
Abstract

In this paper a reactive mass transport model was developed for service life predic-

tion of concrete structures. The model formulation is based on a continuum approach

and solved by a non-linear finite element scheme. The model is an extended version of

the Poisson-Nernst-Planck equation system, including a sorption hysteresis model and

a chemical equilibrium module to model the chemical degradation part of the prob-

lem. The sorption hysteresis is modeled as a history depended equilibrium function

between the liquid and vapor phase. A simple test case shows the improved result from

the sorption hysteresis modelling and a chemical model shows the chemical degrada-

tion of cement paste.

Keywords: mass transport, chemical coupling, sorption hysteresis, continuum theory,

finite element method.

1 Introduction

Service life modeling of concrete is a general framework that includes a range of dif-

ferent areas. For this study focus will be on multi-species mass transport coupled to a

chemical module capable of predicting the chemical degradation of the solid matrix.

Mass transport modeling of concrete is a diffusion process in a electrolytic pore solu-

tion, which is described in various papers by the Nernst-Planck equation e.g. see [1]

and different extended versions of the Poisson-Nernst-Planck equation (PNP) e.g. see

[2, 3, 4, 5]. The movement of ions in concrete is strongly coupled to the convection

of water in the system, this is coupled on a continuum basis to the diffusion equa-

tion, see [6, 7]. A continuum system of this type is refered to as mixture theory, see

[8]. Furthermore, unsaturated concrete exhibit sorption hysteresis e.g. see [9, 10]. In

this context chemical equilibrium modeling consist of two main parts, the hydration
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process and the degradation of the solid matrix, see [11, 12, 13]. The topics studied

here have related fields within groundwater chemistry, see [14], and nuclear waste

disposal, see [15, 16], from which experiences can be drawn. Coupling of a mass

transport model and a chemical model into a reactive transport model has been inves-

tigated in different papers, in terms of different mass transport equations and chemical

equilibrium codes for cement based materials, see [17, 18, 19].

For this work the PNP equation system is used as basis for the description of an

extended reactive mass transport model. The aim is to include, a water/vapor coupling

in terms of a sorption hysteresis effects, including the advection of dissolved ionic

species which constitute the novelty of this work. Furthermore, it is important to keep

the model in a general formulation, especially for the chemical module, which give

the possibility of working with different chemical models without limitations in the

number of state variables adopted. A simple test case is evaluated in order to show the

effect of sorption hysteresis modeling and chemical degradation of the solid matrix.

2 Model description

2.1 General formulation of the model

The mass transport model described in this work is based on the Poisson-Nernst-

Planck equations for ionic species with addition of a advection term coupled with

vapor diffusion by a sorption hysteresis model. The sorption hysteresis model will

improve the ability to describe non-saturated system e.g caused by time depended

boundary conditions. Furthermore, a chemical module is added to the mass transport

equation as a source/sink term, for establishing chemical equilibrium between the

solid matrix and pore solution. The governing equation is solved by a non-linear finite

element (FEM) scheme, where the chemical module is running as a separate routine

on each node in the discrete system. By using the separate approach, it is assumed

that complete chemical equilibrium is established instantaneously in each time step

considered.

2.2 Mass transport modeling

2.2.1 Extended Possion-Nernst-Planck

The extended Nernst-Planck part of the problem including for chemical reactions and

advection can according to [8, 19] be expressed as

εl ∂cl
i

∂t
+ cl

i

∂εl

∂t
=∇ ·

(

Dl
iε

l∇cl
i + Dl

ic
l
i∇εl − Al

ic
l
iziε

l∇Φ
)

+ (1)

vl,sεl∇cl
i + vl,scl

i∇εl + qi; i = 1, 2..,m

where εl is the volume concentration of the liquid phase l, cl
i is the concentration of the

i’th aquas specie which is dissolved in the liquid phase l, t is time, Dl
i is the diffusion
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coefficient, Al
i is the ion mobility, zi is the valence, Φ is the electrostatic potential of

the bulk solution, vl,s is the liquid velocity with respect to the solid matrix s and qi

is generation/dissolution of species from establishment of chemical equilibrium. In

partial saturated systems, the diffusion coefficient, ion mobility and liquid velocity are

assumed to be functions of the liquid volume fraction εl.

The charge balance of the solution is based on Gauss law which in this case is

reduce to a Poisson type of equation.

