
Abstract

Differential evolution (DE) is a popular computational method used to solve opti-

mization problems with several variants available in the literature. Here, the use of

a similarity-based surrogate model is proposed in order to improve DE’s overall per-

formance in computationally expensive problems. The offspring are generated by

means of different variants, and only the best one, according to the surrogate model,

is evaluated by the simulator. The problem of weight minimization of truss structures

is used to assess the performance of the proposed procedure. The surrogate assisted

DE techniques presented here are compared to standard versions of DE using differ-

ent variants. The experiments are composed by six different optimization problems

involving five structures with continuous as well as discrete design variables.

Keywords: differential evolution, surrogate model, structural optimization, nearest

neighbors, linear regression.

1 Introduction

Due to the increasing competitiveness in industry, as well as the identification of new

scientific problems, significant effort has been invested in recent years to develop ef-

fective computational techniques to deal with those challenges. The complexity of

current structural design, optimization, and identification problems provides the moti-

vation for the design and analysis of novel optimization techniques.

Nature inspired metaheuristics can help overcome the challenges presented by mul-

tiple objectives, mixed types of design variables, low regularity of the objective func-

tions, a large number of nonlinear implicit constraints, and expensive and/or unreliable

gradients. However they often require a large number of fitness and constraint evalua-

tions. Due to the size and complexity of current simulation models, large (sometimes
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prohibitive) computational times are often required. As a result, the idea of incorpo-

rating surrogate/metamodeling techniques becomes attractive.

Among the many metaheuristics available, differential evolution (DE), inspired by

Darwinian evolution, is a relatively new optimization technique which has generated

interest in a number of researchers from different fields. In DE the population of can-

didate solutions moves in the search space by means of the addition of differences

between other candidate vectors. Several variants of DE can be found in the litera-

ture. Although good solutions can be obtained, DE requires, similarly to other nature

inspired techniques, many calls to the objective function evaluator. This becomes a

serious drawback to their application in situations where expensive simulations are

required. The user’s computational budget then places a strong limit to the number

of calls to the expensive simulation model, making it necessary to modify the search

process in order to increase the convergence speed of the optimization procedure.

One way to alleviate that situation is to use a surrogate model (or metamodel),

replacing the computationally intensive original simulator evaluation by a relatively

inexpensive approximation of the objective function value and constraint checking.

Here the use of local surrogate models in order to improve DE’s overall performance

in structural optimization problems is proposed.

In this paper, a similarity-based surrogate model (SBSM) is applied to DE so that,

using a fixed number of expensive simulations, DE is allowed to perform additional

(approximate) fitness function evaluations in order to (hopefully) obtain a final so-

lution which is better than the one DE would find using only that fixed amount of

simulations.

2 Structural Optimization Problems

The main types of structural optimization problems are usually referred to as sizing,

configuration, or topology optimization. In sizing optimization problems, character-

istics of the cross-section of the bars, such as the sectional areas of the members of a

truss a = {A1, A2, ..., An} are used as design variables, (which can be continuous or

discrete, when chosen from a list of commercially available sizes) and one is interested

in finding a which minimizes the weight of the truss structure

w(a) =
n∑

k=1

γAk

(
Nk∑

j=1

Lj

)
(1)

subject to the normalized stress (s) and displacements (u) constraints

|sj,l|

sadm

− 1 ≤ 0
|ui,l|

uadm

− 1 ≤ 0 1 ≤ j ≤ N, 1 ≤ i ≤M, 1 ≤ l ≤ NL (2)

where γ is the specific weight of the material, Lj is the length of j-th bar of the

structure, ui and sj are respectively the nodal displacement of the i-th translational
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degree of freedom and the stress of the j-th bar, sadm is the allowable stress for the

material, and uadm is the maximum displacement for each nodal point. M is the

number of translational degrees of freedom, N is the total number of bars in the truss

structure, Nk is the number of members in the k-th group which share the same cross-

sectional area, and NL is the number of load cases applied to the structure.

