
Abstract

Coupled heat and moisture transport in extremely heterogeneous materials like a ma-
sonry still cannot be solved for large strucutres. Multi-scale methods with the macro
and meso-scale levels are usually used. The biggest disadvantage of such methods
stems from their enormous computational demands. Small coupled problem on the
meso-scale level has to be solved for every integration point of the macro-scale prob-
lem. The number of the integration points is in thousands or tens of thousands. The
multi-scale method can be efficiently implemented in parallel because the particular
computations connected with the integration points are totally independent. The strat-
egy denoted the processor farming can be used.

Keywords: coupled heat and moisture transport, Künzel model, parallel computing.

1 Introduction

Coupled heat and moisture transport is becoming very important in civil engineering
because its result has a strong influence on mechanical behaviour of materials and
structures. In the past, the temperature and relative humidity (or water content) were
included into mechanical models as additional material parameters and it was not
possible to take into account their time dependence. Contemporary state of the art
mechanical models are coupled with the heat and moisture transport which is solved
simultaneously with the mechanical analysis.

The coupled heat and moisture transport in extremely heterogeneous material like
masonry is hardly solvable even with modern computers. The reason is that there are
relatively small mortar layers in comparison with bricks which enforce a very dense
finite element mesh. Therefore, only details of structures can be solved.

In order to solve the whole structures, multi-scale techniques are usually used. The
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classical first order homogenization in a spatial domain in the framework of the two-
step multiscale computational scheme was proposed in [1]. This technique is based
on a meso or micro-scale problems and a macro-scale problem. Whether the micro
or meso scale level is used depends on the characteristic size of the representative
volumes which describe the real complicated geometry. In masonry structures, the
representative volume contains several bricks and adjacent mortar layers and there-
fore the meso-scale level is used. The macro-scale problem describes the problem
solved by relatively coarse mesh because homogenized material parameters are ob-
tained from meso-scale level. The multi-scale technique sends the actual values from
the macro-scale level problem to the meso-scale problem where the appropriate mate-
rial parameters are obtained and sent back to the macro-scale problem.

It is evident that the multi-scale method is very demanding because a meso-scale
problem has to be solved for each macro-scale finite element. If the number of macro-
scale finite elements is in thousands only, the solution of meso-scale problems is very
demanding even if each meso-scale problem contains only hundreds of degrees of
freedom. The multi-scale problems are ideal for parallelization because the meso-
scale problems are completely independent and only reasonable amount of data has to
be sent between the macro-scale problem and the meso-scale problems.

In this contribution, the coupled heat and moisture transport is described by the
Künzel material model which was introduced in 1995 in reference [2]. The Künzel
model is based on the temperature and relative humidity which have to satisfy the
mass and heat balance equations in the form of partial differential equations.

2 Künzel model of coupled heat and moisture trans-
port

Künzel introduced in 1995 in his thesis material model suitable for the coupled heat
and moisture transport in building components. Very brief overview of the model is
sketched in this section. Basic form of the mass balance equation is

∂w

∂t
= −div(ql + qv) + Sw , (1)

where w is the water content, ql is the liquid flux density, qv is the vapour diffusion
flux density and Sw denotes the moisture source or sink. Substitution of several re-
lationships, which can be found in [2] or [3], into the balance equation (1) results
in

∂w

∂t
= div

(
(Dϕ + δppvs)∇ϕ+ δpϕ

dpvs

dT
∇T
)

+ Sw , (2)

where Dϕ is the liquid conduction coefficient, δp is the water vapour permeability and
pvs denotes the saturated water vapour pressure which depends on the temperature.
The heat balance equation has basically the form

∂H

∂t
= −divqT + Sh = −divqT − hvdivqv , (3)
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where H is the enthalpy, qT is the heat flux density and Sh is the source or sink of the
heat which is expressed with the help of the vapour diffusion flux density and the latent
heat of phase change, hv. Similarly to the mass balance equation, after substitution of
several relationships the following form is obtained

∂H

∂t
= div

(
hvδppvs∇ϕ+

(
λ+ hvδpϕ

dpvs

dT

)
∇T
)
. (4)

