
Abstract

Grammatical evolution (GE), which is a kind of evolutionary algorithm, can find an

executable program or program fragment that will achieve a good fitness value for

the given objective function to be minimized. The search algorithm of GE is very

similar to the genetic algorithm (GA) except for the translation rules from genotype

(bit-string) to phenotype (function or program).

In this study, an original GE and three improved algorithms are applied for deter-

mining the constitutive relationship in the plane strain state. The numerical results

show the convergence speed of the improved algorithm is faster than the original GE.

Keywords: grammatical evolution, constitutive relationship, plane strain state.

1 Introduction

Genetic Algorithms (GA) [1] and Genetic Programming (GP) [2] are very popular

evolutionary computation techniques. Their objectives, however, are a little different.

While the aim of traditional GA is to find the optimal or better solution of the opti-

mization problem, GP is designed for finding the function representation or executable

program or program fragment. In this study, Grammatical Evolution (GE) is applied

for finding the relationship between physical quantities, i.e. Hooke’s law.

Grammatical evolution (GE), which is also a kind of evolutionary computation

technique, was firstly presented by Ryan, Collins and O’Neill [3, 4]. It is related to

the idea of genetic programming in that the objective is to find an executable program

or program fragment that will achieve a good fitness value for the given objective

function to be minimized. The interesting feature of the GE is to represent functions

and programs by the help of binary numbers (bit-strings), instead of tree structure in

GP. In the GE, the translation rules from genotype (bit string) to phenotype (function

Paper 48

Application of Grammatical Evolution to the
Determination of Constitutive Equations

E. Kita, T. Kuroda, H. Sugiura, Y. Zuo and Y. Wakita
Graduate School of Information Sciences
Nagoya University, Japan

©Civil-Comp Press, 2012
Proceedings of the Eighth International Conference
on Engineering Computational Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

or program) are defined according to the Backus-Naur form (BNF). Except for the use

of translation rules, the algorithm is very similar to traditional GA. In the GA, a pop-

ulation of abstract representations (chromosomes or genotype) of potential solutions

(individuals, creatures, or phenotypes) to an optimization problem evolves toward bet-

ter solutions by using the genetic operators such as crossover, selection, mutation, and

so on. Traditionally, solutions in GA are represented in binary as strings of 0s and

1s. The GE translates the strings of GA potential solutions to functions and programs

according to the BNF syntax.

In this study, after introduction of the original GE, three improved algorithms are

presented. An original GE has two difficulties. One is related to the rule selection

scheme and another is to the selection probability of candidate symbols. In the orig-

inal GE, the rules are selected by the remainder. The scheme 1 adopts the special

roulette selection, instead of the remainder selection. In the scheme 2 and 3, the biased

selection probability is adopted to the recursive and terminal rules. In the numerical

example, the GE is applied for finding the constitutive relationship between stress and

strain in the plain strain state.

The remaining part of this paper is organized as follows. In section 2, the original

GE algorithm and its simple example is explained. In section 3, the improved algo-

rithms are explained. The numerical examples are shown in section 4 and the results

are summarized again in section 5.

2 Grammatical Evolution

2.1 Original Algorithm

The algorithm of an original Grammatical Evolution (GE) is simply summarized as

follows.

1. A BNF syntax is defined to translate genotype (bit-string) to phenotype (func-

tion or program).

2. An initial population is defined with randomly generated individuals.

3. Genotypes are translated to function according to the BNF syntax.

4. Fitness functions of genotypes are estimated.

5. Genetic algorithms update the population.

6. The process is terminated if the criterion is satisfied.

7. Go to step 3.

The translation from genotype to phenotype is as follows.

1. A bit-string is translated to a decimal number every n-bits.

2. A leftmost decimal, a leftmost recursive (nonterminal) symbol, and the number

of candidate symbols for α are defined as β, α, and nα, respectively.

3. The remainder is calculated as γ = β%nα.

(A) <expr> ::= <expr><expr><op> (A0)

| <x> (A1)

(B) <op> ::= + (B0)

| - (B1)

| * (B2)

| / (B3)

(C) <x> ::= x (C0)

Table 1: BNF Syntax of Function Identification Problem

4. The symbol α is replaced with the γ-th symbol of the candidate symbols.

5. If nonterminal symbols exist, go to step 2.

In the genetic programming (GP), the programs rapidly grow in size over time. This

difficult is called as “bloat”. For overcoming the difficulty, the maximum size of the

programs is restricted in advance. The similar idea is applied to the GE. The maximum

size of the programs is restricted to Lmax.

2.2 Application of Original GE to Function Identification Prob-

lem

The function identification problem is very popular problem for GP and GE. GE and

GP are applied for the function identification problem in order to confirm their fea-

tures.

The objective of the function identification problem is

to find an approximate function f̄

when discrete data {(x1, y1), (x2, y2), · · · , (xn, yn)} is given,

where the parameter n denotes the total number of the discrete data sets. When an

exact function f is given, the discrete data are referred to as yi = f(xi).

