 15 Hz, half the driving frequency. The spectrum smoothness suggests that

the mode is quite stable for the actual value of the parameters.

In the other bifurcated state, the ball makes two different bounces in two driving

periods, describing the trajectory shown in Figure 10. The tracked trajectory agrees

surprisingly well with the simulated motion.

In Figure 11 there is a small peak at 7.5 Hz indication the proximity of a new period

duplication.
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Figure 8: Equal bounces spanning 2 periods at 1.9 V
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Figure 9: Doubled period at 1.9 V
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Figure 10: Different bounces spanning one period at 1.9 V
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Figure 11: Doubled period, small bounces at 1.9 V. Arising of the quadruple period
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Figure 12: Chirping mode at 2.25 V
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Figure 13: Tracked trajectories of ball and membrane at 2.25 V

5.3 Driving voltage 2.25 V

The double period is maintained for a range of voltage values from 1.9 V to 2.25

V, above which the motion again becomes unstable. At 2.25 V, we have recorded

two different states. In one state the ball presents an audible chirping whose tracked

trajectory is shown in Figure 12.

In the other state the period is quadruple ant the ball makes two different bounces

spanning two periods each. In this case, we have tracked both the ball an the mem-

brane motions. Figure 13 shows the trajectories of a point in the ball and another in

the membrane. The distance between them has been adjusted in order to make the

figure more clear, but the amplitude of each motion has not been scaled.

Figure 14 shows that the period has doubled, being 15 Hz the dominant frequency.
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Figure 14: Doubled period at 2.25 V. Ongoing of the quadruple period

5.4 Higher driving voltages

At higher voltages, the system becomes chaotic and the ball bounces without a stable

period. In the Figure 15 we have depicted the unadjusted trajectory tracked at 2.26 V

and its spectrum, showing that there are no dominant frequencies.

6 Conclusions

We have described an experimental setup that allows to analyse the behaviour of the

bouncing ball system using optical flow techniques. We record a video sequence of

a ball bouncing on the membrane of a loudspeaker driven by a sinusoidal current,

obtain the trajectory of the ball and compare it with the simulated motion derived

from a discrete dynamical system that models the bouncing ball behaviour.

The optical flow allows the determination not only the impact times of the ball, but

also shows the actual trajectory that the ball describes. The spectral analysis confirms

that the system presents different dynamic states indicating the arising of bifurcations.

The observed states have been compared with the corresponding simulated ones,

obtaining an almost perfect agreement.

In future work, different algorithms to estimate the optical flow will be applied and

the obtained motions of the bouncing ball will be compared. We will also study a

continuous dynamical model and its results will be compared with that of the discrete

model used in this work. We will also compare the experimental results with the

results of the continuous model.
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Figure 15: Chaotic motion at 2.26 v
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