
Abstract

The dynamic behavior of structural systems may be strongly characterized by the

occurrence of multiple internal resonances for particular combinations of the me-

chanical parameters. The linear models governing these resonant or nearly-resonant

systems tend to exhibit high sensitivity of the eigenvalues and eigenvectors to small

parameter modifications. This pathologic condition is recognized as a source of rel-

evant phenomena, such as frequency veering and mode localization or hybridization.

The paper presents the generalization of uniformly valid perturbation methods to per-

form eigensolution sensitivity analyses in N -dimensional Hamiltonian systems with

a generic number of close eigenvalues. The leading idea is to systematically treat

nearly-resonant systems as multi-parameter perturbations of a perfectly-resonant, non-

defective – though a priori unknown – reference system. Given a single nearly-

resonant system, a multi-parameter perturbation method is presented to achieve a

twofold objective: first, identify a close resonant system suited to serve as a start-

ing point for sensitivity analyses (inverse problem); second, asymptotically approx-

imate the eigensolution of all the nearly-resonant systems which may arise from its

generic perturbation (direct problem). The direct problem solution is analyzed with a

focus on the eigensolution sensitivity to parameter perturbations with different physi-

cal meanings, such as a slight geometric disorder or weak elastic coupling in periodic

structures. Besides the particular class of periodic systems, the work findings apply

to a number of internally-resonant engineering structures in which components with

different stiffness properties are assembled together, as may happen when a rigid main

structure is joined with a set of flexible identical sub-structures. Typical examples in

the civil and mechanical engineering fields are cable-stayed bridges, made of a rigid

deck supported by several flexible cable stays, and bladed disks, in which several flex-

ible radial blades are attached to a rigid rotor-disk.

Keywords: perturbation methods, eigensolution sensitivity, internal resonances.
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1 Introduction

The analytical models of several structural systems show that eigenvalues and eigen-

vectors may possess high sensitivity to the physical parameters. Since the eigen-

properties strongly characterize the dynamic behavior, tracking the eigensolution loci

against one or more significant parameters represents a matter of theoretical and prac-

tical interest in several fields, including stability analysis, design optimization, model

updating, structural identification and vibration control. Within the parameter space,

the regions corresponding to the intersection, or closeness, between two or more

eigenvalue loci are worth particular attention. Internal resonance or nearly-resonance

conditions may activate significant phenomena, such as frequency crossing or veer-

ing, vibration localization and modal hybridization [1, 2]. At the same time, energy

transfers among the resonant modes may feature the system dynamic response [3].

In principle each structural system, even if made of dissimilar components with

strongly different stiffness and mass properties [4], may exhibit close natural frequen-

cies for particular parameter combinations. Nonetheless, in the civil and mechanical

engineering context, the nearly-resonance condition tends traditionally to be consid-

ered a frequency mistuning, and nearly-resonant systems are typically regarded as im-

perfect structures. Such a dominant idea is motivated by recurrent observations that,

in conservative structures, the exact coincidence of two or more frequencies occurs in

symmetric systems (horizontal cables, circular disks, cylindric shafts), or in periodic

assemblies of identical subsystems (pendulum chains, multi-span beams). Small fre-

quency shifts, leading to nearly-resonance conditions, may appear when slight imper-

fections, typically geometric defects, are introduced to destroy the nominal structural

symmetry or periodicity [5, 6]. Even when the symmetry or periodicity is preserved,

similar mistuning effects can equally be originated by weak internal symmetric or

skew-symmetric interactions, introduced for instance by soft elastic links among pe-

riodic subsystems, or by piezoelectric connections in electromechanical systems [7].

