
Abstract

We propose a simple yet efficient dynamic wall-model for large-eddy simulation (LES)

that accurately predicts the turbulent statistics (most importantly, the predicted skin

friction) and makes the LES applicable at realistic high Reynolds numbers. The pro-

posed wall model stems directly from considerations of how turbulence length scales

behave in the logarithmic layer, and thus in other words the method is based solidly

on physical reasoning. To be applicable to separated flows, the non-equilibrium ef-

fects are involved in the model, thus the model does not assume equilibrium boundary

layer. Supersonic turbulent boundary layer on a flat plate at high Reynolds num-

bers are first used to verify the proposed model, and then the wall-modeled LES is

applied to the shock-wave/turbulent boundary layer interacting separated flow at the

higher Reynolds number (freestream Mach number of 1.69 and Reynolds number of

Reθ = 50, 000). The resulting method is shown to accurately predict equilibrium

boundary layer at very high Reynolds numbers, with both realistic instantaneous fields

(without overly elongated unphysical near-wall structures) and accurate statistics (both

skin friction and turbulence quantities). Careful validations on the non-equilibrium

separated flows will be discussed at the presentation.

Keywords: large-eddy simulation, wall modeling, high Reynolds number flow, sepa-

rated flow.

1 Introduction

The promise of large eddy simulation (LES) is that it constitutes a more-or-less opti-

mal compromise between predictive accuracy and computational cost. The energetic,

dynamically important and flow-dependent motions are solved directly, leaving only

motions with small energy and supposedly universal behavior to be modeled; this
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leads to predictive accuracy. Moreover, the computational cost is independent of the

Reynolds number Re, since changes in Re only affect the spectrum at the smallest

scales.

This favorable picture of LES is true in many situations, but changes completely

when LES is applied to turbulent boundary layers. Boundary layers are multi-scale

phenomena where the energetic and dynamically important motions in the inner layer

(say, the innermost 10% of the boundary layer) become progressively smaller as the

Reynolds number is increased. For the case of computing the flow over an airfoil,

Chapman[1] estimated the required number of grid points as Ntotal ∼ Re1.8
c , where

Rec is the chord Reynolds number. This is close to the cost of direct numerical sim-

ulation (DNS), and effectively prevents LES from being used on wall-bounded flows

at realistic (high) Reynolds numbers for the foreseeable future.

The solution to this “near-wall problem” has been clear for a long time: the inner

layer must be modeled rather than resolved[2, 3]. When directly resolving only the

outer layer, Chapman[1] estimated a drastically lower Ntotal ∼ Re0.4
c for his airfoil

example. There have been many proposed methods for modeling of the inner layer in

LES (cf. the reviews by Piomelli and Balaras[4] and Spalart[5]). These wall-modeled

LES approaches generally fall into one of two categories: 1) methods that model

the wall shear stress τw directly, and 2) methods that switch to a Reynolds-averaged

Navier-Stokes (RANS) description in the inner layer. The second category includes

hybrid LES/RANS and detached eddy simulation (DES).

The hybrid LES/RANS and DES methods have become rather popular and are

widely used with some success. These approaches blend a RANS-type turbulent eddy

viscosity µt,RANS near the wall with a LES-type subgrid-scale eddy viscosity µt,LES

away from the wall using a single mesh. Nikitin et al.[6] used DES as a wall-model

with the switching location from RANS to LES placed in the logarithmic layer. For a

range of different numerical methods and grid resolutions, they found a robust artificial

“DES buffer layer” with an associated log-layer mismatch in the mean velocity profile

(equivalent to about 15% underprediction of the skin friction). It was found that,

near the switching location, the modeled contribution to the mean shear stress was

too low while energy-carrying eddies had not yet been generated[7]. Therefore, in

the hybrid LES/RANS and DES approaches, it is necessary to somehow stimulate

instabilities and boost the resolved Reynolds stress near the LES/RANS interface to

remove the log-layer mismatch. Piomelli et al.[7] used stochastic forcing and Shur

et al.[8] proposed an empirically blended length scale that leads to a steep drop in

the resultant eddy viscosity. Although these methods both energize the flow near the

interface and improve the log-layer mismatch, they are to a certain extent empirical

in nature. For example, when using stochastic forcing, Larsson et al.[9] found that

the amplitude of the forcing could be adjusted to give a range of log-law intercepts.

We also note that many recent improvements of DES include empirical functions with

several parameters[5, 7, 8] that make the method more complicated.

