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Abstract 
 
In the last decade, a number of works have been published proposing the solution of 
heat diffusion problems by first transforming the relevant partial differential 
equation (PDE) to the frequency domain. Many of those works make use of the 
boundary element method, thus requiring the previous knowledge of fundamental 
solutions for the problem. These are, however, only known for the simplest cases, 
and thus more general strategies may be interesting for example when the domain is 
not homogeneous, exhibiting varying properties. In this paper, we present an 
implementation of Kansa’s method for the solution of this type of problems, and test 
the accuracy of such implementation. Kansa’s method is a general numerical 
technique in which the solution of a given PDE is reproduced within a specific sub-
domain as a linear combination of RBFs, and thus does not require the prior 
knowledge of fundamental solutions. Here, the mathematical formulation of the 
method in the frequency domain will be presented and discussed; since the most 
commonly used RBFs (MQ) include a free parameter, we also focus on the choice of 
the correct value of this parameter for the specific physical problem type addressed 
here. The method is implemented and tested for a number of problems, and the 
results it provides are then compared with some reference solutions computed with 
other analysis strategies (namely direct time-domain analysis).  
 
Keywords: heat conduction, frequency domain, meshless, Kansa’s method, radial 
basis functions, shape parameter. 
 
1  Introduction 
 
The solution of transient heat conduction problems has been address using a large 
variety of method, ranging from simple analytical solutions known for simple cases, 
to complex numerical formulations, applicable to more general configurations. Two 
major groups of solution strategies have been developed over the years, the first 
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corresponding to a direct solution of the problem in the time domain [1-4], and the 
second to obtaining the solution first in a transformed domain (usually by means of a 
Laplace transform), and then performing an inverse transformation to synthesize the 
time response [5-7].  
More recently, a different strategy has been devised for the solution of such 
problems, in which a Fourier transformation is applied to the governing differential 
equation, and then the solution is pursued in the frequency domain (see for example 
Simões et al [8] or Godinho et al [9]). After solving the problem for each individual 
frequency, an inverse Fourier transformation allows synthesizing the temperature 
field in the time domain. This approach has been efficiently applied together with 
Boundary Element Method and Method of Fundamental Solutions formulations; 
however, both the MFS and the BEM require the previous knowledge of 
fundamental solutions for the PDE, which are only known for specific situations. 
Very little exists in the literature concerning its application together with other 
numerical techniques, such as domain-based methods, which are usually of more 
general application.  
In this work, the authors present an implementation of this methodology together 
with a domain-based meshless method, testing the accuracy of such implementation. 
Kansa’s method, or radial basis functions (RBF) collocation method, is here used for 
this purpose. Kansa’s Method is a general numerical technique which tries to 
reproduce the solution of a given partial differential equation (PDE) within a 
specific sub-domain as a linear combination of RBFs, and thus does not require the 
prior knowledge of Green’s functions. Many types of RBFs may be used with 
Kansa’s method, some of those including a free (shape) parameter, whose definition 
is non-trivial and that greatly influences the accuracy of the computed responses. 
This is still an open discussion in the scientific literature [10-14], since the 
parameter can be strongly problem dependent. 
Here, the mathematical formulation of the method in the frequency domain will be 
presented and discussed, also focusing on the choice of the RBF and free-parameter 
for the specific physical problem type addressed here. The method is implemented 
and tested for a number of problems, and the results it provides are compared with 
some reference solutions computed with other analysis strategies (namely direct 
time-domain analysis). Since the chosen RBFs involve the introduction of a free (or 
shape) parameter, a numerical strategy is proposed for the estimation of its optimal 
value.  

 
2  Mathematical formulation 
 
2.1 Governing PDEs 
 
To mathematically formulate the problem, we start by considering the standard time-
dependent heat diffusion equation, which can be written as 
 

 2 1 ( )( ) TT
K t
∂

∇ =
xx  (1) 
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where ( )T x  is the temperature at domain point x , /K k cρ=  being the diffusivity, 
k , c  and ρ  being the thermal conductivity, specific heat and density, respectively. 
Following the works of Simões et al [15], and considering an initial temperature 
distribution defined by 0 ( )T x , by application of a Fourier transformation in the 
variable t, equation (1) may be written, in the frequency domain, in the form of   
 

 2 2 20 ( ) iˆ ˆ( ) ( ) , with TT T
K K

ωλ λ∇ + = − = −
xx x  (2) 

 
which is a frequency dependent equation, where 2 fω π=  is the angular frequency. 
After solution of this equation over a full range of frequency values, an inverse 
Fourier transformation may be applied in order to recover the response in the time 
domain (see also [9] for further details). 
 