Let new notation be introduced in the form(
qϕ

qT

)
=

(
Dϕϕ DϕT

DTϕ DTT

)(
gϕ

gT

)
= (5)

=

 Dϕ + δppvs δpϕ
dpvs

dT

hvδppvs λ+ hvδpϕ
dpvs

dT

( ∇ϕ

∇T

)
. (6)

With the new notation, the balance equations have the form

dw

dϕ

∂ϕ

∂t
= div (Dϕϕ∇ϕ+ DϕT∇T ) , (7)

dH

dT

∂T

∂t
= div (DTϕ∇ϕ+ DTT∇T ) . (8)

3 Multi-scale method

On the macro-scale, the coordinates are denoted x, T (x) is the temperature and ϕ(x)
stands for the relative humidity. All variables on the meso-scale are denoted by a bar,
i.e. x̄, T̄ (x) and ϕ̄(x). The vector of coordinates on the meso-scale has the form

x̄ = x + ξ (9)

and functions defined on the meso-scale can be written in the form

f̄(x, x̄) = f̄(x, ξ) . (10)

A function defined on the meso-scale can be written in the form

f̄(x, x̄) = f(x) + (∇f(x))T (x̄ − x) + f̄ ∗(x̄) , (11)

where f(x) is the function defined on the macro-scale, ∇f(x) is the gradient of the
function f(x) with respect to the macro-scale coordinates and f̄ ∗(x̄) is the function of
fluctuations defined on the meso-scale. This formulation corresponds to the first order
homogenization where only the function value and the gradient of the macro-scale
function is used on the meso-scale.
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Volume averaging is defined in the form

〈f(x)〉 =
1

|V̄ |

∫
V̄

f̄(x, ξ)dV̄ (12)

and the surface averaging can be written as

〈f(x)〉S =
1

|S̄|

∫
S̄

f̄(x, ξ)dS̄ . (13)

The previous averaged values are valid in a macro-scale point and they are obtained
by integration of a function over the representative volume or surface. Volume integral
of a function has the form∫

V

f(x)dV =

∫
V

〈f(x)〉dV =

∫
V

(
1

|V̄ |

∫
V̄

f̄(x, ξ)dV̄

)
dV (14)

and surface integral can be written in the form∫
S

f(x)dS =

∫
S

〈f(x)〉SdS =

∫
S

(
1

|S̄|

∫
S̄

f̄(x, ξ)dS̄

)
dS . (15)

Averaging of coordinates leads to the result

〈x̄ − x〉 = 0 . (16)

In the multi-scale approach, two gradients are defined. One is defined on the macro-
scale and second on the meso-scale in the form

∇f(x) =



∂f

∂x1

∂f

∂x2

∂f

∂x3

 ∇̄f̄(x̄) =



∂f̄

∂x̄1

∂f̄

∂x̄2

∂f̄

∂x̄3

 . (17)

3.1 Functions defined in meso-scale problem

The following functions are needed in the meso-scale problem. The temperature

T̄ (x, x̄) = T (x) + (∇T (x))T (x̄ − x) + T̄ ∗(x̄) , (18)

the test function for temperature

χ̄(x, x̄) = χ(x) + (∇χ(x))T (x̄ − x) + χ̄∗(x̄) , (19)

the relative humidity

ϕ̄(x, x̄) = ϕ(x) + (∇ϕ(x))T (x̄ − x) + ϕ̄∗(x̄) , (20)
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the test function for relative humidity

ψ̄(x, x̄) = ψ(x) + (∇ψ(x))T (x̄ − x) + ψ̄∗(x̄) . (21)

The gradients of the previously defined functions have the form

∇̄T̄ (x, x̄) = ∇T (x) + ∇̄T̄ ∗(x̄) , (22)

∇̄χ̄(x, x̄) = ∇χ(x) + ∇̄χ̄∗(x̄) , (23)

∇̄ϕ̄(x, x̄) = ∇ϕ(x) + ∇̄ϕ̄∗(x̄) , (24)

∇̄ψ̄(x, x̄) = ∇ψ(x) + ∇̄ψ̄∗(x̄) . (25)