Although the function w from Eq. (1) is linear, the m = NL× (N +M) constraints

in (2) are complex implicit functions of the design variables a and require the solution

of the equilibrium equations of the discrete model given by K(a)ul = fl, 1 ≤ l ≤ NL.

Kis the symmetric and positive definite stiffness matrix of the structure, derived in the

finite element formulation by assembling each matrix contribution Kj of the j-th bar,

which is a linear function of a. The vector of nodal displacements is denoted by ul,

and fl is the vector of applied nodal forces for the l-th load condition. For each one of

the load conditions, the system is solved for the displacement field ul = [K(a)]−1
fl

and the stress in the j-th bar is calculated according to Hooke’s Law as sj,l = Eε(ul),
where E is the Young’s modulus and ε is the unit change in length of the bar.

3 Adaptive Penalty Method

The application of evolutionary algorithms to constrained optimization problems re-

quires a constraint handling technique which is a fundamental factor for a good per-

formance of the algorithm. Penalty techniques are widely used in nature inspired

metaheuristics. This is due to the fact that often the search using feasible as well as

infeasible elements increases the chances of getting better results. Although conceptu-

ally simple, they require adequate values for (problem dependent) penalty parameters

so that a good performance is attained. The adaptive penalty method (APM), proposed

in [4], aims at relieving the user from the task of defining good values for the penalty

coefficients by automatically setting those values using feedback from the search pro-

cess. The idea is to observe how each constraint is being violated by the candidate

solutions of a given population and then set a higher penalty coefficient to those con-

straints which seem to be harder to satisfy. Furthermore, the APM has been shown to

be quite effective within Genetic Algorithms (GA) [11] and DE [16]. The quantities to

be computed are the average value of the objective function of the elements of a given

population, and the average violation of the j-th constraint in a given population.

The class of constrained optimization problems solved here can be written as

minimize f(x) = w(x)
subject to:

g(x) ≤ 0, xL
i ≤ xi ≤ xU

i , ∀i = 1, . . . , n
where:

f : ℜn → ℜ, g : ℜn → ℜm,

where w(·) is defined by Equation 1 and g(·) is the vector of m constraints in Equa-
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tion 2. Defining the amount of violation of the j-th constraint as

vj(x) = max{0, gj(x)},

then APM defines the fitness of a given candidate solution x as

F (x) =

{
f(x) if x is feasible

f(x) +
∑m

j=1
kjvj(x) otherwise

(3)

with

f(x) =

{
f(x) if f(x) > 〈f(x)〉
〈f(x)〉 otherwise

(4)

The penalty coefficient kj corresponding to the j−th constraint is defined at every

generation by

kj = |〈f(x)〉|
〈vj(x)〉∑m

l=1
[〈vl(x)〉]2

(5)

where 〈f(x)〉 is the average fitness in the current population and 〈vl(x)〉 is the violation

of the l-th constraint averaged over the current population.

4 Differential Evolution

Originally proposed by Storm and Price [17], DE is a simple and effective algorithm

for global optimization in ℜn. A pseudo-code is presented in Algorithm 1. The ba-

sic operation performed is the addition to each design variable in a given candidate

solution of a term which is the scaled difference between the values of such variable

in other candidate solutions in the population. The number of differences applied, the

way in which the individuals are selected and the distribution of recombination de-

termine the DE variant (also called DE strategy). The DE variants considered here,

proposed in [13], modify the way that the individuals are selected to participate in the

mutation as follows:

• DE/best/1/bin: Uses the best individual in the population xbest,j,G as base vector

in the mutation, leading to ui,j,G+1 = xbest,j,G + F.(xr1,j,G − xr2,j,G), where r1

and r2 are randomly selected individuals.