In the well-established literature on periodic and symmetric systems, weak linear

interactions and small imperfections are denoted as coupling and disorder terms, re-

spectively, and are both regarded as slight perturbations of a perfect (uncoupled and

ordered) system. In tackling the eigensolution sensitivity problem for these systems,

perturbation methods represent a valid alternative to the common, time-consuming,

numerical techniques of eigensolution continuation, which are prone to fail in resolv-

ing and following a cluster of close and rapidly-evolving solutions. According to the

perturbation strategy, known an initial reference system, the eigensolution of close

coupled and disordered systems can be approximated by constructing asymptotic ex-

pansions. To this end, the traditional approach consists in including the disorder in the

unperturbed reference system, and then performing a single-parameter analysis con-

sidering the coupling as a perturbation [1, 5]. However, such a perturbation scheme

presents some drawbacks, essentially related to the small validity range of the achiev-

able solutions. To overcome these shortcomings, a refined approach consists instead

in retaining both the disorder and the coupling as independent perturbations of the

uncoupled and ordered system, and then performing a multi-parameter analysis [8].
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When dealing with complex engineering systems (Figure 1), characterized by sev-

eral degrees of freedom, governed by a large set of mechanical parameters and ex-

hibiting multiple internal resonances, the application of perturbation methods tends

to become increasingly involved. In these cases, a systematization and generalization

effort, driven by mechanical considerations, may be useful to face different technical

operations, as for instance recognizing and separating the resonant degrees of freedom,

identifying or defining a suitable reference system (Figure 1a), and finally classifying

and properly ordering the significant coupling and disorder parameters (Figure 1b,c).

The leading idea of the present paper is to systematize the multi-parameter ap-

proach to achieve a completely general purpose, that is, perform eigensolution sensi-

tivity analyses of N -dimensional Hamiltonian systems in the parameter regions char-

acterized by nearly-resonance conditions. No limitations on the system dimension,

nor on the number of nearly-resonant frequencies, are imposed a priori. The proposed

algorithm requires minimal sufficient information consisting of the eigensolution (not

necessarily complete) of a single nearly-resonant system, as could be derived for in-

stance from experimental measures. As a working hypothesis, the nearly-resonant

system is postulated to arise from the unknown perturbation of a perfectly-resonant,

thought itself unknown, system. In the statement of the general problem, two dif-

ferent and complementary tasks are distinguished. First, the eigensolution sensitivity

of the perfect system, with respect to a generic multi-parameter perturbation, is an-

alyzed (task I: Direct problem). The direct problem solution gives the approximated

eigenpairs of each nearly-resonant system which could arise from the perturbation.

The eigensolution sensitivity to disorder and coupling terms is separately discussed.

Second, the unknown perfect system to be perturbed is identified, starting from the

knowledge of the experimental system (task II: Inverse problem). Questions regarding

the existence and uniqueness of the inverse problem solution are discussed. Finally,

the entire procedure is successfully applied to a prototypal structural system.
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Figure 1: Example nearly-resonant structural systems: pendulum chain (left), multi-

span beam (center), cable-stayed bridge (right), with distinction of (a) ordered and

uncoupled perfectly-resonant system, (b) disorder, (c) local and (d) global coupling.
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2 Eigensolution of nearly-resonant systems

In structural mechanics, the linear dynamic model of a Hamiltonian system S with

N -degrees-of-freedom (dofs) is governed by a pair of real-valued symmetric N×N
matrices, the mass M and the stiffness matrix K. The stiffness matrix is considered

depending on a set p of M independent physical parameters ph (h= 1, ...,M ), while

the mass matrix can be assumed to be unitary (M = I) without loss of generality.

Each parameter set defines a different structural system in the parameter space. The

system natural frequencies and modes arise from the solution of the eigenproblem

related to the matrix K(p), consisting of N real (and generally distinct) eigenvalues

λi (i=1, ..., N ), listed in ascending order in the diagonal matrix Λ, and a complete set

of eigenvectors φi, collected columnwise in the modal matrix Φ.