3.2 Heat balance equation

The energy balance equation has to be satisfied on the macro-scale as well as on the
meso-scale, therefore

dH

dT

∂T

∂t
= ∇T (DTT∇T + DTϕ∇ϕ) , (26)

dH̄

dT̄

∂T̄

∂t
= ∇̄T

(
D̄TT ∇̄T̄ + D̄Tϕ∇̄ϕ̄

)
. (27)

Equation (26) is multiplied by χ, the balance equation (27) is multiplied by the test
function χ̄ and then averaged. Finally, both equations are integrated over the volume
and they are added up and the following equation is obtained∫

V

〈
χ̄

dH̄

dT̄

∂T̄

∂t

〉
dV −

∫
V

〈
χ̄ ∇̄T

(
D̄TT ∇̄T̄ + D̄Tϕ∇̄ϕ̄

)〉
dV =

=

∫
V

χ
dH

dT

∂T

∂t
dV −

∫
V

χ ∇T (DTT∇T + DTϕ∇ϕ) dV . (28)

Substitution of the functions (18)–(21) and the gradients (22)–(25) to the heat balance
equation (28) results in the form∫

V

〈
(χ(x) + (∇χ(x))T (x̄ − x) + χ̄∗(x̄))

dH̄

dT̄

∂T̄

∂t

〉
dV +

+

∫
V

〈
(∇χ(x) + ∇̄χ̄∗(x̄))T D̄TT (∇T (x) + ∇̄T̄ ∗(x̄))

〉
dV +

+

∫
V

〈
(∇χ(x) + ∇̄χ̄∗(x̄))T D̄Tϕ(∇ϕ(x) + ∇̄ϕ̄∗(x̄))

〉
dV −

−
∫

S

〈
χ̄nT q̄T

〉
dS −

∫
S

〈
χ̄nT q̄ϕ

〉
dS =

=

∫
V

χ
dH

dT

∂T

∂t
dV +

∫
V

(∇χ)T DTT∇TdV +

∫
V

(∇χ)T DTϕ∇ϕdV −

−
∫

S

χnT qT dS −
∫

S

χnT qϕdS . (29)
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If the function χ(x) is factored in (29), the balance equation on the macro-scale is
obtained∫

V

(〈
(χ(x) + (∇χ(x))T (x̄ − x))

dH̄

dT̄

∂T̄

∂t

〉
− χ

dH

dT

∂T

∂t

)
dV +

+

∫
V

(∇χ(x))T

(
−DTT∇T +

〈
D̄TT (∇T (x) + ∇̄T̄ ∗(x̄))

〉)
dV +

+

∫
V

(∇χ(x))T

(
−DTϕ∇ϕ+

〈
D̄Tϕ(∇ϕ(x) + ∇̄ϕ̄∗(x̄))

〉)
dV = 0 . (30)

If the function χ̄(x) is factored in (29), the balance equation on the meso-scale is
obtained ∫

V

〈
χ̄∗(x̄)

dH̄

dT̄

∂T̄

∂t

〉
dV +

+

∫
V

〈
(∇̄χ̄∗(x̄))T D̄TT (∇T (x) + ∇̄T̄ ∗(x̄))

〉
dV +

+

∫
V

〈
(∇̄χ̄∗(x̄))T D̄Tϕ(∇ϕ(x) + ∇̄ϕ̄∗(x̄))

〉
dV −

−
∫

S

〈
χ̄∗nT qT

〉
dS −

∫
S

〈
χ̄∗nT qϕ

〉
dS = 0 . (31)

The balance equations on both levels are discretized by the finite element method in
the classical sense. The number of degrees of freedom on the macro-scale is denoted
N while the number of degrees of freedom on the meso-scale is denoted n. After
discretization, the gradients (22)–(25) have the form

∇̄T̄ (x, x̄) = ∇T (x) + ∇̄T̄ ∗(x̄) = BT uT + B̄T ū∗T , (32)

∇̄χ̄(x, x̄) = ∇χ(x) + ∇̄χ̄∗(x̄) = BT vT + B̄T v̄∗T , (33)