• DE/target-to-best/1/bin: This variant uses the best individual of the popula-

tion and the target individual (the one that will be used in the comparison af-

ter the mutation, also called current individual), leading to ui,j,G+1 = xi,j,G +
F.(xbest,j,G − xi,j,G) + F.(xr1,j,G − xr2,j,G)

• DE/target-to-rand/1/bin: This one modifies the previous variant by using a

randomly selected individual (r3) instead of the best one ui,j,G+1 = xi,j,G +
F.(xr3,j,G − xi,j,G) + F.(xr1,j,G − xr2,j,G)
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Algorithm 1: Algorithm DE/rand/1/bin.

input : NP (population size), GEN (# of generations), F (mutation scaling),

CR (crossover rate)

G← 0;1

CreateRandomInitialPopulation(NP);2

for i← 1 to NP do3

Evaluate f(−→x i,G) ; /*
−→x i,G is an individual in the4

population */

for G← 1 to GEN do5

for i← 1 to NP do6

SelectRandomly(r1, r2, r3) ; /* r1 6= r2 6= r3 6= i */7

jRand←RandInt(1, N) ; /* N is the number of8

variables */

for j ← 1 to N do9

if Rand(0, 1) < CR or j = jRand then10

ui,j,G+1 = xr3,j,G + F.(xr1,j,G − xr2,j,G);11

else12

ui,j,G+1 = xi,j,G;13

if f(−→u i,G+1) ≤ f(−→x i,G) then14

−→x i,G+1 = −→u i,G+1;15

else16

−→x i,G+1 = −→x i,G;17

5 Surrogate-assisted Differential Evolution

Replacing the original evaluation function (a complex computer simulation) by a sub-

stantially less expensive approximation is known as surrogate modeling, or metamod-

eling. Although this idea appeared early in the evolutionary computation literature

[7], there are not many works combining DE with surrogate models. Wang et al. [18]

use an artificial neural network (ANN) as a surrogate model, which is trained by the

initial population, exactly evaluated. The ANN is then used to evaluate the individuals

in the following generations where only the best individual is exactly evaluated and

stored. After a fixed number of generations the population is evaluated by the original

objective function and the ANN is retrained. Pahner & Hameyer [12], had previously

proposed a similar process using radial basis function neural networks (RBFN). Zhang

& Sanderson [19] modify jDE [14] by generating multiple offspring for each parent

and choosing the best one in a special tournament which takes into account a measure

of the RBFN surrogate model accuracy.

In contrast to “eager” learning algorithms, such as neural networks and polynomial

response surfaces, which generate a model and then discard the inputs, the Similarity-
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Based Surrogate Models store their inputs and defer processing until a prediction of

the fitness value of a new candidate solution is requested. Thus, SBSMs can be clas-

sified as “lazy” learners or memory-based learners [2].

The Nearest Neighbors technique, a type of SBSM, was previously explored in [5].

Here, two variants of this method are studied: (i) k-Nearest Neighbors (k-NN) [15],

in which the k nearest candidate solutions are selected; and (ii) r-Nearest Neighbors

(r-NN) [10], where all points in a given neighborhood are used.

Given a candidate solution x and the archive D = {(xi, f(xi)), i = 1, . . . , η}
containing the solutions already exactly evaluated , the following approximation is

considered:

f(x) ≈ f̂(x) =

∑|N |
j=1

s(x, xN
j )pf(xN

j )
∑|N |

j=1
s(x, xN

j )p

where the xN
j ∈ N are the nearest neighbors of x, s(x, xN

j ) is a similarity measure

between x and xN
j , and p is set to 2. Here, s(x, xN

j ) = 1−
(
dE(x, xN

j )
)
/
(
dE(xu, xl)

)
,

where dE(x, xN
j ) is the Euclidean distance between x and xN

j , and xu and xl are the

upper and lower bounds of the search space, respectively. If x = xi for some xi ∈ D
then f̂(x) = f(xi). When one uses the k-NN technique, N is composed by the k
elements in the set D most similar to x. On the other hand, when the r-NN technique

is used,N contains the elements from the setD which belong to the hyperbox centered

in x such that its i-th “side” has length 2r
(
xu

i − xl
i

)
.