We will consider that the exact function f is given as

f(x) = x4 + x3 + x2 + x. (1)

The discrete data are generated by estimating equation (1) at x = −1,−0.9,−0.8, · · · ,
0.9, 1, (n = 21).

The fitness is estimated from f and f̄ as follows:

fitness =

√

√

√

√

1

21

21
∑

i=1

[f(xi) − f̄(xi)]2 (2)

where f and f̄ denote the exact function and the function predicted in GE, respectively.

The fitness values are estimated as the value averaged over 50 runs.

Generation 1000

Population size 100

Chromosome 100

Tournament size 5

Crossover rate 0.5

Mutation rate 0.1

Translation bit-size 4bit

Maximum size Lmax = 100

Table 2: GE Parameters

Generation 1000

Population size 100

Crossover rate 0.9

Table 3: GP Parameters

A GE syntax in BNF is shown in Table 1. The start symbol is <expr>. The

use of the rule (A) replaces the symbol <expr> with the candidate symbol (A0)

<expr><expr><op> or (A1) <x>. The use of the rule (B) replaces the symbol

<op> with the candidate symbols (B0) +, (B1) -, (B2) *, or (B3) /. The use of the

rule (C) replaces directly the symbol <x> with x.

The parameters of GE and GP simulations are shown in Table 2 and 3, respectively.

Tournament selection, one-elitist strategy and one-point crossover are employed for

both GE and GP. The mutation operator is applied for GE alone.

The convergence history of the best fitness value is shown in Fig.1. The abscissa

and the ordinate denote the number of generation and fitness value, respectively. The

convergence speed of GE is slower than that of GP. Finally, GE can find a better

solution than GP.

3 Improved Grammatical Evolution

3.1 Difficulties of Original GE

The algorithm of the original GE can be improved mainly from the following points.

One is the rule selection algorithm and the other is the selection probability of the

rules and the candidate symbols.

Figure 1: Result of Function Identification Problem

3.1.1 Rule Selection

A leftmost decimal number, a leftmost recursive (non-terminal) symbol, and the num-

ber of candidate symbols for α are referred to as β, α, and nα, respectively. Since a

symbol is selected by the remainder γ = β%nα, the symbol selection is very sensitive

to the variation of the decimal number β. Even when the value of β alters by only

one, the selected symbol is changed. This may disturb the development of the bet-

ter scheme included in the bit-strings. The scheme 1 is designed for overcoming this

difficulty.

3.1.2 Selection Probability of Symbols

The original GE selects symbols according to the remainder and therefore, the selec-

tion probability for all candidate symbols is identical. For example, in Table 1, the

rule <expr> is translated to (A0) <expr><expr><op> or (A1) <x>. The selec-

tion probabilities of the symbol (A0) and the symbol (A1) are identical; 50% for each

symbol. A biased selection probability for symbols may be better in some problems

for improving the convergence speed.

The rules are classified into the recursive (non-terminal) and terminal rules. For

example, in Table 1, the symbol (A) is recursive rule and the others are terminal rules.

The iterative use of recursive rule makes the phenotype (function or program) longer

and more complicated. On the other hand, the terminal rule terminates the devel-

opment of the phenotype. Since the recursive and the terminal rules have different

functions for the algorithm, it is appropriate that the different selection probability is

taken for each rule. The following scheme 2 and 3 are designed to control the selection

probability of the recursive and the terminal rules, respectively.

3.2 Improvement of Original GE

3.2.1 Scheme 1

In the original GE, the symbols are selected according to the remainder of the decimal

number with the respect to the total number of candidate symbols. The scheme 1

adopts the special roulette selection, instead of the remainder selection. The roulette

selection is popular selection algorithm in GA. In the scheme 1, the roulette selection

probabilities for all candidates symbols are identical. The objective of the scheme 1 is

to encourage the development of the better schemata.

We will consider a leftmost decimal as β, a leftmost nonterminal symbol as α, and

the number of candidate symbols for α as nα. The algorithm is as follows.

1. Calculate the parameter sα = β/nα.

2. Generate a uniform random number p (0 < p ≤ β).

3. If (k − 1)sα ≤ p < ksα, select k-th symbol from the candidate symbols for α
(1 ≤ k ≤ n).

3.2.2 Scheme 2

In scheme 2, the selection probability of the recursive rule is controlled according to

the depth of the tree structure. The maximum length of the programs is specified in

advance. If the length of the programs is shorter than the maximum depth Lmax, the

selection probability is increased. If not so, the probability is decreased.

The selection probability of the recursive rule i is calculated as

P r
i = 1 −

L

Lmax

(3)

where L and Lmax denote the depth and the maximum depth of the programs.

3.2.3 Scheme 3

In scheme 3, the selection probabilities of the candidate symbols in the terminal rules

are controlled according to the total number of the candidate symbols included in all

individuals in the population.

The total numbers of the candidate symbols in the terminal rules in all individuals

are counted first. It is assumed that a terminal rule has NN candidate symbols and that

i-th candidate symbol occurs Ni times in all individuals. The selection probability PN
i

of the i-th candidate symbol is calculated as

PN
i =

Ni
∑NN

j=1 Nj

. (4)

Figure 2: Plate with a circular hole

4 Numerical Example

4.1 Plane Strain Problem

In the plane strain state, the strain components with respect to z-axis are negligible.