The approach of modeling the wall shear stress τw directly is different from the

hybrid LES/RANS and DES approaches. In the wall-stress-modeling approach, while
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the LES resolves only the outer layer, the LES is formally defined all the way down

to the wall. A wall-model provides the instantaneous τw (needed by the LES as a

boundary condition) given the instantaneous velocity field ui at some distance hwm off

the wall (generally taken as the first grid point). Most wall-stress-modeling methods

then use some form of RANS equations to estimate τw given ui(hwm). Deardorff[2]

and Schumann[3] introduced wall-stress-modeling by essentially imposing the log-

law for the velocity at the first off-wall grid point. Grotzbach[10] later modified

the Schumann-approach to instead inverting the log-law to provide τw for a given

u(y1) (where subscript 1 denotes the first off-wall grid point). Balaras et al.[11] and

Cabot and Moin[12] solved simplified RANS equations, based on the thin boundary-

layer approximation with a mixing-length model, between the first grid point (at y1)

and the wall on an auxiliary grid refined only in the wall-normal direction. Com-

pared to using the log-law, this includes effects of convection and pressure-gradient

in the wall-model. Based on the fact that improved solutions were obtained when

the mixing-length eddy viscosity was lowered from the standard RANS value[12],

later Wang and Moin[13] proposed a dynamic procedure to determine the suitable

model coefficient for the RANS mixing-length eddy viscosity model. This was then

tested at a low Reynolds number (Reθ = 3380 where wall-resolved LES is accessi-

ble) with relatively fine mesh resolution. The grid used in the full wall-resolved LES

(1536×96×42, ∆x+ ≈ 62, ∆y+ ≈ 2, ∆z+ ≈ 55) was coarsened by approximately

half in each direction (first grid point at y+ ≈ 30) and used for the wall-modeled LES

mesh (768×64×24). These approximate wall-boundary-condition approaches have

shown reasonable results with smaller log-layer mismatch than is typical in DES.

However, these approaches have been mainly investigated in incompressible flows,

with little work done for compressible flows. We also note that the dynamic proce-

dure by Wang and Moin[13] has been tested only on at a single low Reynolds number.

The purpose of the present study is to address the error in the wall-stress-modeling

approach and establish the wall-modeling for LES of high Reynolds number sepa-

rated flows. After analyzing the source of the errors, we propose a simple yet ef-

fective dynamic wall-model to remove the error. The analysis and developments are

presented for compressible flows, but everything extends trivially to incompressible

flows. The resulting wall-model is validated against the corresponding experiments of

shock-wave/turbulent boundary layer interaction by Souverein et al.[14, 15, 16]. The

results are first validated on the undisturbed supersonic turbulent boundary layer at

high Reynolds number: Mach 1.69 and Reδ = 6.1 × 105 based on the boundary layer

thickness (momentum thickness based Reθ = 5 × 104), and then the non-equilibrium

wall-model is applied to the shock-wave/turbulent boundary layer interacting flow at

the same Mach number and Reynolds number. The results from the wall-modeled

LES are compared to the corresponding experiments by Souverein et al.[14, 15, 16].
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Wall-modeled LES mesh

Inner-layer RANS mesh

Figure 1: Sample of meshes for wall-modeled LES. LES-grid based on outer length

scales only (left) and auxiliary RANS-grid in inner layer for estimation of the wall

shear stress.

2 Wall-modeled LES framework

The proposed wall-model is based on the wall-stress-modeling approach. The LES

mesh is designed to resolve only the outer-layer large scales (thus the grid resolution

scales with the boundary layer thickness δ) and does not resolve the viscous sublayer.

The wall shear stress τw is computed through solving RANS equations on an auxiliary

grid in the inner layer. This grid is embedded in the LES mesh and refined in the wall-

normal direction only, as illustrated in Fig. 1. Since compressible flow is considered

here, the auxiliary RANS also provides the wall heat flux to the LES. The RANS is

forced at its top boundary by the instantaneous solution in the LES at the correspond-

ing point. The matching location hwm in the LES mesh where the RANS top boundary

matches to the LES mesh is not necessarily taken at the first off-wall LES point, as has

been the case in all prior studies that the author is aware of. To allow for the forcing

errors due to the subgrid modeling and numerics to be made arbitrarily small, based

on our study[17] fifth grid point off the wall (hwm = 0.055y/δ and y+ ≈ 878) in the

LES mesh is matched to the RANS top boundary in this study. We note that although

the inner-layer RANS mesh is embedded in the wall-modeled LES mesh, the informa-

tion given from the RANS to LES is only through the wall shear stress and heat flux,

while the information from the LES to RANS is solely through the forcing at the top

boundary of the RANS.

2.1 Evolution equations and numerical method

The evolution equations in the LES and the auxiliary RANS are the compressible

filtered or ensemble-averaged Navier-Stokes equations for a perfect gas and are iden-

tical except for the boundary conditions and the values of the model constants for the

residual stresses and heat fluxes.

The spatial discretization is fully conservative and uses a sixth-order compact dif-

ferencing scheme[18], with some modifications made necessary by the wall-modeling;

these modifications are discussed below. Aliasing errors are contained by applying
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an eighth-order low-pass spatial filter to the conserved variables at regular intervals.