For both querying techniques considered here, only one parameter is needed to be

set by the user: the number of nearest neighbors k, or the length of the “size” of the

hyperbox. When there are no candidate solutions inside the hyperbox, the two nearest

neighbors are used by the surrogate function.

All candidate solutions from the initial population are evaluated exactly and com-

pose the archiveD which defines the surrogate model. All new candidate solutions are

evaluated by the surrogate model and the best one is evaluated by the exact function.

If the exact evaluation of the offspring is better than that of the parent, the parent is

replaced. It is important to note that every individual exactly evaluated is stored in the

archive D used by the surrogate model.

Finally, all surrogate models used in the works mentioned above are based on neural

networks, which are much more computationally expensive than the SBSM method

proposed here.

6 Computational Experiments

Five structures from the literature are considered here, namely the 10-, 25-, 60-, 72-,

and 942-bar trusses, to assess the performance of the proposed algorithm. The Fig-

ures 1 and 2 display a schematic view of the structures considered.

All DE variants, as presented in Algorithm 1 from Section 4, use the same pa-

rameter values as follows: F = 0.8, CR = 0.9 and NP = 50. The standard DE variants
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Figure 1: Images of the bar truss structures used in the computational experiments.

DE/rand/1/bin, DE/best/1/bin, DE/target-to-best/1/bin and DE/target-to-rand/1/bin are

labeled as “Rand”, “Best”, “Target-to-best” and “Target-to-rand” respectively. The DE

assisted by a surrogate model are labeled as “SMDE” followed by a parameter of its

similarity model. For all cases, 12,000 objective function evaluations were used, and

100 independent runs were performed.

In the following, a brief description of the five structural design optimization prob-

lems considered is presented.

6.1 Test-Problems

The 10-bar Truss Design

This test problem corresponds to the weight minimization of the 10-bar truss shown in

the Figure 1a. The stress in each member is limited to ± 25ksi, and the displacements
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Figure 2: Images of the 942-bar truss structures used in the computational experiments

(adapted from [9]).
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node Fx Fy Fz

1 1 −10.0 −10.0
2 0 −10.0 −10.0
3 0.5 0 0

6 0.6 0 0

group connectivities

A1 1-2

A2 1-4, 2-3, 1-5, 2-6

A3 2-5, 2-4, 1-3, 1-6

A4 3-6, 4-5

A5 3-4, 5-6

A6 3-10, 6-7, 4-9, 5-8

A7 3-8, 4-7, 6-9, 5-10

A8 3-7, 4-8, 5-9, 6-10

Table 1: Loading data (kips) and member grouping for the 25-bar truss.

at the nodes are limited to 2 in., in the x and y directions. The design variables are

the cross-sectional areas of the bars. The material has γ = 0.1 lb/in3, and E = 104

ksi. Vertical downward loads of 100 kips are applied at nodes 2 and 4. Two cases

have been considered: discrete and continuous design variables. For the discrete case

the values of the cross-sectional areas (in2) are chosen from the set S: 1.62, 1.80,

1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87,

3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90,

14.20, 15.50, 16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50. For the

continuous case the cross sectional areas are in the range [0.1, 40] in2.

The 25-bar Truss Design

In this test-problem, the weight of a truss with 25 bars, shown in the Figure 1b, is to be

minimized. The constraints require that the maximum stresses in the members remain

in the interval [−40, 40] ksi and that the maximum displacements at the nodes 1 and

2 be limited to 0.35 in, in both the x and y directions. The design variables are the

cross-sectional areas of the bars to be chosen from the set (in square inches): 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,

2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, and 3.4. The design variables are linked in eight

groups detailed in the Table 1. The material has γ = 0.1 lb/in3 and E = 104 ksi. The

loading data is listed in the Table 1.

The 60-bar Trussed Ring

This test-problem corresponds to the weight minimization of a 60-bar trussed ring

depicted in the Figure 1c (not to scale) under three load cases as given in Table 2.