2.2 Formulation of Kansa’s method in the frequency domain 
 
To formulate Kansa’s method (or RBF collocation method), we next consider a 
closed domain (Ω ), bounded by a boundary (Γ ). Within this domain, consider a set 
of N collocation points { } 1

N
k k=

x , of which { } 1

NI
k k=

x  are NI  internal points and  

{ } 1

N
k k NI= +

x  are boundary points, as illustrated in Figure 1. Next, we consider that an 

approximate solution ( ( )T x ) of the relevant PDE in equation (2), can be written 
using a linear combination of radial basis functions (RBFs), expressed as 
  

 
1

( ) ( )
N

k k
k

T a ϕ
=

=∑x x  (3) 

 
where ( )kϕ x is the RBF and ( ) 1=

N
k k

a  are N unknown coefficients to be determined.  
Substituting this approximation in equation (2), we may write 
 

 2 2 0

1 1

( )( ) ( )
N N

k k k k
k k

Ta a
K

ϕ λ ϕ
= =

∇ + = −∑ ∑ xx x  (4) 

 
Based on this approximation of the relevant PDE, and also imposing the necessary 
boundary conditions at each boundary point, we may write a system of N equations on 
N unknowns, which allows calculation of the ( ) 1=

N
k k

a  coefficients. After calculating 
these coefficients, the approximate solution at any given domain point can be 
computed using equation (3). It is worth noting that the intrinsic characteristics of the 
method make it very simple to ascribe varying physical properties (in this case varying 
values of conductivity) to each point, and thus the method is applicable to problems in 
non-homogeneous domains. One should also note that the solution of the PDE in 
equation (2) using Kansa’s method requires no domain integration; thus, 
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implementation of the method becomes simple, and does not depend on the quality of 
possible domain integrations, as seen in other methods (such as the BEM). 
 

 
 

Figure 1: Illustration of the typical distribution of collocation points 
 
 
Although several types of RBF can be used, multiquadric functions (MQ) are 
probably the most usual choice of researchers, since they usually provide more 
accurate results. These functions are defined as 
 
 2 2( )k kr cϕ = +x , (5) 
 
with  k kr = −x x , kx being the center of the RBF, and c  being a shape (or free) 
parameter of the RBF.  
 
2.3 Optimization of the RBF free parameter 
 
Several studies have pointed out that the correct choice of this parameter is crucial to 
allow accurate results to be obtained. Larger values of the parameter usually lead to 
smoother functions and can provide better solutions, although they may also lead to 
ill-conditioned equation systems, which can hinder the computation of accurate 
results. In different published works, such as those by Sarra and Sturgill [10], Kansa 
and Hon [11], Fasshauer and Zhang [12], or Cheng [13], this topic has been 
analyzed; however, the optimization of the c value is still an open question.  
A recent work by Godinho et al [14] addressed this question for the specific case of 
acoustic problems, and considering a coupled approach between BEM and Kansa’s 
method. According to that work, a good estimation of an adequate value of c can be 
obtained by progressively increasing its value and evaluating the residual of the 
PDE; the best approximation should correspond to the one that minimizes that 
residual. To extend the approach for the present case, one should take into account 
that the residual of the PDE treated in this study at a domain point x  can be written 
as 
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 2 2 0

1 1

( )( ) ( ) ( )
N N

k k k k
k k

Ta a
K

ε ϕ λ ϕ
= =

= ∇ + +∑ ∑ xx x x  (6) 

 
If { } 1

NI
k k=

∈x x , then a null value of ( )ε x  occurs; if otherwise, then ( )ε x  is not null, 
and represents an error in the enforcement of the PDE. Thus, considering a set of 
points { }