ξdξ0∇2Φ = F

n
∑

i=1

cizi (2)

where ξd is the relative dielectricity coefficient, ξ0 is the dielectricity coefficient of

vacuum and F is the Faraday’s constant.

The change in volume concentration of liquid εl is described by a mass balance

equation including a source/sink term, coupling the vapor/liquid transport and estab-

lish phase equilibrium in terms of a history depended function, see [9, 10].

ρw
∂εl

∂t
= ∇ ·

(

Dεl∇εl
)

+ R
(

εl,eq − εl
)

(3)

where ρw is the density of water, Dεl is the diffusion coefficient of the liquid, which

is a function of εl, R is the rate constant for sorption and εl,eq is the equilibrium

volume concentration of water . εl,eq is a function of relative humidity φv and sorption

history. A more detailed description of a sorption hysteresis model, including scanning

between the two boundary curves, will be given in Section (2.2.3).

A mass balance equation similar to Equation (3) describes the change in vapor vol-

ume concentration εv. To simplify the coupling a non-deformable matrix is considered

and a relation between εv, εl and εp is utilized εv + εl = εp where εp is the porosity

. Furthermore, it is convenient to work with relative humidity as driving potential for

the vapor phase. Relative humidity is related to the vapor density concentration ρv by

φv = ρv/ρvs where ρvs is the mass density concentration of vapor at saturation at a

given temperature. The governing equation for vapor transport is given in Equation

(4).

ρvs

(

εp − εl
) ∂φv

∂t
− ρvsφv

∂εl

∂t
= ∇ · (Dφ∇φv) − R

(

εl,eq − εl
)

(4)

where Dφ is the vapor diffusion coefficient, which is a function of εl. Note different

sign in the source/sink terms from Equation (3) to (4).

2.2.2 Finite element formulation

The complete set of coupled Equations (1), (2), (3) and (4), is solved by a non-linear

finite element scheme. A weak formulation of the system is established by multiplying

the governing equations with an arbitrary function w and W for the spatial and time
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domain respectively. Using the Green-Gauss theorem and integrate over time and

spatial domain, give

t2
ˆ

t1

W

ˆ

V

wεl ∂cl
i

∂t
dV dt +

t2
ˆ

t1

W

ˆ

V

wcl
i

∂εl

∂t
dV dt =

−
t2
ˆ

t1

W

ˆ

V

(∇w)T
(

Dl
iε

l∇cl
i + Dl

ic
l
i∇εl − Al

ic
l
iziε

l∇Φ
)

dV dt +

t2
ˆ

t1

W

˛

S

jin dS dt+

t2
ˆ

t1

W

ˆ

V

w vl,sεl∇cl
i dV dt +

t2
ˆ

t1

W

ˆ

V

w vl,scl
i∇εl dV dt (5)

where j is the flux vector from the surface S and n is the normal to the surface.

For the Poisson equation (2), it is used that the arbitrary function w(x, y, z) = 0 for

(x, y, z) ∈ S, after integration by parts. It is seen that the function is independent of

time and therefore only integrated in the spatial domain, as

ˆ

V

(∇w)T ξdξ0∇Φ dV =

ˆ

V

w F
n

∑

i=1

cizi dV (6)

, The weak form of the liquid flow described in Equation (3) is given by the same

approach as in Equation (5), i.e

t2
ˆ

t1

W

ˆ

V

w ρw
∂εl

∂t
dV dt = −

t2
ˆ

t1

W

ˆ

V

(∇w)T
(

Dεl∇εl
)

dV dt+

t2
ˆ

t1

W

˛

S

jln dSdt+

t2
ˆ

t1

W

ˆ

V

wR
(

εl,eq − εl
)

dV dt (7)

The weak form of the governing vapor transport equation (4) is

t2
ˆ

t1

W

ˆ

V

w ρvs

(

εp − εl
) ∂φv

∂t
dV dt −

t2
ˆ

t1

W

ˆ

V

w ρvsφv
∂εl

∂t
dV dt =

−
t2
ˆ

t1

W

ˆ

V

(∇w)T (Dφ∇φv) dV dT+

t2
ˆ

t1

W

˛

S

jvn dSdt−
t2
ˆ

t1

W

ˆ

V

w R
(

εl,eq − εl
)

dV dt

(8)

The state variables of the model are approximated with the shape function N and

from the Galerkin’s method, the arbitrary spatial weight function w is approximated

with the same shape function.