Also in Table 2 is the grouping of the cross-sectional areas in 25 design variables.

The outer radius of the ring is 100 in and the inner radius is 90 in. The material

has E = 104 ksi and γ = 0.1 lb/in3. There are 198 constraints where 180 refer to

allowable stress (σi = 60 ksi, i = 1 to 60), and 18 refer to displacement constraints

along both the x and y directions with magnitude: 1.75 in at node 4, 2.25 in at node

13, and 2.75 in at node 19. For the continuous case the cross-sectional areas of the

bars are assumed to be in the range [0.5, 5] in2.
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node Fx Fy

load case 1

1 −10.0 0

7 9.0 0

load case 2

15 −8.0 3.0

18 −8.0 3.0

load case 3

22 −20.0 10.0

Group bars Group bars

A1 49 to 60 A14 25, 37

A2 1, 13 A15 26, 38

A3 2, 14 A16 27, 39

A4 3, 15 A17 28, 40

A5 4, 16 A18 29, 41

A6 5, 17 A19 30, 42

A7 6, 18 A20 31, 43

A8 7, 19 A21 32, 44

A9 8, 20 A22 33, 45

A10 9, 21 A23 34, 46

A11 10, 22 A24 35, 47

A12 11, 23 A25 36, 48

A13 12, 24

Table 2: Loading data (kips) and member grouping for the ring structure.

The 72-bar Truss

The Figure 1d presents the 72-bar truss structure where the design variables are the

cross-sectional areas of the bars, the minimum value for each one being 0.1 in2. The

72 design variables are linked in sixteen groups detailed in the Table 3. The material

has γ = 0.1 lb/in3 and E = 104 ksi. Two load cases (see Table 3) are considered.

Displacements at the nodes 1 to 16 along the x and y directions are constrained to a

maximum of 0.25 in, and the stress in each bar is restricted to the range [−25, 25] ksi.

The 942-bar Truss Design

In this truss tower [8], the symmetry of the tower around x and y-axes is employed

to group the 942 truss members into 59 independent size variables. The tower is

subject to a single loading condition consisting of both horizontal and vertical loads,

as follows: (i) the vertical loads in the z direction are −3.0 kips (−13.344 kN), −6.0
kips (−26.688 kN), and −9.0 kips (−40.032 kN) at each node in the first, second and

third sections, respectively, (ii) the lateral loads in the y direction are 1.0 kips (4.448

kN) at all nodes of the tower, and (iii) the lateral loads in the x direction are 1.5 kips

(6.672 kN) and 1.0 kips (4.448 kN) at each node on the left and right sides of the

tower, respectively.

The cross-sectional areas available are taken as continuous values in the range

[1, 200] in2. The constraints for this problem include a maximum stress of 25.0 ksi

(170 MPa) both in tension and compression for all members, and a limit of 15 in for

the displacements of the top nodes in any global direction. The modulus of elasticity

is E = 10,000 ksi and the density is ρ = 0.1 lb/in3 (27.15 kN/m3). This problem has

been previously studied in [1, 9, 8], where more detailed information can be found.
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node Fx Fy Fz

load case 1

1 5 5 −5
load case 2

1 0 0 −5
2 0 0 −5
3 0 0 −5
4 0 0 −5

group members

A1 1, 2, 3, 4

A2 5, 6, 7, 8, 9, 10, 11, 12

A3 13, 14, 15, 16

A4 17,18

A5 19, 20, 21, 22

A6 23, 24, 25, 26, 27, 28, 29, 30

A7 31, 32, 33, 34

A8 35,36

A9 37, 38, 39, 40

A10 41, 42, 43, 44, 45, 46, 47, 48

A11 49, 50, 51, 52

A12 53,54

A13 55, 56, 57, 58

A14 59, 60, 61, 62, 63, 64, 65, 66

A15 67, 68, 69, 70

A16 71,72

Table 3: Loading data (kips) and member grouping for the 72-bar truss.