1

NPRR
i i=

x  that do not coincide with the collocation points, one may compute an 

average residual as 
 

 2 2 0

1 1 1 1

( )( ) ( ) ( )
RNPR NPR N N

R R R i
i k k i k k i

i i k k

Ta a
K

ε ε ϕ λ ϕ
= = = =

⎛ ⎞
= = ∇ + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ xx x x  (7) 

 
This average residual can be used as a guideline for the evaluation of the error of the 
computed approximation, and consequently for the choice of the adequate shape 
parameter of the RBFs. The proposed approach can be further complemented and 
automated making use of optimization techniques, thus incorporating the parameter 
c as an unknown in the system of equations and trying to find the minimal value of 
the average residual as a function of c; thus, the goal is to find min( )ε , while still 
satisfying the relevant boundary conditions. A nonlinear least squares minimization 
subroutine, based in the subroutine LMDIF1 from MINPACK, is used for that 
purpose. 
 
3  Verification against frequency domain results 
 
To verify the behavior of Kansa’s method in frequency domain analysis of a heat  
conduction problem, we initially consider a simple square domain, subject to null 
temperatures along all boundaries. The medium has a density of 2500 kg/m3, a 
conductivity of 1.4 w/m/ºC and a specific heat of 840 J/kg/ºC. Within this medium, 
at x=0.25 m and y=0.35 m, a heat source is positioned. In the frequency domain, its 
effect can be accounted for assuming its contribution to be given by 
 

 ( )(2)
0

i( , )
4s sTs H

K
λ−

= −x x x x  (8) 

 
This function corresponds to the fundamental solution of the homogeneous PDE 
obtained from equation (2) when 0 ( ) 0T =x  (see Simões et al [8]).  
To analyse this problem, consider that a Kansa’s model is used, with a grid of 
10 x 10 points as defined in Figure 2, and that the response is calculated for 
frequencies of 85 10 Hzf −= ×  and 51.5 10 Hzf −= × . As reference solution, we 
consider the response calculated using a BEM model [9], discretizing each side 
using 20 elements. Figure 3a illustrates the computed reference responses for these 
two frequencies, clearly revealing the effect of the source, and exhibiting the 
prescribed null temperature boundary conditions.  
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In Figure 3b, the residual of the PDE obtained when using Kansa’s method is plotted 
against the free parameter (c). In the results calculated for both frequencies, it can be 
seen that the residual progressively decreases as c increases, up to a point at which 
the residual curve starts oscillating significantly. Indeed, at this point the value of c 
becomes sufficiently large so as to originate instabilities in the equation system, 
which becomes ill-conditioned. Thus, for higher values of c, the response is no 
longer reliable.  
To allow for a more convenient and automatized choice of c, the problem has also 
been solved making use of nonlinear least squares minimization, implemented so as 
to find the value of c that minimizes the average residual of the PDE. In the plots, a 
mark has been added corresponding to the value of the free parameter obtained using 
this solver; as can be seen, the chosen value always corresponds to a local minimum 
of the curve, and is always located in the smooth (non-oscillating) part of the curve. 
To scrutinize in more detail the quality of the temperature distribution calculated 
using this “optimal” parameter, Figure 3c illustrates the error computed against the 
reference solution. As can be seen, for both frequencies the maximum error is below 

410− . 
 

 
 

 
 

Figure 2: Test model for verification of the proposed formulation, consisting of a 
unit square domain with null boundary temperatures, and subject to a point heat 

source within the domain. 
 
 
To further analyse the behaviour of the method, results were also computed for more 
refined descriptions of the domain. Figure 4 illustrates both the c-residual curve and 
the domain error when 12 x 12, 15 x 15 and 18 x 18 points are used to define the 
model based in Kansa’s method. It becomes clear that the “optimal” c parameter 
tends to decrease when more points are adopted, and that progressively lower 
residuals are obtained when more refined models are used. Similarly, the domain 
error also tends to decrease with the refinement of the model, indicating a 
convergence to the correct solution. 
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Figure 3: Results computed in the frequency domain for two different frequencies: 
a) reference absolute temperature response; b) residual of the PDE for Kansa’s 

method computed through equation (7) as a function of c; c) error in the calculation 
of the temperature when using Kansa’s method with the “optimal” c value. 
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Figure 4: Behaviour of Kansa’s method for progressively refined models: a) 12x12 
points; b) 15x15 points; c) 18x18 points. Left column represent the variation of the 

PDE residual with c, while right column presents the domain error in the calculation 
of temperatures. 