Time-integration is done by a classic four-stage, fourth-order explicit Runge-Kutta

method on the LES grid. To alleviate a severe CFL time-step restriction in the inner-

layer RANS computation due to the highly refined mesh in wall-normal direction, a

second-order fully implicit time-integration scheme[19, 20] is used there. Three steps

of sub-iterations (Newton-Raphson iteration) are adopted to minimize the errors due

to the linearization in the implicit scheme. The code has been extensively verified and

validated[21, 22, 23, 24].

The computational domain for the wall-modeled LES is 15δr, 15δr and 3δr in

streamwise (x), wall-normal (y) and spanwise (z) directions where δr is a reference

boundary layer thickness that is close to its value at the inlet. The wall is located at

y = 0, and the corresponding grid index is 0; hence y0 = yw = 0. The boundary layer

thickness δ at the station where statistics are compared is δ ≈ 1.2δr (x/δr ≈ 12). A

buffer layer with the length of 12δr is placed at the upper boundary to remove turbu-

lent fluctuations and any reflections from the boundary. The horizontal (wall-parallel

plane) mesh distributions for the inner-layer RANS mesh are the same as the outer-

layer LES mesh, while the RANS mesh is significantly refined in the wall-normal

direction (y+ at the first grid point off the wall is less than 1) to resolve the viscous

sublayer in a RANS sense. We note that no complex procedure is necessary to generate

the inner-layer RANS mesh since only wall-normal refinement is required, which can

be easily done within the preprocessing of the simulation. The rescaling-reintroducing

method of Urbin and Knight[25] is used to produce realistic turbulence at the inflow

for both the inner-layer RANS and outer-layer LES, with the recycling station taken

as 12δr downstream of the inflow.

2.2 LES: Subgrid Model and Boundary Conditions

The dynamic Smagorinsky model of Moin et al.[26] with the modification of Lilly[27]

is used to calculate the turbulent eddy viscosity µt and turbulent Prandtl number Prt.

The LES equations requires boundary conditions at the wall, specifically the con-

vective and viscous fluxes. At walls, the kinematic no-penetration condition implies

that the convective terms are zero. In addition, the viscous work term τijui is zero at

the wall due to the no-slip condition (the fact that the LES does not resolve the inner

layer does not change the fact that ui = 0 at a wall, only that the gradient can not

be computed accurately). Since the first grid point in the LES is above the viscous

inner layer (i.e., y+
1 > 50), we can not estimate the wall shear stress directly from the

information in the LES; thus τw and the wall heat flux qw are taken from the auxiliary

RANS wall-model as boundary conditions.

The fact that the viscous inner layer is not resolved implies that some changes

are needed in the numerical method as well. Simply put, differentiation and filtering

between points above and below this missing inner layer (i.e., between the first grid

point j = 1 and the wall) are ill-defined and not accurate. We instead compute wall-

normal derivatives at j = 1 using a completely one-sided formula and at j = 2 using
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a second-order central formula; remaining grid points are treated by the tri-diagonal

compact scheme. Although, given these numerical treatments, the LES equations can

be evaluated without specifying the velocities, density and temperature at the wall,

we use slip-wall conditions with extrapolation from the interior nodes to calculate the

dynamic Smagorinsky model and for low-pass spatial filtering.

2.3 Auxiliary RANS: Turbulence Model and Simplified Formula-

tion

A simple mixing-length eddy-viscosity model with near-wall damping is used to de-

termine the µt in the inner-layer RANS as

µt = κmodρy

√
τw

ρ
D , D =

[
1 − exp(−y+/A+)

]2
, (1)

where y+ = ρwyuτ/µw is the wall-distance in viscous units, and we note that
√

τw/ρ
is the velocity scale in a boundary layer with varying mean density. The model pa-

rameter A+ is taken as 17 throughout this work. The model parameter κmod is either

determined through the dynamic procedure as will be discussed in the following Sec-

tion 3, or taken as equal to the von Kármán constant κ = 0.41. Similarly, the turbulent

Prandtl number in Eq. 6 is either determined dynamically or taken as constant at 0.9.

The full wall-model is to solve the time-dependent full RANS equations on the

auxiliary inner-layer RANS mesh, with non-slip adiabatic wall conditions and the

solution at the top of the RANS mesh set equal to the instantaneous LES solution

at the corresponding (matching) location every time step. Since the RANS mesh is

resolved in the wall-normal direction, the resulting wall shear stress and wall heat flux

(or, in the case of an isothermal wall, the wall temperature) can be computed.