∇̄ϕ̄(x, x̄) = ∇ϕ(x) + ∇̄ϕ̄∗(x̄) = Bϕuϕ + B̄ϕū∗ϕ , (34)

∇̄ψ̄(x, x̄) = ∇ψ(x) + ∇̄ψ̄∗(x̄) = Bϕvϕ + B̄ϕv̄∗ϕ , (35)

where uT ,vT ,uϕ,vϕ ∈ RN are the vector of nodal temperatures, the vector of nodal
values of the test function χ̄, the vector of nodal relative humidities and the vector
of nodal values of the test function ψ̄, respectively. The matrices BT ,Bϕ ∈ R3×N

are the matrices of gradients of basis functions. The same basis functions are used
for a quantity and its test function. All previously mentioned vectors and matrices
are defined on the macro-scale. Similar vectors and matrices ū∗T , v̄

∗
T , ū

∗
ϕ, v̄

∗
ϕ ∈ Rn,

B̄T , B̄ϕ ∈ R3×n are defined also on the meso-scale.
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Substitution of the finite element approximation to the balance equation on the
macro-scale leads to the form∫

V

vT
T BT

T

(
−DTT∇T (x) +

〈
D̄TT (∇T (x) + B̄T ū∗T )

〉)
dV +

+

∫
V

vT
T BT

T

(
−DTϕ∇ϕ(x) +

〈
D̄Tϕ(∇ϕ(x) + B̄ϕū∗ϕ)

〉)
dV = 0 . (36)

If new matrices are defined in the form

LTT =

〈
D̄TT B̄T

〉
∈ R3×n LTϕ =

〈
D̄TϕB̄ϕ

〉
∈ R3×n , (37)

the discrete version of the heat balance equation on the macro-scale is

−DTT∇T −DTϕ∇ϕ+ 〈D̄TT 〉∇T + 〈D̄Tϕ〉∇ϕ+ LTT ū∗T + LTϕū∗ϕ = 0 . (38)

Substitution of the finite element approximation to the balance equation on the meso-
scale leads to the form∫

V

〈
χ̄∗(x̄))

dH̄

dT̄

∂T̄

∂t

〉
dV +

+

∫
V

〈
(v̄∗T )T B̄

T
T D̄TT (∇T (x) + B̄T ū∗T )

〉
dV +

+

∫
V

〈
(v̄∗T )T B̄

T
T D̄Tϕ(∇ϕ(x) + B̄ϕū∗ϕ)

〉
dV −

−
∫

S

〈
χ̄∗nT qT

〉
dS −

∫
S

〈
χ̄∗nT qϕ

〉
dS = 0 . (39)

If new matrices are defined in the form

K̄TT =

〈
B̄

T
T D̄TT B̄T

〉
∈ Rn×n , (40)

K̄Tϕ =

〈
B̄

T
T D̄TϕB̄ϕ

〉
∈ Rn×n , (41)

C̄TT =

〈
N̄

T
T

dH̄

dT̄
N̄T

〉
∈ Rn×n , (42)

the discrete version of the heat balance equation on the meso-scale is

C̄TT
dū∗T
dt

+ LT
TT∇T (x) + LT

Tϕ∇ϕ(x) + K̄TT ū∗T + K̄Tϕū∗ϕ = 0 . (43)

3.3 Mass balance equation

Discretized version of the mass balance equations on the macro and meso-scales can
be obtained in similar way to the equations for heat transport. The whole derivation
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is not included and only the resulting equations are summarized. The mass balance
equation on the macro-scale has the form

−DϕT∇T −Dϕϕ∇ϕ+ 〈D̄ϕT 〉∇T + 〈D̄ϕϕ〉∇ϕ+ LϕT ū∗T + Lϕϕū∗ϕ = 0 , (44)

while the mass balance equation on the meso-scale has the form

C̄ϕϕ

dū∗ϕ
dt

+ LT
ϕT∇T (x) + LT

ϕϕ∇ϕ(x) + K̄ϕT ū∗T + K̄ϕϕū∗ϕ = 0 . (45)