cl
i = Nai; εl = Nal; Φ = NaΦ; φv = Naφ; w = cTNT (9)
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Note that the property w = wTfor the arbitrary function is used, so Nc = cTNT. The

gradient of the shape function is denoted B = ∇N, which results in the approximation

of the gradient of the state variables and the spatial weight functions as

∇cl
i = Bai; ∇εl = Bal; ∇Φ = BaΦ; ∇φv = Baφ; ∇w = Bc

(10)

The general global matrix formulation of the system can be written as

Cȧ = −Ka + f (11)

where C is the global damping matrix, K is the global stiffness matrix and f is the

global load vector. The global matrices can be established in terms of local matrices

as

Cȧ =























C1 0 0 0 0 W1 0
0 C2 0 0 0 W2 0

0 0
. . .

...
...

...
...
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0 0 0 0 0 0 0
0 0 0 0 0 Cε 0
0 0 0 0 0 −M Cφ
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ȧε

ȧφ
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

(12)

where the local matrices in C is obtained by inserting the assumptions from equation

(9) and (10) in the weak formulations given in equation (5), (7) and (8). The following

is used

Ci =

ˆ

V

NTεlN dV ; Wi =

ˆ

V

NTcl
iN dV ; Cε =

ˆ

V

NTρwN dV

Cφ =

ˆ

V

NTρvs

(

εp − εl
)

N dV ; M =

ˆ

V

NTρvsφvN dV

and for the global stiffness matrix

Ka =
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
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
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


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1
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0
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2
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0
. . .

...
...
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i
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E1 E2 · · · Ei KΦ 0 0
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ε
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(13)
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where the local matrices are obtained by inserting the assumptions from equation (9)

and (10) into the weak formulation given in equation (5), (6), (7) and (8).

Ki =

ˆ

V

BTDl
iε

lB dV ; K̃
i
=

ˆ

V

BTDl
ic

l
iB dV ; Vε =

ˆ

V

BTAl
ic

l
iziε

lB dV

KΦ =

ˆ

V

BTξdξ0B dV ; Ei =

ˆ

V

NTFziN dV ; Pi =

ˆ

V

NTvl,sεlB dV

P̃
i
=

ˆ

V

NTvl,scl
iB dV ; Kε =

ˆ

V

BTDεlB dV ; Rε =

ˆ

V

BTRB dV

R
eq
ε =

ˆ

V

BTRεl(φ)B dV ; Kφ =

ˆ

V

BTDφB dV

The problem is considered as a boundary value problem where the boundary condi-

tions are prescribed as Dirichlet boundary conditions.

The time domain is considered as an initial value problem, where a single parameter

time stepping procedure is used in the form

(C + ∆tθK) an+1 = (C + ∆t (1 − θ)K) an + ∆θfn+1 + ∆t (1 − θ) fn (14)

where the time integration parameter θ is restricted to 0 < θ < 1. For this case it is

convenient to use θ = 1 (the forward Euler method) and the Newton-Raphson scheme,

due to the non-linearity of the system. n is at the time t and n+1 is at the time t+∆t.

The finite element formulation is implemented in a Matlab code and solved in one

dimension for this work. The calculation is computational expensive as all the non-

linear parts are constructed in every time-step in every Newton-Raphson iteration. A

great effort for vectorization of the code have been conducted in order to perform long

term simulations within reasonable computational time.

2.2.3 Sorption hysteresis model

The extension of the PNP equations, to include moisture transport in the porous media

and to account for sorption hysteresis is crucial for describing long term behavior of

concrete materials. It should be emphasized that this formulation of the problem is

not compared against any thermodynamic restrictions, but a way of reproduce exper-

imental observations in a numerical model. The method is described in general terms

in [9, 20, 10] and proven to be valid for cement based materials in [20]. These papers

describe a two phase model, analogue to Equation (7) and (8) in this paper, describing

only the moisture flow in the material.