In addition to this full wall-model, we also consider the simplified equilibrium

boundary layer equations (which then replace the full RANS equations)

d

dy

[
(µ + µt)

du

dy

]
= 0 , (2)

d

dy

[
(µ + µt) u

du

dy
+

1

γ − 1

(
µ

Pr
+

µt

Prt

)
dc2

s

dy

]
= 0 , (3)

which was derived from the conservation equations for streamwise momentum and

total energy with use of the standard approximations in equilibrium boundary layer

flow[28]. Since these simple equations are supposed to be accurate for zero-pressure-

gradient equilibrium flows considered in the first test case, we can compare this simple

model with the full wall-models to investigate the capability of the full wall-models.
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Note that the pressure is constant in the wall-normal direction and simply imposed by

the LES in the equilibrium model while the pressure is solved in the full RANS wall-

model. The simplified equilibrium model 2–3 is a system of two coupled ODEs that

are solved numerically on a temporary 1D grid in the present implementation (thus

the 3D auxiliary RANS mesh is not needed). Note that, in the incompressible limit

without heat transfer, the equilibrium wall-model is equivalent to the famous log-law

in the inviscid region.

3 Errors in wall modeling

To close the system of time-dependent full RANS equations on the inner-layer mesh,

one must set the two modeling constants κmod in Eq. 1 and Prt in the inner-layer

RANS equations. The standard RANS value κmod = κ = 0.41 (and Prt ≈ 0.9
with heat transfer) was typically used in the earliest studies[11, 12]. However, as

pointed out by Cabot and Moin[12], since the Reynolds stress carried by the nonlinear

convective terms in the inner-layer RANS equations is significant near the matching

location, the RANS eddy-viscosity must be reduced to account for only the unresolved

components.

Based on the finding that improved solutions were obtained when the model con-

stant κmod was lowered from the standard RANS value[12], Wang and Moin[13] in-

troduced a dynamic procedure to adjust the model coefficient κmod. The idea of Wang

and Moin (when extended to compressible flow) is to match the total shear stress

−ρũ′′v′′ + (µ + µt)∂ũ/∂y between the LES and RANS at the matching location.

Since the velocity, density and temperature are given from the LES as a boundary

condition for RANS, this means that the resolved portion is identical in LES and

RANS at the matching location. If one further assumes that the velocity and tem-

perature have the same slope in RANS and LES, the matching condition amounts to

matching µt,LES and µt,RANS (and Prt,LES and Prt,RANS when extended to compress-

ible flow). Wang and Moin[13] used this matching condition 〈µt,RANS〉 = 〈µt,LES〉
(where 〈·〉 was taken as the average in the spanwise direction and over the previous

150 time steps) to find the value of the parameter κ̂. The resulting reduced constant

was then applied throughout the boundary layer in the inner-layer RANS simulation,

i.e., they took κmod = κ̂. This dynamic procedure was tested through the incom-

pressible turbulent boundary layer flow past an airfoil trailing-edge at low Reynolds

number (Reθ = 3380 where wall-resolved LES data was available), and they obtained

improved results compared with using the typical constant value κmod=0.41. How-

ever, we note that this dynamic procedure has been tested only on at the single low

Reynolds number with the matching location hwm = y1 where wall models suffer

from the numerical and subgrid-modeling errors in near-wall grid points as discussed

in Ref. [17]. It will be shown below that this dynamic procedure does not work at all

at high Reynolds numbers when y+
1 becomes large. Specifically, it will be shown that

the crucial flaw is the use of κmod = κ̂ through-out the inner RANS layer.
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3.1 Proposed dynamic wall modeling

In this section, we propose a simple mesh-resolution-dependent dynamic procedure

for compressible flows (that is trivially extendable to incompressible flows). Since

the velocities and temperature are matched at the top of the inner-layer RANS, the

resolved portion of the stresses and heat fluxes from the inner- and outer-layer cal-

culations are the same. To match the total stresses and heat fluxes approximately at

the matching location, the unresolved stresses and heat fluxes need to be matched.

Similarly to the procedure of Wang and Moin[13], we approximately match the total

stresses and heat fluxes at the matching location hwm by matching the turbulent eddy

viscosity and turbulent thermal conductivity (Cpµt/Prt). We thus first find the value

κ̂ =
〈µt,LES〉

〈ρy
√

τw

ρ
D〉

, (4)

that matches the RANS and LES eddy-viscosities at the matching location hwm. The

angular brackets denote averaging in the spanwise direction, and thus κ̂ is varying in

the streamwise direction and time. We approximately match the turbulent conductivi-

ties by taking P̂ rt,RANS = 〈Prt,LES〉.
The objective of the proposed mesh-resolution-dependent (wall-normal-dependent)

dynamic procedure is to approximately account for the fact that the division between

resolved and unresolved stresses changes dramatically in the wall-normal direction

in the near-wall RANS, partly due to the exceedingly anisotropic mesh used at high