In the general case, the perturbation methods for sensitivity analysis of the eigen-

solution require to fix an initial point P0 in the parameter space, corresponding to the

reference system S0, with governing matrix K0(p0) and known eigensolution Λ0(p0),
Φ0(p0). In the neighborhood of P0, each point P corresponds to a new system S,

with governing matrix K(p), and can be treated as a P0-modification, associated to a

perturbed parameter set p=p0+εp1, where p1 is a generic multi-parameter perturba-

tion of p0, corresponding to a generic direction vector in the parameter space, whose

(small) amplitude is regulated by the scaling parameter ε≪ 1. Perturbation methods

allow the construction of approximations for the exact eigensolution Λ(p), Φ(p) of

the modified system, in the form of asymptotic ε-power series

Λ(p)≃Λ0(p0)+
k

∑

j=1

εjΛj(p0,p1), Φ(p)≃Φ0(p0)+
k

∑

j=1

εjΦj(p0,p1) (1)

where the expansion coefficients at the j-th order are called j-th eigensensitivities.

Nearly-resonant systems feature rapid variation of the eigenproperties, that is, high

eigensensitivities in the critical parameter regions. For such systems, traditional per-

turbation methods, employing an arbitrary initial point to start the asymptotic expan-

sion, can be proved to give approximated solutions with only a narrow, and sometimes

not uniform, validity in the parameter space [8]. The proper strategy to overcome such

shortcomings consists in considering all the nearly-resonant systems as perturbations

of a single, perfectly-resonant, non-defective system, which may be either known or

unknown, but can anyway be supposed to exist somewhere in the neighborhood.

Following this mainstream idea to deal with nearly-resonant systems, the perturba-

tion analysis must be distinguished into two mirror tasks, depending on the initial in-

formation actually available (Figure 2). If the perfectly-resonant system S0 is known,

(i) the direct problem consists in determining the approxima-ted eigensolution of each

nearly-resonant system S by employing a generic multi-parameter perturbation of the

S0 eigensolution. Otherwise, given a nearly-resonant system S̃, (ii) the inverse prob-

lem consists in identifying the perfectly-resonant system S0 by forcing the asymptotic

eigensolution of a nearly-resonant system S, born from the multi-parameter S0 per-

turbation, to exactly reproduce the S̃ eigensolution.
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Figure 2: Multiparameter eigensolution sensitivity analysis of nearly-resonant sys-

tems: conceptual schemes of the direct problem (MPP) and inverse problem (iMPP).

With regard to engineering practice, many applications deal with a nearly-resonant

system S̃ with known eigenproperties Λ̃,Φ̃, furnished for instance by finite element

analyses or experimental dynamic measures. Therefore, a typical issue consists in

determining the sensitivities of the nearly-coincident eigenvalues (and the associated

eigenvectors) with respect to small modifications of the significant parameters. Ac-

cording to this recurrent scenario the nearly-resonant system S̃ can be denoted as the

experimental system. Since the experimental system is not suitable to serve as a start-

ing point for the sensitivity analysis, the inverse problem has to be solved first. In

fact the inverse problem solution, if it exists, allows the identification of the perfectly-

resonant system S̄0, locating its parameter set p̄0 in the parameter space (or equiva-

lently reconstructing the matrix K̄0). Moreover, the solution also identifies the multi-

parameter perturbation p̄1 (or K̄1), separating S̄0 from the assigned experimental sys-

tem S̃. The identified perfectly-resonant system S̄0 can be denoted as the ideal system,

since it should be regarded as a theoretical abstraction and, in principle, might even

correspond to a parameter set without physical meaning. Next, the direct problem can

be approached, employing the ideal system S̄0 as a suited starting point for the asymp-

totic sensitivity analysis of the eigensolution, extended to all the nearly-resonant sys-

tems S which could arise from a generic multi-parameter perturbation, including –

as a special case – the experimental system S̃. In distinction from the ideal perfectly-

resonant system, the nearly-resonant systems S are referred to as the real systems. It is

worth noting that the eigensolution of the experimental nearly-resonant system plays

a double role, since it simultaneously constitutes the only input of the inverse problem

and a particular output of the direct problem.