The key property of this method is the definition of the water equilibrium function

εeq

l (φ), which is a function of the relative humidity in the porous media and estab-

lished from the sorption history in terms of φn−1. It is concluded from experiments
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that concrete and other porous materials have an upper boundary desorption curve

and lower boundary absorption curve and scanning curves in between, see Figure

1. In this work, third order polynomials are used to describe all types of sorption

state and a set of criteria is used to establish the description for the change between

desorption↔absorption states. The equilibrium function is described by

εeq,i
l (φ) = bi,1φ + bi,2φ

2 + bi,3φ
3; εeq,i

l , φ ∈ [0, 1] (15)

where i denote the soprtion state of the inner scanning curve, which is restricted by the

boundary curves, given as i = a, where a denoteabsorption or i = d, where d denote

desorption. The criteria for establishing an inner scanning curve can be formulated in

a general form, where c denote the current sorption state and c̃ is the opposite state of

c
dεeq,i

l

dφ

∣

∣

∣

φ=φn−1

= Ki
dεeq,c

l

dφ

∣

∣

∣

φ=φn−1

; 0 ≤ Ki ≤ 1 (16)

εeq,i
l (φn−1) = εeq,c

l (φn−1) (17)

dεeq,i
l

dφ

∣

∣

∣

φ=φintsec
=

dεeq,c̃
l

dφ

∣

∣

∣

φ=φintsec
(18)

εeq,i
l (φintsec) = εeq,c̃

l (φintsec); 0 ≤ εeq,i
l , εeq,c̃

l , φintsec ≤ 1 (19)

In Equation (16), the angle of the inner scanning curve is set by adjusting Ki. It should

be noticed, however, that Ki can have different values, depending on the direction of

the sorption state change. Furthermore, it is set that the angle is in the point given

by Equation (17), where n denote the current time-step in the FE formulation. The

inner scanning curve should have a tangent to the boundary curve, for which this is

heading, this is given in equation (18). The tangent point is φintsec which is restricted

in an interval given in equation (19). Figure (1) shows an illustration of the two points

considered in order to establish an inner sorption curve. The figure show an example

of state change from absorption to desorption.

In addition to the general formulation of the state change, there is a set of direction

depended restriction that must be fulfilled, that is

a → d ⇒ φn−1 > φintsec; d → a ⇒ φn−1 < φintsec (20)

and the inner scanning is valid in the interval

φ ⊂
[

φn−1, φ
intsec

]

(21)

where sorption will follow the boundary curve outside the above given interval.

The computational scheme for the sorption hysteresis model involves the determi-

nation of the current sorption state in terms of sorption history and to establish an inner

sorption curve in terms of the criteria listed above. The history dependency is included

by comparing the time steps n and n−1, in all FE node points considered. This means

that all nodes in the spatial domain follow individual sorption isotherms and can be

at different sorption states at the same time. The establishment of the inner sorption

polynomial is based on a general solution from a symbolic solver. It is remarked that

vectorization of this part is crucial to keep the computational time reasonable.
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Figure 1: Illustration showing an absorption from φ = 0, following the absorption

boundary curve to the state φn−1. A state change occur and a new inner sorption curve

is constructed based on the criteria in equation (16) to (19).

2.3 Chemical modeling

The chemical modeling is treated as a source/sink term qi in the governing equation

(1). In general this mean that all ionic constituents of the pore solution i evaluated

in a chemical model, considering both solid-liquid and liquid-liquid reactions. It is

assumed that the chemical reactions are sufficient fast, so chemical equilibrium is

obtained for all constituents in all time steps. The chemical code IPHREEQC is used in

this work to solve the chemical system, see [21] for manual and documentation.

2.3.1 Chemical equilibrium calculation

The chemical code IPHREEQC is based on the principles of mass action laws, this is

derived from the first and second thermodynamic law with Gibbs potential as consti-

tutive dependent. The solubility product Kp is introduced in the mass action law, for

each reaction p described in the system. The mass action law is

Kp =
∏

i

(γici)
ni,p (22)

where γi is the activity coefficient of the ion i and n is the stoichiometric coefficient

of ion i in reaction p. The product γici determines the activity of the ion i, where the

activity coefficient is determined from two different equations, the Davies equation

log γi = −Az2
i

( √
µ

1 +
√

µ
− 0.3µ

)

(23)
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or a version of the WATEQ Debye-H?ckel equation

log γi = −
Az2

i

√
µ

1 + Bai
√

µ
+ biµ

{

bi = 0; WATEQ Debye-H?ckel

bi 6= 0 extended WATEQDebye-H?ckel
(24)

where A and B are constants depended on the temperature, zi is the valence and µ
is the ionic strength. For the WATEQ Debye-H?ckel, ai is an ion size parameter and

for the extended WATEQ Debye-H?ckel ai and bi are fitted values based on mean

salt activity coefficient[22, 19]. The different methods are set by the database file

in IPHREEQC, in this case Phreeqc.dat is used, see [21]. The ionic strength µ of a

solution, see [22], is defined as

µ =
1

2

m
∑

i

ciz
2
i (25)