Reynolds number for the RANS. The size of the energetic and stress-carrying motions

in the log-layer is proportional to the wall-distance y[28]. We take L‖ = C‖y as a

characteristic length scale of the energetic and stress-carrying motions within the log-

layer, where C‖ is a constant and is dictated by flow physics, specifically the structure

of the energetic motions in the log-layer. The subscript ‖ implies that the length scale

is in the wall-parallel directions, so some combination of the Lx and Lz. Let us intro-

duce the ratio of the length scale to the wall-parallel grid spacing L‖/∆‖ = C‖y/∆‖,

where ∆‖ = max(∆x, ∆z). In practice the grid for the outer-layer LES may be

nearly isotropic, and thus the impact of this specific choice is not considered to be cru-

cial. We also note that the numerical tests were performed with two different meshes

(∆x = ∆z and ∆x = 5/3∆z) with the same conclusions (see Ref. [29] for details of

∆x = 5/3∆z case). The scale of ∆‖ can be considered as approximately equivalent to

the smallest eddy size that the mesh can possibly support, and thus L‖/∆‖ is consid-

ered to be the critical parameter in the wall-parallel direction. If L‖/∆‖ is smaller than

some constant α where the value of α (i.e., the number of grid points per wavelength)

depends on the numerical method used for the inner-layer RANS, we may assume that

the resolved stress is negligibly small. Thus typical RANS constants, κmod = 0.41 and

Prt = 0.9, should be used. If L‖/∆‖ > α, the constants should be reduced towards

the adjusted constants at the matching location. We note that since the RANS mesh

is significantly refined in the wall-normal direction to resolve the viscous layer in the

RANS sense, ∆y is fine enough to resolve Ly and also ∆y < ∆‖. In this study, we

use a linear damping function K to define
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Figure 2: Linear blending function K with α′ = 0.2 (solid line), α′ = 0.4 (dashed

line), α′ = 0.48 (dashed-dotted line), and α′ = 0.8 (dotted line).

κmod = 0.41K + κ̂(1 −K) , (5)

Prt = 0.9K + P̂ rt(1 −K) , (6)

where

K = min

{
L‖,hwm

/∆‖ − L‖/∆‖

L‖,hwm
/∆‖ − α

, 1

}

or equivalently

K = min

{
hwm − y

hwm − ycrit

, 1

}
, ycrit =

α

C‖

∆‖ = α′∆‖ . (7)

The latter form 7 makes it clear that K is only a function of y and the parameter

α′ = α/C‖, with hwm and ∆‖ being determined by the grid. Specifically, note that K
is not flow-dependent. Figure 2 shows the linear damping function K with different

constants α′. We first show the results by fixing α′ = 0.48, and then address the

sensitivity of the flow statistics to this parameter.

4 Results

In this section we compare the dynamic procedure proposed above with the wall-

normal independent dynamic-coefficient approach by Wang and Moin[13] (κmod = κ̂

and Prt = P̂ rt,RANS). We also compare to the constant-coefficient approach (κmod =
0.41 and Prt = 0.9) and equilibrium wall-model approach (solving ODEs 2–3).

The flow condition considered in this study is based on the experiments of high

Reynolds number supersonic turbulent boundary layer on a flat plate and shock-wave/turbulent

boundary layer interaction performed by Souverein et al. [14, 15]. In both the cases,

the freestream Mach number is 1.69 and the Reynolds number is Reδ = 6.1 × 105
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(Reθ = 5 × 103). The results are first validated on the undisturbed supersonic turbu-

lent boundary layer and then the non-equilibrium wall-model is applied to the shock-

wave/turbulent boundary layer interacting flow. The results from the wall-modeled

LES are compared to the corresponding experiments by Souverein et al.[14, 15, 16],

the incompressible experiments by DeGraaff and Eaton[30] at high Reynolds num-

bers, the DNS by Pirozzoli and Bernardini[31], and finally to wall-resolved LES at

low Reynolds number. We again emphasize that this is a much higher Reynolds num-

ber than what wall-resolved LES or DNS can reach.

The grid resolution in the wall-parallel directions is held constant at ∆x = ∆z ≈
0.042δ for all simulations, while varying the near-wall wall-normal grid resolution. In

the wall-normal direction, an approximately uniformly spaced grid (∆yw = 0.011δ)

is used below the matching location (fifth grid point off the wall hwm = y5 in this

study). The grid is smoothly stretched in the region hwm ≤ y ≤ 1.4δr, and then keeps

a uniformly spaced grid ∆y ≈ 0.025δ from y = 1.4 to 3δr In viscous wall units,

∆x+ = ∆z+ ≈ 640, and the equally spaced ∆y+ ≈ 385; hence the grid spacing is

much coarser than in traditional wall-resolved LES.