3.4 Solution of multi-scale problem

The multi-scale problem is described by two balance equations on the macro-scale
and two equations on the meso-scale. On the meso-scale, the balance equations have
the form

C̄TT
dū∗T
dt

+ LT
TT∇T (x) + LT

Tϕ∇ϕ(x) + K̄TT ū∗T + K̄Tϕū∗ϕ = 0 (46)

C̄ϕϕ

dū∗ϕ
dt

+ LT
ϕT∇T (x) + LT

ϕϕ∇ϕ(x) + K̄ϕT ū∗T + K̄ϕϕū∗ϕ = 0 (47)

On the macro-scale, the balance equations have the form

−DTT∇T −DTϕ∇ϕ+ 〈D̄TT 〉∇T + 〈D̄Tϕ〉∇ϕ+ LTT ū∗T + LTϕū∗ϕ = 0 (48)
−DϕT∇T −Dϕϕ∇ϕ+ 〈D̄ϕT 〉∇T + 〈D̄ϕϕ〉∇ϕ+ LϕT ū∗T + Lϕϕū∗ϕ = 0 (49)

Both balance equations on the meso-scale can be written in the matrix-vector form(
KTT KTϕ

KϕT Kϕϕ

)(
ū∗T
ū∗ϕ

)
= −

(
LT

TT LT
Tϕ

LT
ϕT LT

ϕϕ

)(
∇T (x)
∇ϕ(x)

)
, (50)

where the right hand side is assembled from the gradients of the macro-scale variables.
The solution of system (50) can be formally written in the form(

ū∗T
ū∗ϕ

)
= −

(
KTT KTϕ

KϕT Kϕϕ

)−1(
LT

TT LT
Tϕ

LT
ϕT LT

ϕϕ

)(
∇T (x)
∇ϕ(x)

)
. (51)

Substitution of the solution (51) to the balance equations valid on the macro-scale (48)
and (49) leads to the expression

−
(

DTT DTϕ

DϕT Dϕϕ

)(
∇T
∇ϕ

)
+

(
〈D̄TT 〉 〈D̄Tϕ〉
〈D̄ϕT 〉 〈D̄ϕϕ〉

)(
∇T
∇ϕ

)
+ (52)

+

(
LTT LTϕ

LϕT Lϕϕ

)(
u∗T
u∗ϕ

)
= 0 (53)

which can be rearranged to the relationship for the conductivity matrix in the form(
DTT DTϕ

DϕT Dϕϕ

)
=

(
〈D̄TT 〉 〈D̄Tϕ〉
〈D̄ϕT 〉 〈D̄ϕϕ〉

)
− (54)

−
(

LTT LTϕ

LϕT Lϕϕ

)(
KTT KTϕ

KϕT Kϕϕ

)−1(
LT

TT LT
Tϕ

LT
ϕT LT

ϕϕ

)
.

The conductivity matrix (54) is used on the macro-scale and it is obtained by homog-
enization from the meso-scale.
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Figure 1: Three-dimensional model of the Charles bridges in Prague.

4 Numerical examples

The multi-scale method described in the previous section is demonstrated on the ex-
ample of analysis of historical masonry bridge. The bridge analyzed is the Charles
brigde in Prague, Czech Republic. Three-dimensional model of the bridge is in Fig-
ure 1 where the different colours indicate different type of materials. With respect
to extremely large demands of the multi-scale method on computer power, only two-
dimensional problems was solved. Cross section of the bridge was modelled and the
mesh together with meso-scale problems are depicted in Figure 2. The boundary con-
ditions were obtained from measured data. The time dependency of the temperature
and relative humidity is depicted in Figure 3. Evolution of the temperature and relative
humidity in the macro-scale problem is in Figure 4. Figure 5 shows the fluctuations
of the temperature and relative humidity in the meso-scale problems in selected points
of the bridge. Behaviour of the variables in time is also included.