Although common applications may require solving the inverse problem first, be-

cause its solution is necessary as a starting point for the subsequent eigensolution

sensitivity analysis, from a theoretical viewpoint it is preferable to approach the direct

problem first. However, to preserve the required coherence between the two mirror

problems, the input data and output results of the inverse problem must be considered

as working hypotheses and solution constraints of the direct problem, respectively.
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3 Direct problem

The ideal S0 is selected as the starting reference for the perturbation expansion. A

generic real system S, associated to the perturbed parameter set p = p0 + εp1, is

governed by the stiffness matrix K(p) which, at first order approximation, is

K(p) ≃ K0(p0)+εK1(p0,p1) (2)

where K1 can be referred to as the stiffness perturbation matrix. Since p0 is a priori

unknown in the direct problem, the unperturbed stiffness matrix K0 can be artfully

constructed, provided only that the corresponding eigensolution presents a multiple

eigenvalue with algebraic (and geometric) multiplicity n. The remaining m = N−n
non-resonant eigenvalues can be considered sufficiently far from the multiple eigen-

value and are assumed distinct from each other. Driven by these constraints on the

eigensolution, a suitable partition of the perturbed stiffness matrix can be introduced

K(p) =

[

Knn Knm

Kmn Kmm

]

(3)

where Knn, Kmm are symmetric n×n and m×m square blocks, respectively, Knm is

a n×m rectangular block, and finally Kmn = (Knm)⊤ for the symmetry. Therefore,

the first order approximation in Eq.(2) is obtained introducing the matrix ordering

Knn ≃ Knn
0 +εKnn

1 Knm ≃ εKnm
1 , Kmm ≃ Kmm

0 +εKmm
1 (4)

where it is also assumed that Knn
0 is a diagonal matrix, as a working hypothesis.

From a structural viewpoint, the architecture of the stiffness matrices amounts to

artificially realizing the ideal system S0 joining two uncoupled subsystems

◦ a resonant subsystem S r
0 , made of n simple harmonic oscillators independent

from each other, with frequencies stored in the diagonal of the sub-matrix Knn
0 ,

◦ a non-resonant subsystem S s
0 , composed of m generically coupled degrees-of-

freedom (dofs), and governed by the non-diagonal sub-matrix Kmm
0 .

The real system S arises from small perturbations of the ideal system, represented by

the ε-order matrices Knn
1 and Kmm

1 , which independently affect each subsystem. The

ε-order terms Knm
1 introduces instead a weak coupling between the two subsystems.

The formulated model is representative of a number of engineering structures in

which components with different stiffness properties are assembled together, as may

happen when a rigid main structure (the non-resonant subsystem) is assembled with a

set of flexible identical sub-structures (the resonant subsystem). Typical examples in

the civil engineering field are cable-stayed bridges, made of a rigid deck supported by

several flexible cable stays. Typical examples in the mechanical engineering field are

bladed disks, in which several flexible radial blades are attached to a rigid rotor-disk.
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3.1 Multi-parameter perturbation solution of the eigenproblem

Given the eigenproblem of the real system S, a classical perturbation scheme can be

applied expanding the modal equation up to the second order and collecting the terms

of the same ε-power, the following hierarchy of equation pairs is obtained

ε0 :
(

Knn
0 − λ0I

)

φn
0 =0 (5)

(

Kmm
0 − λ0I

)

φm
0 =0

ε1 :
(

Knn
0 − λ0I

)

φn
1 = − Knn

1 φn
0 − Knm

1 φm
0 + λ1φ

n
0 (6)

(

Kmm
0 − λ0I

)

φm
1 = − Kmn

1 φn
0 − Kmm

1 φm
0 + λ1φ

m
0

ε2 :
(

Knn
0 − λ0I

)

φn
2 = − Knn

1 φn
1 − Knm

1 φm
1 + λ1φ

n
1 + λ2φ

n
0 (7)

(

Kmm
0 − λ0I

)

φm
2 = − Kmn

1 φn
1 − Kmm

1 φm
1 + λ1φ

m
1 + λ2φ

m
0

where the jth order eigenvector has been decomposed into an upper (n×1) and a lower

(m×1) part, that is φj ={φn
j ,φ

m
j }

⊤, and I denotes the identity matrix.