Four different inner-layer RANS models are considered:

1. EQBL: equilibrium wall-model (solving ODEs 2–3),

2. CNST: full RANS + constant coefficients (κmod=0.41 and Prt=0.9),

3. CDYN: full RANS + y-constant dynamic approach (κmod = κ̂ and Prt =

P̂ rt,RANS),

4. VDYN: full RANS + y-variable dynamic approach (Eqs. 5 and 6).

4.1 Undisturbed supersonic turbulent boundary layer

4.1.1 Mean and fluctuation statistics

Figure 3 shows the mean streamwise velocity profiles where the computed results

are compared with the log-law and experiments[14, 15, 30]. The VDYN result is

almost identical to the EQBL result and in good agreement with the experiments and

the log-law. The logarithmic region appears clearly for y+ < 3000 without showing

the logarithmic layer mismatch. Although the slope of the logarithmic region is well

predicted in CNST, the CNST result shows a lower intercept, indicating higher skin

friction (7% higher than EQBL). This trend is consistent with the findings of Cabot and

Moin[12] and Wang and Moin[13]. CDYN is the wall-normal-independent dynamic-

coefficient approach and essentially the choice of Wang and Moin[13]. Although

the total stress is approximately matched at the RANS top boundary, the y-constant

dynamic procedure reduces the value of κmod with a constant factor of approximately

1/50 at this high Reynolds number flow throughout the inner-layer and laminarizes

the inner-layer flow, resulting in an intercept of approximately 65 (much too low wall

shear stress, approximately 1/6 of EQBL).
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Figure 3: Mean streamwise velocity: δ scaling (left) and Van Driest scaling (right).

EQBL (black); CNST (red); CDYN (green, visible only in insert in figure b); VDYN

with α′ = 0.48 (blue); the log-law ln(y+)/0.41 + 5.2 (dashed line); corresponding

experiments[14, 15], dual-PIV (circles), high-resolution zoom-PIV(triangles); incom-

pressible experiments at Reθ = 31, 000 (squares)[30].

This is also evident in the mean eddy viscosity profiles for the four different inner-

layer RANS models as shown in Fig. 4. The CDYN approach reduces the eddy vis-

cosity significantly throughout the inner layer, with µt/µ . 4. On the other hand,

the VDYN approach maintains the original RANS eddy viscosity up to y = α′∆‖

as designed and gradually reduces µt toward the matching location where the total

stress between inner and outer layer is approximately matched. The results indicate

that the unresolved stresses and heat fluxes are increased in the wall-normal direc-

tion from the matching location toward the wall in the RANS mesh and this physics

must be properly modeled. The proposed y-variable dynamic approach (VDYN) that

approximately accounts for this physics is shown to be superior to the other models.

The successful results obtained by the y-constant dynamic procedure by Wang and

Moin[13] for their case was probably due to the low Reynolds number (Reθ = 3380)

in their study, coupled with them having the matching location near the buffer layer at

h+
wm ≈ 30.

Resolved Reynolds normal stresses and shear stress are plotted in Fig. 5 with the

experimental data[14, 15, 30] and low Reynolds number DNS[31]. EQBL, CNST and

VDYN show almost identical results with minor differences and reasonable agree-

ment with the experimental data and DNS data. Only the CDYN results behave dif-

ferently. This is primarily because of the too-low wall shear stress (approximately 1/6

of EQBL) given by the CDYN wall-model, resulting in the lower resolved Reynolds

stresses. Note that the τw normalization used in Fig. 5 (the value of τw is different

in each wall-model, i.e., τwCDY N ≈ 1/6τwEQBL) causes the higher values of CDYN,

although the actual fluctuations obtained by CDYN are smaller than the others. It is

worth noting the uncertainty involved in the corresponding experiments[14, 15]. As

noted in [15], the experimental velocity fluctuations include a contribution from the

measurement noise, and the noise likely causes the slight overestimation of the u-

fluctuations. The underestimation of the v-fluctuations is a measurement artifact, re-
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Figure 4: Mean turbulent eddy viscosity in inner-layer RANS. EQBL (black); CNST

(red); CDYN (green, visible in insert only); VDYN with α′ = 0.48 (blue).

lated to the dynamic range of the measurement system and the measurement settings.

By consequence, the under-resolved v-fluctuations lead to underestimated Reynolds

shear stress values, particularly below y/δ = 0.3.