It is seen that activity coefficient is a function of the concentration, which lead to an

iterative solving method. PHREEQC solve this, by simultaneously solve a mass balance

equation for each constituent and a charge balance equation [22], the mass balance is

described as

ctot
i = mi +

∑

j

cjnj,i (26)

where ctot
i is the total concentration of the i’th constituent, mi is the concentration

of the i’th free ion, cj is the concentration of j’th complex or mineral and nj,i is the

stoichiometric coefficient of the i’th constituent in the j’th mineral or complex. The

charge balance is defined as

∑

j

cjzj +
∑

i

mizi = 0 (27)

where zj and zi is the valence of i and j.

The law of mass action Equation (22) is for pure phases only, but this type is not

sufficient in many cases to chemically describe the solid matrix of cement paste. Dif-

ferent types methods like solid solution and surface complexation models is often

used for the major constituents like C-S-H and Afm phases. Solid solution theory will

be explained shortly and used in the test modeling. The mass action law for a solid

solution is

Kpss
=

∏

i

(γici)
ni,pss /λpss

xpss
(28)

where the solubility product Kpss
is for the pure phase p in the solid solution ss. ni,pss

is the stoichiometric coefficient, λpss
is the activity coefficient, which is 1 for ideal

solutions and xpss
is the mole fraction of the pure phase in the solid solution, see

equation (29).

xpss
= npss

/
Nss
∑

pss

npss
(29)

where Nss is the total number of pure phases in the solid solution.
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2.3.2 Chemical models for cement paste

With the chemical equilibrium module described in Section 2.3.1, it is possible to

test various chemical models, describing cement paste and combine these with a mass

transport model described in Section 2.2.1. The cement paste composition described

in Table 1 is based on data from various papers. The main focus for this model com-

position is to describe the chemical degradation of the cement paste, mainly in terms

of the CSH described by a solid solution, see [12].

Notation Phase Reaction log Kp

CH Portlandite Ca(OH)2 + 2H− ↔ Ca2+ + 2H2O 22.80

CC Calcite CaCO3 + H+↔Ca2+ + HCO−

3 1.849

Br Brucite Mg(OH)2 + 2 H+↔Mg2+ + 2 H2O 16.84

Ett Ettringite Ca6Al2(SO4)3(OH)12·26H2O↔2Al(OH)−4 + 6 Ca2+ + 26 H2O + 4 OH−3 SO2−
4 -45.09

AFm(s) Monosulfate Ca4Al2O6(SO4)·12H2O↔4Ca2+ + 2 Al(OH)−4 + SO2−
4 + 4 OH− + 6 H2O -29.4

AFm(Cl) Friedel’s salt (CaO)3(Al2O3)CaCl2·10H2O + 12 H+↔4Ca2+ + 2 Al3+ + 2 Cl− + 16 H2O -73.2

Am.Si Amourphous silicate SiO2 + 2H2O ↔ H4SiO4 -2.71

CSH(ss)

Tobermorite H (CaO) 0.66(SiO2) (H2O)1.5 + 1.32H+ ↔ 0.66Ca2+ + H4SiO4 + 0.16H2O 8.27

Tobermorite D (CaO) 0.83(SiO2)0.66 (H2O)1.83 + 1.66H+ ↔ 0.83Ca2+ + 0.66H4SiO4 + 1.34H2O 13.62

Jennite H (CaO) 1.33(SiO2) (H2O)2.16 + 2.66H+ ↔ 1.33Ca2+ + H4SiO4 + 1.49H2O 22.17

Jennite D (CaO) 1.5(SiO2)0.66 (H2O)2.5 + 3.00H+ ↔ 1.50Ca2+ + 0.66H4SiO4 + 2.68H2O 28.71

Table 1: Chemical model with pure phases and a solid solution describing the cement

paste composition, the data is found in [12, 11, 19]

3 Calculations

The calculations will emphasize the addition of the sorption hysteresis model, de-

scribed in Section 2.2.3 and the chemical model described in Section 2.3.1 to the PNP

equation. The system of equations is solved as a 1D problem.