 
 

4  Comparison with time domain results 
 
The proposed Kansa’s method formulation was also applied to simulate problems in 
which an initial temperature distribution is given throughout the domain. For this 
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purpose, we consider the same geometry as depicted in Figure 2, but we now 
consider that the initial temperature distribution depicted in Figure 5a is prescribed. 
This distribution corresponds to a cosine shaped variation in the vicinity of the point 
with coordinates (0.25 m; 0.25 m), reaching a maximum of 20ºC at this point. Thus, 
for, for this case, the PDE must include the right-hand-side term as given in equation 
(2); additionally, in order to synthesize a time domain response, computations are 
first performed for a full frequency range, from 0 Hz to 31.28 10 Hz−× , with an 
increment of 5.25 10 Hz−× , and the corresponding results are then Fourier-
transformed back to the time domain. One should note that for the null frequency the 
right-hand-side term cannot be computed, and thus a complex frequencies with a 
very small imaginary part are used (see [15] for details). Figure 5b illustrates the 
calculated “optimal” c values along the analyzed frequency domain, revealing that 
they exhibit some variation, although they tend to stabilize around c=0.28 for the 
higher frequencies. 
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Figure 5: a) Initial temperature distribution (at t=0.0s) for the second example;  
b) Variation of the optimal values of the free parameter along the frequency domain. 

 
To verify the correctness of the calculated responses, a time-domain model was 
used, based on an implicit Crank-Nicholson marching scheme; the time-domain 
model was first checked to ensure that adequate values were computed, and a final 
grid of 20 x 20 points, together with a time step of 200 s, was used in the calculation 
of reference responses. Figure 6 depicts both the results computed using the direct 
time-marching scheme and the frequency domain approach, for instants 
corresponding to 5000 s (25 time steps) and to 10000 s (50 time steps). As can be 
seen, the responses calculated using both methods are very similar, without any 
visible differences being observable within the analysis domain. As expected, the 
temperature progressively decreases around the region of maximum temperature, 
with the energy spreading to other points where the initial temperature was null. 
This effect is clear when observing the snapshot taken for the later time, where 
non-null temperatures are observable for x>0.5 m and beyond y>0.5 m. 
To have a better picture of the quality of the solutions, the temperature variation was 
recorded at a point located at (0.158m; 0.316m), and its evolution is depicted in 
Figure 7. At that point, a progressive decrease of the temperature can be seen, and 
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the responses calculated by both the frequency domain and time domain approaches 
are identical. 
 

Direct time marching calculation   iFFT from frequency domain responses 

 
a) 

 

 
b) 

Figure 6: Temperature distribution at calculated with a classic time-marching 
algorithm and with the proposed method at: a) t=5000.0s ; b) t=10000.0 s. 
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Figure 7: Temperature variation at a point located at (0.158m; 0.316m), calculated 
using the proposed formulation and a classic time-marching algorithm. 
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5  Final remarks 
 
This paper presented and discussed an implementation of Kansa’s method for 
calculation of transient heat diffusion problems, based on the solution of the 
problem in a transformed (frequency) domain. The implementation of the method 
made use of an optimization scheme for the calculation of the free parameter of the 
MQ RBFs, which was shown to compute different values of c as a function of the 
frequency and of the domain discretization. Comparison with reference results 
calculated using a BEM model revealed that good responses are computed by the 
proposed method. 
The method was also applied to calculate the evolution of the temperature within a 
domain, considering an initial non-uniform distribution of temperatures. Comparison 
with a standard time-marching algorithm, based on an implicit Crank-Nicholson 
implementation, also revealed a good accuracy of the method. One should note that, 
for that case, the response is first calculated in the frequency domain and then 
transformed to time domain by means of an inverse FFT. 
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