Figure 6 shows mean and fluctuation temperature and density profiles. Since there

is no available thermodynamic data at this Mach number, we computed wall-resolved

LES at Mach 1.69 and Reθ ≈ 2, 200 and compare to the wall-modeled LES. A

brief description of the wall-resolved LES is that the employed grid resolutions are

∆x+ = 24, ∆y+ = 0.64 − 24 and ∆z+ = 12, and the sixth-order compact dif-

ferencing scheme with RK4 method is used. We note that the Van Driest transformed

mean velocity and resolved stresses in Morkovin scaling obtained by the wall-resolved

LES shows excellent agreements with the DNS at Mach 2.28 and Reθ ≈ 2, 300 by

Pirozzoli and Bernardini[31]. EQBL, CNST and VDYN again show almost identi-

cal results and the computed mean thermodynamic quantities closely agree with the

wall-resolved LES, whereas the thermodynamic fluctuations are underpredicted by

approximately 20%. CDYN completely underpredicts the mean and fluctuation of the

thermodynamic quantities throughout the boundary layer.

The results have shown how the computed statistics, especially the skin friction,

are improved by employing the proposed dynamic wall-model. We next show that the

method yields physically realistic turbulence near the wall. Figure 7 shows contours

of the instantaneous streamwise velocity fluctuations in a wall-parallel plane at the

matching location (within the logarithmic region at y+ = 878) obtained by the wall-

modeled LES with the y-variable dynamic approach (VDYN). The wall-modeled LES

does not produce smooth nearly one-dimensional unphysical eddies as commonly seen

in hybrid LES/RANS and standard DES methods[4].

4.1.2 Sensitivity to the free parameter α′

We have shown that the proposed dynamic wall-model improves the computed statis-

tics (i.e., reducing the errors in wall-modeling), especially the skin friction, at the high

Reynolds number with the only adjustable parameter in the model at α′ = 0.48. The
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Figure 5: Resolved Reynolds normal stresses and shear stress. EQBL (black); CNST

(red); CDYN (green); VDYN with α′ = 0.48 (blue); corresponding experiments[14,

15] (circles); incompressible experiments at Reθ = 13, 000 (squares)[30]; DNS at

Mach 2.28 and Reθ ≈ 2, 300 (pluses)[31].
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Figure 6: Mean (left) and fluctuation (right) of temperature and density compared to

wall-resolved LES at Mach 1.69 and Reθ ≈ 2, 200 (circles). EQBL (black); CNST

(red); CDYN (green); VDYN with α′ = 0.48 (blue).
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Figure 7: Instantaneous streamwise velocity fluctuation in wall parallel plane at

matching location (logarithmic region at y+ = 878) obtained by VDYN with α′ =
0.48.
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Figure 8: Mean streamwise velocity (van Driest-transformed) and Resolved Reynolds

shear stress at Reθ = 50, 000 obtained by VDYN method with α′ = 0.2 (black),

α′ = 0.4 (red), α′ = 0.48 (blue), and α′ = 0.8 (green). Compared to the log-

law ln(y+)/0.41 + 5.2 (dashed line); incompressible experiments at Reθ = 31, 000
(squares)[30]; corresponding experiments[14, 15] (circles); DNS at Mach 2.28 and

Reθ ≈ 2, 300 (pluses)[31].

value of α′ controls the location where the original RANS eddy viscosity and turbulent

Prandtl number start blending with the adjusted constants at the matching location. If

the results are too sensitive to this value, the applicability of the proposed model might

be reduced. Here we address this issue by investigating the sensitivity of flow statistics

to α′.

The sensitivity of the flow statistics to α′ at Reθ = 50, 000 in the y-variable dy-

namic approach is shown in Fig. 8. The choices of α′ = 0.2, 0.4, 0.48 and 0.8 start

blending the eddy viscosity and turbulent Prandtl number at 15, 32, 36 and 60 % of

the inner-layer RANS, respectively (see Fig. 2). It is clear that the results are largely

insensitive to the choice of α′, and with the current numerical schemes the choice of

α′ = 0.48 was found to yield the best fit to the log-law. The wall shear stress is slightly

underestimated by 4.3% with α′ = 0.2 and overestimated by 3.3% with α′ = 0.8 re-

spectively when compared to the corresponding EQBL result. Although not shown

here, resolved Reynolds normal stresses and thermodynamic quantities are also insen-

sitive to α′. We note that the optimal value of α′ naturally depends on the numerics

used for the inner-layer RANS simulation, but this sensitivity study suggests that the

impact on the computed statistics is small.
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Figure 9: Wall-modeled LES of shock/turbulent boundary layer interaction at M∞ =
1.69 and Reδ = 6.1 × 105 (Reθ = 5 × 104). Streamwise velocity contours at wall-

parallel plane at y = hwm (h+
wm ≈ 590) and temperature contours at side-plane.