3.1 Sorption hysteresis

The sorption hysteresis problem is a boundary value problem, modeled with Dirichlet

boundary condition, where the relative humidity is prescribed at the boundary node.

The total number of spatial elements for the sorption model is 999 and in total 200

time steps. The diffusion coefficients Dεl and Dφ are assumed constant in this case,

although these have shown to be functions of the water content. The porosity is as-

sumed to be εp = 0.15 and the vapor density is assumed to be ρvs = 0.07 [kg/m3].
The boundary curves in all plots in Figure 3 are generic, for use of this method,

sorption isotherms should be determined for each cement paste type and composi-

tion. The factor for change in sorption is assumed to be Ki = 1
10

for both directions,

adsorption→desorption and desorption→adsorption.
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The result from the simulation is given in Figure 2 and 3. Figure 2 show the volume

concentration of water and the relative humidity in the spatial domain, with the time

depended boundary variation. The spatial profiles are shown at four different time

steps
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Figure 2: Top left plot, volume concentration of water as a function of the depth in

the sample, represented as node number from the finite element formulation. Top right

plot, relative humidity as a function depth in sample, represented as node number from

the finite element formulation. Lower left plot, relative humidity as a function of the

time-step, this is prescribed as RH in the boundary node of the FE formulation.

The sorption history for each node is only shown for four time step, in Figure 2.

Four different spatial positions are plotted as a function of time, showing the volume

concentration of water as a function of the relative humidity, εeq

l (φ(t), t), see Figure 3
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(d) Profile in finite element node 600

Figure 3: The plots show volume concentration of water as a function of relative

humidity and time, in a depth from the loaded surface. The boundary curves are

generic examples of adsorption and desorption curves.

It is seen that each node plotted in Figure (2), have different sorption history, de-

pending on the boundary condition. The plot shown in Figure 3a corresponds to the

variation of the boundary condition, it is seen that the adsorption follow the bound-

ary curve until φv = 0.8 and change to desorption and a inner scanning curve. The

scanning curve move towards the desorption boundary curve and change direction.

A new inner scanning curve is established, moving towards the adsorption boundary.

The scanning curve ends in the tangential point with the adsorption boundary and the

adsorption follow the boundary curve until φv = 1. In Figures 3b, 3c and 3d the same

type of profile in different spatial depth of the sample are shown. It is seen that the

water intrusion varies and the inner scanning curves change direction before reaching

the desorption boundary. The results presented in Figure 3c and 3d show that second

adsorption phase have not reach the adsorption boundary yet.
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3.2 Chemical equilibrium model

The chemical module is shown here by the cement paste model described in Table

1.The initial amount of solid phases and pore solution composition is determined by

adding 2 mole portlandite and 1 mole etteringite, monosulfate and calcite to the model

and determine the equilibrium state with IPHREEQC. The ionic species used in the

chemical equilibrium calculation is also considered in the transport calculation. In

this case 29 ionic state variables are considered in the system, these are given in Table

2. The diffusion coefficient is multiplied with a general tortuosity factor δ = 0.01

The porous system is assumed fully saturated to emphasize the chemical term in

the governing equation and the 1D FEM system is discretized into 29 elements, the

total time of 10 years in 500 time steps and a total spatial length of 0.03 m.

OH− H+ Al(OH)−4 Al(OH)3
∗a Al(OH)+

2
∗a

AlOH2+∗a

Dl
i ·10−8 0.5300 0.9311 0.1040 0.1040 0.1040 0.1040

Al
i·10−6 0.2253 0.3958 0.2142 0 0 0

Al3+
∗

AlSO+
4
∗a

Al(SO4)
−

2
∗a

Ca2+ CaOH+ CaSO4

Dl
i ·10−8 0.0541 0.1040 0.1040 0.0792 0.0792 0.0471

Al
i·10−7 0 0 0 0.3367 0.3367 0

CaHSO+∗e
4 SO2−

4 HSO−

4
∗

H2SiO2−
4 H3SiO4−d H4SiOd

4

Dl
i ·10−8 0.0471 0.1070 0.1385 0.1100 0.1100 0.1100

Al
i·10−7 0 0.4548 0 0.4676 0.4676 0

Cl− Na+ NaOHb NaSO−

4 CaCO3 CO2−
3

Dl
i ·10−8 0.2030 0.1330 0.1330 0.0618 0.4460 0.9550

Al
i·10−7 0.8629 0.5653 0 0.2627 0 0.4059

HCO−

3 CaHCO+e
3 H3CaSiO+e

4 MgOH+c Mg+
2

Dl
i ·10−8 0.1180 0.0471 0.0471 0.0705 0.0705

Al
i·10−7 0.5016 0.5016 0.2002 0.2997 0.2627

*Ion mobility assumed 0; Dl
i is

�
m2/s

�
and Al

iis
�
m2/s/V

�
; All non-assumed values are found in [19]