The stress and strain vectors at an arbitrary point in the object domain, {~σ} and {~ε}
are defined as

{~σ} = {σx, σy, τxy}
T (5)

{~ε} = {εx, εy, γxy}
T , (6)

where the subscripts denote the x, y and z-axes.

The constitutive relationship, i.e., Hooke’s law is defined as

{~σ} = [D]{~ε}, (7)

where the stiffness matrix [D] is given as

[D] =
E(1 − ν)

(1 + ν)(1 − 2ν)







1 ν
(1−ν)

0
ν

(1−ν)
1 0

0 0 (1−2ν)
2(1−ν)






(8)

4.2 Problem Setting

The use of the GE determines the stiffness matrix [D] in equation (7) from the pairs

of the stress vector {~σ} and the strain vector {~ε}.

The pairs of the stress and the strain vectors are estimated in the one-dimensional

tensile problem of the plate with a hole (Fig.2). The pairs of the stress and the strain

Figure 3: Finite element discretization

vectors for GE simulation are calculated by using the finite element method [5]. Tri-

angle finite element discretization of the quarter part of the object domain is shown in

Fig.3. Total numbers of the elements and the nodes are 34 and 27, respectively.

The stiffness matrix determined by GE is defined as

[D̄] =





D11 D12 D13

D21 D22 D23

D31 D32 D33



 (9)

Since the stress and the strain components in the z-axis direction are independent

of the other components, the components D11, D12, D21 and D22 in equation (9) is

determined by GE.

BNF syntax is listed in Table 4. The simulation parameters are shown in Table 5.

The fitness is defined by the least square errors as

fitness =

√

√

√

√

1

N

N
∑

i=1

[{D11εx + D12εy − σx}2 + {D21εx + D22εy − σy}2]. (10)

Fifty simulations are performed and the average values are estimated.

4.3 Result

The stiffness matrix determined by Original GE is as follows.

¯[D] = E

[

ν + 1 1
2

1
2

1

]

(11)

The stiffness matrices in equations (8) and (11) are very similar.

The convergence histories of the fitness of the best individuals are shown in Fig.4.

The figure is plotted with the generation as the horizontal axis and the fitness as the

vertical axis, respectively.

The convergence properties of the original GE and the scheme 1 and 1+3 are sim-

ilar. The results by the use of scheme 1+2 and 1+2+3 show the faster convergence

(A) <expr> ::= <expr><op><expr> (A0)

| <var> (A1)

(B) <var> ::= <const> (B0)

| <num> (B1)

(C) <op> ::= + (C0)

| - (C1)

| * (C2)

| / (C3)

(D) <const> ::= E (D0)

| ν (D1)

(E) <num> ::= 1 (E0)

| 2 (E1)

Table 4: Translation rules

Max. generation 500

Number of individuals 100

Chromosome length 100

Selection Tournament

Tournament size 5

Number of elite individuals 1

Crossover One-point

Crossover rate 0.9

Mutation rate 0.1

Radix conversion Every 4 bit

Max. length of sentence MaxN = 100

Table 5: Parameters

property than them by the others. Therefore, the scheme 2 is very effective for this

problem and the combinational use of the scheme 2 and 3 is the most promising among

them.

5 Conclusion

Grammatical evolution (GE) is one of the evolutionary computations, which can rep-

resent tree structures such as functions and programs by the binary number. The use of

the BNF syntax transforms binary numbers to functions or programs. After the orig-

inal GE algorithm was described, three improved algorithms were explained for im-

proving the convergence property of the original GE. The improved algorithms were

named as scheme 1, scheme 2, and scheme 3, respectively.

0

5

10

15

20

25

30

35

0 100 200 300 400 500

Generation

F
it
n
e
s
s

Original GE

Scheme1

Scheme1+2

Scheme1+3

Scheme1+2+3

Figure 4: Comparison of convergence speed

GEs were applied for determining the constitutive equation between stress and

strain components in the plane strain state. GE could find the similar stiffness equation

as Hooke’s law, which is determined from the experiments. Comparing the conver-

gence properties of the schemes showed that the scheme 1+2+3 is the fastest and the

scheme 1+2 is the second-fastest. Therefore, we can conclude that the scheme 3 is

effective for this problem.

References

[1] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison Wesley, 1 edition, 1989.

[2] J. R. Koza, editor. Genetic Programming II. The MIT Press, 1994.

[3] C.Ryan, J.J.Collins, and M.O’Neill. Grammatical evolution: Evolving programs

for an arbitrary language. In Proceedings of 1st European Workshop on Genetic

Programming, pp. 83–95. Springer-Verlag, 1998.

[4] C.Ryan and M.O’Neill. Grammatical Evolution: Evolutionary Automatic Pro-

gramming in an Arbitrary Language. Springer-Verlag, 2003.

[5] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. McGraw-Hill

Ltd., 4 edition, 1991.