At the zeroth-order, the equation pair (5) governs the eigenproblem of the un-

perturbed system S0. Due to the absence of coupling terms, each equation actu-

ally states an independent sub-eigenproblem, related to one or the other of the com-

ponent subsystems S r
0 and S s

0 . Consequently, the complete set of N eigenvalues

Λ0 =diag
(

λ01, ..., λ0N

)

is the union of two distinct subsets

◦ Λn
0 =diag

(

λr
01, ..., λ

r
0n

)

, with n resonant eigenvalues of the subsystem S r
0

◦ Λm
0 =diag

(

λs
01, ..., λ

s
0m

)

, with m non-resonant eigenvalues of the subsystem S s
0

satisfying the singularity condition imposed on the left-hand algebraic operator in

equation (5a) and (5b), respectively. However, once a particular zeroth-order eigen-

value λ0i is determined, no matter wherefrom, the corresponding eigenvector φ0i re-

quires the simultaneous solution of both the first equation (to determine the upper part

φn
0i) and the second equation (to determine the lower part φm

0i).

Consistently, the multi-parameter perturbation of the perfectly-resonant system S0

determines, in the perturbed nearly-resonant system S, the co-existence of

◦ a nearly-resonant eigensolution
(

λr, φr
)

generated by the eigenvalues λr
0,

◦ a non-resonant eigensolution
(

λs, φs
)

generated by the eigenvalues λs
0

the former, referred to as the resonant eigensolution to simplify the nomenclature, is

sufficient to the aims of the present work, and is presented in the following.

3.1.1 Resonant eigensolution

Known a resonant eigenvalue λr
0i, the equation pair (5) gives (i) the essential (upper)

part φrn
0i of the eigenvector, collecting the resonant dofs (the n dofs of the resonant

subsystem S r
0 ), and (ii) the complementary (lower) part φrm

0i of the eigenvector, col-

lecting the non resonant dofs (the m dofs of the non-resonant subsystem Ss
0).
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O(ε) Eigenvalues Eigenvectors

0th λ0 = diag
(

K
nn
0

)

φn
0 = a (undetermined)

φm
0 = 0

1st λ1 = eigenvalues of K
nn
1 a = eigenvectors of K

nn
1

φm
1 = −

(

L
m
0

)−1
K

mn
1 a

2nd λ2 = α a
⊤
K

nm
1 φm

1 φn
1 = −A

[

A
⊤
L

n
1A

]−1
A
⊤
(

K
nm
1 φm

1 +λ2 a
)

φm
2 = −

(

L
m
0

)−1(
K

mn
1 φn

1+ L
m
1 φm

1

)

Note: apex r and index i are omitted for α
r
i ,A

r
i ,λ

r
ki,φ

rn
ki ,φ

rm
ki ,Lrn

ki ,L
rm
ki (i=1...n, k=0,1,2 ).

Table 1: Summary of the resonant eigensolution at different approximation orders.

Therefore, the first and second eigensensitivities (λr
1,φr

1 and λr
2,φr

2) can be deter-

mined from the equation pairs (6) and (7), respectively, when lower-order eigensolu-

tions are introduced. The contributions to the resonant eigensolution are presented in

Table 1, where αr
i =

(

ai
⊤ai

)−1
, L

rj

ki =
(

K
jj

ki −λr
kiI

)

and Ar
i =

[

a1, ..., aj 6=i, ..., an

]

. The

perturbation scheme is qualitatively illustrated in Figure 3, where the surface Σ repre-

sents the locus of perfectly-resonant systems in the parameter space Π , including S0,

located by the parameter set p0. Therefrom, a small parameter perturbation p1 gener-

ates the nearly-resonant system S (Figure 3a). Consequently, the multiple eigenvalue

λr
0 splits into a cluster of close eigenvalues λr

i (i=1,...,n), each well-approximated by

the perturbation solution reconstructed up to the second order λr
0+λr

1i+λr
2i (Figure 3b).

The analytical results are worthy of a synthetic physical interpretation. Focusing

on the zeroth-order, the simplest – although not unique – physical realization of the

perfectly-resonant subsystem S r
0 is represented by a set of identical and independent

oscillators, with the same stiffness and mass in order to have equal natural frequencies.