a,b,c,d,eDl
i is assumed from Al(OH)−

4
, Na+, Mg+

2
, H

2
SiO2−

4
, CaSO

4
, respectively.

Table 2: Ion’s included in the coupled mass transport and chemical model

The results of the chemical degradation of the solid phases is shown in Figure 4. It

is seen that portlandite is dissolved first and then the components in the solid solution

starts to change. The degradation of portlandite, amourphias silica and C-S-H(ss)

corresponds well to the results in [12], where amourphous silicate is formed when

tobermoriteH and tobermoriteD is the only constituent left in the solid solution, at

low Ca/Si ration . Etteringite is formed and monosulfate and calcite is dissolved in

different amounts and to different depths. The formation of solids due to intrusion

of external ions is friedel’s salt and brucite, which is found in different depths of the

sample.
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Figure 4: Chemical degradation of cement paste components, in a 10 year simulation.

The sample is assumed complete water saturated.
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In total 15000 chemical equilibrium calculations was conducted with IPHREEQC

for the simulation and less than 0.1% did not meet the residual requirements. The

non-converging nodes was replaced by the average concentration from the two neigh-

bor nodes. It is believed that convergence problems was caused by a small charge

imbalances in the input data for the chemical module.

4 Discussion

The general model presented in Section 2.2, is an attempt to increase the accuracy

of concrete deterioration modeling and in greater perspective to model service life

of concrete structures. The theory for the model is very consistent, but numerical

problems are experienced, especially the large difference in ionic concentration of the

different constituent in the pore solution. The chemical module based on IPHREEQC

have to some extent numerical problems in terms of convergence for determine the

chemical equilibrium state. In general numerical stability for the whole model should

be improved in order to work as general service life model.

The sorption hysteresis model is not a direct consequence of the thermodynamic

formulation of the problem but a direct way to express the phase balance between

liquid water and vapor. The phase balance equations in this paper described by 3’rd

order polynomials, which could be extended to higher order polynomials for better

approximation of the experimental data needed for setting the boundary isotherms.

The hysteresis module is of great importance in the model as the ionic concentration

is in mol/l and the thereby vary with the volume concentration of water and, further,

affect the degradation process of the solid matrix. The great advance with this model is

the direct implementation into the FEM scheme and each node in the discrete system

have their own sorption history.

The chemical module is added to the system as a source/sink term in the transport

equation for ionic and non-ionic dissolved species. So that chemical equilibrium is

established between the solid material and pore solution in each node and each time

step. Chemical equilibrium is established in every time step in the model, which ex-

plicit neglect the reaction kinetics. The reaction kinetics is in general difficult to work

with by classic thermodynamics .. Chemical reactions kinetics in cement chemistry

is often at nano-scale and difficult to combine with service life modeling with a time

scale in years. The results from the relative simple chemical model setup, show that

the chemical reactions cannot be neglected in modeling of cement paste degradation.

If the problem was considered as a diffusion problem only, then a fixed amount ions

were present in the solution and equilibrium with the boundary conditions would oc-

cur much faster than the model including chemical equilibrium, just to mention a few

implications.
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5 Conclusion

A transient mass transport model coupled with a chemical equilibrium module was

established. The mass transport equation system is solved by a non-linear finite ele-

ment scheme and the chemical module is based on the geochemical code IPHREEQC.

The mass transport is described by the Poisson-Nernst-Planck equations, with an ex-

tension for describing the moisture transport. The liquid and vapor phases is coupled

by a phase equilibrium term, describing the sorption hysteresis.

The coupled model presented here is a quite general formulation, for which it is

possible to use different chemical models in combination with a mass transport model.

A simple chemical cement paste model is used for illustration of a long term simula-

tion, showing the importance of a chemical model in relation to chemical degradation.
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