4.2 Shock-wave/turbulent boundary layer interaction

Having verified the proposed dynamic method on the turbulent boundary layer that

essentially removes the impact of the wall-modeling errors on the computed statis-

tics, we next discuss the capability of the established wall-model on non-equilibrium

separated flows. We consider the shock-induced separated turbulent boundary lay-

ers at M∞ = 1.69, Reδ = 6.1 × 105 (Reθ = 5 × 104), and flow deflection angle

by the oblique shock β = 6.0, which is experimentally performed by Souverein et

al. [14, 15]. Here again, we stress that this is a much higher Reynolds number than

what traditional wall-resolved LES is capable. The grid used here corresponds to the

hwm = y5 = 0.055y/δ grid (∆x = ∆z ≈ 0.042δ and ∆yw/δ = 0.011) used in pre-

vious Section 44.1. This configuration was shown in that section to yield converged

statistics. The localized artificial diffusivity method [23] is used to capture the shock

waves coupled with the sixth-order compact differencing scheme.

Figure 9 shows the instantaneous snapshot of the wall-modeled LES of the shock

wave/turbulent boundary interaction. We conduct concurrent simulations of a super-

sonic turbulent boundary layer that are coupled with the shock interaction computa-

tion. The inflow conditions for the wall-modeled LES of shock-wave/boundary layer

interaction are extracted from the plane of concurrent wall-modeled LES of super-

sonic turbulent boundary layer. Typical low-speed streaks (orange colored regions)

in the upstream of the shock interaction and instantaneous reverse flow regions (blue

colored regions) in the shock-induced separating region are clearly observed in the

wall-parallel plane.

Comparisons of mean and variance of streamwise velocity in the region of shock-

interacting separated flow between the wall-modeled LES and experiment are shown

in Fig. 10. Overall the locations of the shock structures, boundary layer separation,

thickening of the turbulent boundary layer after the shock interaction, and the high

fluctuation u′ region along the separated boundary layer qualitatively agree reason-

ably well with the experiment. However, quantitatively, the wall-modeled LES under-
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(a) Wall-modeled LES (b) Experiment

Figure 10: Comparisons of mean streamwise velocity (top) and streamwise velocity

fluctuation (bottom) distributions between wall-modeled LES and experiment[14, 15].

Region of −3.1 . (x − xs)/δ0 . 1.15 and 0 . y/δ0 . 2 (xs is the inviscid

shock impingement point). 20 equally spaced contours: −0.1 ≤ U/U∞ ≤ 0.99,

0 ≤ u′/U∞ ≤ 0.18.

predicts the peak u′ in the separated region. Mesh convergence study using multiple

meshes and more detailed comparisons between the wall-modeled LES and the exper-

imental data in the mean and fluctuation quantities will be given at the presentation.

Significant improvements are expected to come from refinements of the grid, espe-

cially at the shock-induced separated region where fine-scale vortices are generated

along the separated shear layer.

5 Summary

This paper addresses the errors encountered when modeling the wall shear stress (and

heat flux when extended to compressible flow) in large-eddy simulation (LES) on grids

that do not resolve the viscous layer: the errors in estimating the wall shear stress from

a given outer-layer velocity.

We propose a simple yet efficient dynamic wall-model that minimize the impact of

the error on the computed statistics (most importantly, the predicted skin friction) and

make the wall-model applicable at high Reynolds numbers. The model stems directly

from considerations of how turbulence length scales behave in the logarithmic layer,

and thus in other words the method is based solidly on physical reasoning. Supersonic

turbulent boundary layer on a flat plate at high Reynolds number, Mach 1.69 and

Reδ = 6.1 × 105 (Reθ = 5 × 104), is simulated and compared with the available

experimental and DNS/LES data. We note that the wall-model and the arguments

leading to the proposed method are presented for compressible flows, but everything

extends trivially to incompressible flows.
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We proposed a mesh-resolution-dependent (y-variable) dynamic wall-model to ad-

dress the wall-modeling errors. The wall-model approximately matches the total

stresses and heat fluxes at the matching location and also accounts for the physics

that the unresolved stresses and heat fluxes are increased in the wall-normal direction

toward the wall in the inner-layer RANS. The model has only one adjustable param-

eter α′, the value of which is shown to have only a small effect on the results. The

proposed dynamic wall-model shows good agreement with the available experimental

and DNS/LES data on the flat plate supersonic turbulent boundary layer case with-

out showing the typical logarithmic layer mismatch, whereas no existing wall-stress

models that solve the RANS equations on the embedded inner-layer mesh without a

control theory were able to predict the correct intercept in the Van Driest transformed

velocity (i.e., the skin friction). The method also produces realistic near-wall turbu-

lence without the overly smooth and elongated “streaks” common to several other

approaches.

Finally the established wall model is tested on the shock-wave/turbulent boundary

layer interacting separated flow at the higher Reynolds number. Preliminary results

show a qualitatively reasonable agreement with the experimental data, although the

velocity fluctuation in the separated region is underpredicted. Careful mesh refinement

and validation studies on this non-equilibrium separated flows will be discussed at the

presentation.
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