6.2 Performance Profiles

An overall comparison of the algorithms is given by means of performance profiles [6,

3]. The performance indicator (to be maximized) tp,a of algorithm a ∈ A when applied

to test-problem p ∈ P is the inverse of the minimum objective function value found

by algorithm a in test-problem p averaged over 100 runs. A performance ratio can

be defined as rp,a = tp,a/min{tp,a : a ∈ A}. Denoting cardinality of a set by |.|,
performance profiles, are defined as [6]

ρa(τ) =
1

np

|{p ∈ P : rp,a ≤ τ}| .

Also, the area under the curves (AUC) of the performance profiles were used to de-

scribe the results.

Although performance profiles allow the direct comparison of all algorithms against

all problems, we have separated the algorithms in 4 groups considering the surrogate

model used, that is, baseline, SMDEs with k-NN, SMDEs with r-NN, and SMDE with

LR. The algorithm with best AUC in each group is selected to the final comparison.

These preliminary comparisons followed by a final analysis with the best performing

techniques make possible not only to choose the best overall technique but also the

best algorithm with respect to each group. The following sections discuss the results

obtained in our experiments.
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Figure 3: Performance profiles for baseline algorithms.

6.3 Preliminary Comparisons

Baseline DEs

The results are presented in figures 3 and 4 where a performance profile and its cor-

responding integral (area under the curve) show that the Target-to-best variant had the

best performance.

SMDE with k-NN

The application of the k-Nearest Neighbors (k-NN) as a surrogate model in DE was

evaluated with different values for the parameter k. The values 2, 4, 8, and 16 were

considered and the results are presented in the figures 5, and 6, where one can observe

that the best result was obtained with k = 2.

SMDE with r-NN

Now the r-Nearest Neighbors (r-NN) surrogate model is applied with DE using differ-

ent values for the r parameter, namely 0.1, 0.01, and 0.001. The results are presented

in the figures 7 and 8, and the best performance was obtained with r = 0.001.

6.4 Final Analysis

The last comparison was performed among the best baseline algorithm and the SMDE

with the best parameters k and r following the results presented in the previous sec-
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tions. Another experiment evaluated was the SMDE with a liner regressor as a sur-

rogate model. The results are presented in the figures 9 and 10. Also the results of

the best performing techniques analyzed here can be found in Table 4 which displays

the best, median, average, standard deviation (std), worst, and the number of exact

objective function evaluations allowed (NEvals). Furthermore, the values obtained in

[16] using DE with dynamic choice of variants (DUVDE), a genetic algorithm with

APM [4, 11], simulated annealing (SA) [9], and an evolution strategy (ES) [8] were

included. The best results with respect to each case are in boldface, the best perform-

ing algorithms are highlighted with a gray background, and an * indicates that the

difference observed is not statistically significant with respect to the results found by

the best performing technique. Algorithms with best median and average values are

preferable. A pair of sets of results are statistically significantly different when the

p-value from the non-parametric Kruskal-Wallis test 1 is less than 0.05.

The results presented in the figures indicate that SMDE obtained the best behavior

when compared with the baseline algorithm. This result shows that the proposed

algorithm is able to alleviate the user from the task of variant definition. In addition,

it was also able to improve the original DE without increasing the computational cost.

1The sample was the solution obtained in each independent run and the open-source SciPy software

(http://www.scipy.org) was used in the statistical tests.
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Best Median Average std Worst NEvals