4.1 Parallel computation

As already discussed in the previous section, the present FE2 based multi-scale anal-
ysis assumes each macroscopic integration point be connected with a certain meso-
scopic problem represented by an appropriate periodic unit cell. The solution of a
meso-scale problem then provides instantaneous effective data needed on the macro-
scale. Such an analysis is particularly suitable for a parallel computing because the
amount of transferred data is small. In this regard, the master-slave strategy can be
efficiently exploited [4]. To that end, the macro-problem is assigned to the master
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Figure 2: Cross-section of the brigde and two meso-scale meshes.

Figure 3: Boundary conditions (relative humidity and temperature).

10



Figure 4: Distribution of the temperature and relative humidity in the cross section.

Figure 5: Distribution of the temperature and relative humidity on the meso-scale
meshes.
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processor while the solution at the meso-scale is carried out on slave processors. At
each time step the current temperature and moisture together with the increments of
their gradients at a given macroscopic integration point are passed to the slave pro-
cessor (imposed onto the associated periodic cell), which, upon completing the small
scale analysis, sends the homogenized data (effective conductivities, averaged storage
terms and fluxes) back to the master processor.

If the meso-scale problems are large enough, the ideal solution is to assign one
meso-problem to one slave processor. Clearly, even for very small macro-problems
with a few thousands of finite elements, the hardware requirements would be in such
a case excessive. On the other hand, if the meso-problems are relatively small, i.e.
they contain small number of finite elements, the corresponding analysis might be
even shorter than the data transfer between the processors. Then, the computational
time associated with the data transfer between the master processor and many slave
processors may grow excessively. It is worth mentioning that this time consists of
two contributions. The first one represents the latency time (the processors make
connection) which is independent of the amount of transferred data whilst the second
contribution clearly depends on the amount of data being transferred. For small meso-
problems it is therefore reasonable to assign several of them to a single slave processor.
The master processor then sends a larger package of data from many macroscopic
integration points at the same time to each slave processor so that the latency time
does not play a crucial role. This approach was adopted hereinafter.

The number of elements in the two meso-problems amounts to 265 (160 nodes)
for SEPUC 1 and to 414 (239 nodes) for SEPUC 2, respectively. Similarly to the
macro-problem, the meso-problems have to account for the material heterogeneity.
Clearly, the ideal speedup and load balancing are obtained when the decomposition of
the macro-problem reflects the meso-problem meshes. However, this is considerably
more difficult when compared to the classical mesh decomposition.

The finite element mesh used at the macro-level is evident from Fig. 2 featur-
ing 7, 081 nodes and 13, 794 triangular elements with a single integration point thus
amounting to the solution of 13, 794 meso-problems at each macroscopic time step.
This figure also shows decomposition of the macro-problem into 12 slave proces-
sors. The numbers of elements in individual sub-domains being equal to the number
of meso-problems handled by the assigned slave processor are listed in Table 1. It
should be noted that the assumed decomposition of the macro-problem is not ideal. In
comparison with domain decomposition methods, the macro-problem has to be split
with respect to the heterogeneity of the material resulting in the variation of number
of elements in individual sub-domains between 1046 and 1748.

The actual analysis was performed on a cluster built at our department. Each node
of the cluster is a single processor personal computer Dell Optiplex GX620 equipped
with 3.54 GB of RAM. The processors are Intel Pentium with the frequency 3.4 GHz.
The cluster is based on Debian linux 5.0 and 32-bit architecture. Each time step took
2.08 minute.
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Processor No. 1 2 3 4 5 6
7 8 9 10 11 12

No. of 1218 1748 1046 1052 1214 1210
meso-problems 1052 1054 1046 1052 1054 1048

Table 1: Decomposition of the macro-problem into sub-domains.

5 Conclusion

A multi-scale analysis of simultaneous heat and moisture transport in masonry struc-
tures was implemented in the framework of FE2 computational strategy. Special at-
tention was accorded to the implementation of the method in the parallel format em-
ploying the master-slave approach. Although not qualitatively fully acceptable, the
two-dimensional example of Charles Bridge raised a number of questions to the so-
lution efficiency particularly with reference to a proper subdivision of the analyzed
macro-domain and local finite element mesh of individual meso-scale SEPUCs. The
present findings will be utilized in a fully three-dimensional analysis being the subject
of our current research effort.
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