10-bar – Discrete case

Target-to-best 5490.74 5490.74 5575.58 2.77e + 02 6969.66 12000

SMDE k=2 5490.74 5490.74 5582.45 2.75e + 02 6872.99 12000

SMDE r=0.001 5490.74 5490.74 5582.48 2.75e + 02 6872.99 12000

SMDE LR 5490.74 5490.74 5492.63 7.88e + 00 5538.09 12000

DUVDE[16] 5562.35 – 5564.90 6.00e− 01 5565.04 24000

APM[11] 5490.74 – 5545.48 – 5567.84 90000

10-bar – Continuous case

Target-to-best 5060.85 5060.86 5062.92 5.31e + 00 5076.67 12000

SMDE k=2 5060.85 5061.00 5064.01 6.15e + 00 5077.05 12000

SMDE r=0.001 5060.86 5061.00 5063.85 6.03e + 00 5077.00 12000

SMDE LR 5060.87 5060.98 5062.25 4.26e + 00 5076.69 12000

DUVDE[16] 5060.85 – 5067.18 7.94e + 00 5076.66 280000

APM[11] 5069.08 – 5091.43 – 5117.39 280000

25-bar

Target-to-best∗ 484.85 484.85 485.19 2.51e + 00 509.60 12000

SMDE k=2 484.85 484.85 485.71 3.21e + 00 515.39 12000

SMDE r=0.001 484.85 484.85 485.71 3.21e + 00 515.39 12000

SMDE LR 484.85 484.85 484.88 1.13e− 01 485.91 12000

DUVDE[16] 485.90 – 498.44 7.66e + 00 507.77 20000

APM[11] 485.85 – 485.97 – 490.74 20000

60-bar

Target-to-best 309.64 311.90 312.08 1.31e + 00 317.90 12000

SMDE k=2∗ 309.27 311.27 312.45 4.71e + 00 347.97 12000

SMDE r=0.001 309.14 311.15 312.43 4.79e + 00 348.17 12000

SMDE LR 312.80 315.99 316.39 2.48e + 00 329.64 12000

DUVDE[16] 309.44 – 311.54 1.46e + 00 314.70 150000

APM[4] 311.87 – 333.01 – 384.19 800000

72-bar

Target-to-best∗ 379.63 379.68 379.70 6.15e− 02 379.94 12000

SMDE k=2∗ 379.62 379.69 379.79 4.26e− 01 383.32 12000

SMDE r=0.001 379.63 379.68 379.77 4.63e− 01 383.65 12000

SMDE LR 379.73 379.94 380.42 4.17e + 00 421.81 12000

DUVDE[16] 379.66 – 380.42 5.72e− 01 381.37 35000

APM[11] 387.04 – 402.59 – 432.95 35000

942-bar – Discrete case using integer values

Target-to-best 158128.48 209841.59 217807.88 3.35e + 04 363176.31 12000

SMDE k=2∗ 156559.70 200771.49 207290.41 3.18e + 04 339646.14 12000

SMDE r=0.001 156559.70 200771.49 207285.69 3.18e + 04 339646.14 12000

SMDE LR 206075.45 279905.43 280842.06 3.12e + 04 350616.86 12000

SA [9] 143436.02 – – – – 39834

ES [8] 141241.00 – – – – 150000

Table 4: Weights found for all problems. The best results for each case are in bold-

face, the best performing algorithms are highlighted with a gray background, and an

* indicates that the difference to the best performing technique is not statistically sig-

nificant.
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7 Concluding Remarks

In this paper, differential evolution is enhanced by means of similarity-based surro-

gate models, namely nearest neighbor techniques and local linear regression, in order

to improve DE’s performance when solving optimization problems involving compu-

tationally expensive objective functions and/or constraints evaluations.

Computational experiments were performed to assess the performance of the pro-

posed procedure using structural problems from the literature where a maximum num-

ber of exact objective function evaluations is prescribed. The results show that the use

of a similarity-based surrogate model improves the performance of DE for most test-

problems, specially when using r-nearest neighbors with r = 0.001. The use of a

simple local linear regressor produced relatively lower quality results in most prob-

lems, although producing the best results in 2 of the 6 test-problems.

It is important to notice that the results from the literature which presented a better

(smaller) final weight were obtained with a much larger (often one-order magnitude)

number of simulations.

In addition, the proposed technique alleviates the user from the task of defining a

priori which type of variant to use in the DE.

As a future work, ways to improve the accuracy of the meta-model will be studied,

and other test-problems and benchmarks will be considered.
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