In other words, the nominal periodicity (order), in absence of internal interactions

(coupling), is sufficient to realize the perfect internal resonance (tuning).
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Figure 3: Direct problem: (a) generic perturbation of the resonant system in the param-

eter space, (b) multi-parameter perturbation scheme for the resonant eigensolution.
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Focusing on higher orders and looking first at the eigenvalue sensitivity, some qual-

itative and quantitative considerations can be made

◦ the first eigenvalue sensitivity λr
1, depending only on the multi-parameter stiff-

ness perturbation Knn
1 , splits the resonant subsystem S r

0 in a cluster of n distinct,

but close eigenvalues. This analytical result describes the nearly-resonance con-

dition characterizing quasi-periodic structures, when small periodicity-breaking

disturbs cause slight frequency shifts (mistuning). Disturbs can be classified

as disorder and local coupling terms, corresponding to diagonal and out-of-

diagonal terms of the perturbation matrix Knn
1 , respectively (see Figure 1b,c).

◦ the second eigenvalue sensitivity λr
2 depends also on the multi-parameter stiff-

ness perturbation Kmn
1 , describing the global coupling between the resonant and

the non-resonant subsystems (Figure 1d). Therefore, even in the absence of dis-

order or local coupling, a global coupling may cause the splitting of the multiple

eigenvalue, but this effect can be captured only by a second-order analysis.

Looking at the eigenvectors, the essential and the complementary parts possess differ-

ent sensitivities to the perturbating stiffness terms

◦ the essential part remains undetermined at each order until the higher-order

equations are solved. This result means that natural modes of perfectly-periodic

structures remain undistinguished until a small perturbation Knn
1 is introduced

(at zero-th order), and – more generally – that natural modes of resonant struc-

tures are highly-sensitive to small parameter perturbations (at higher orders).

◦ a non-null complementary part is originated only by the global coupling Kmn
1

(at the first order) or the local coupling and disorder Knn
1 (at the second-order),

meaning that it is less sensitive than the essential part to parameter perturba-

tions. This result evidences how the non-resonant degrees-of-freedom of the

non-resonant subsystem weakly participate to the resonant natural modes.

Numerical example The multi-parameter perturbation method is applied to a 7-dofs

nearly-resonant system S with three close eigenvalues (N = 7, n = 3). The resonant

S r
0 (3-dofs) and non-resonant subsystem S s

0 (4-dofs) are governed by the unitary sub-

matrix Knn
0 and a random sub-matrix Kmm

0 , respectively. Zeroing parts of the random

perturbation matrix K1 (as shown in Table 2), different particular cases can be con-

sidered separately, as disorder (M = 3), local coupling (M = 3), global coupling

(M =12), and their combinations. The effectiveness in approximating the exact solu-

tion can be appreciated in figure 4, where the first and second eigenvalue sensitivities

are followed with fine agreement for increasing perturbation amplitudes.

K
nn
1 (disorder) K

nn
1 (local coupling) K

nm
1 (global coupling)

0.3031 - - - 0.4578 -0.1871 -0.6990 0.3321 -0.1932 -0.6833

- 0.0233 - - -0.3144 -0.0718 0.0750 0.0897 -0.3094

- - -0.4550 sym - -0.3564 -0.3609 0.0189 0.1763

Table 2: Perturbation matrix K1 for the example 7-dofs nearly-resonant system
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Figure 4: Exact (lines) and approximate (dots) first and second (upper and lower row)

sensitivity of the three resonant eigenvalues to (a),(d) disorder and local coupling;

(b),(e) disorder and global coupling; (c),(f) disorder, local and global coupling.

4 Inverse problem

The inverse problem can be first formulated for a generic system, and then specialized

for nearly-resonant systems. The available eigensolution is supposed incomplete; the

minimum sufficient information includes L eigenvalues of a single experimental sys-

tem S̃, collected in the L×L diagonal matrix Λ̃, and the associated complete eigenvec-

tors, cast column-wise in the N×L rectangular matrix Φ̃. The sought solution is the

real-valued, positive stiffness matrix K̄ of the experimental system.

Imposing the matrix symmetry (K=K⊤), omitting the tilde and the bar, the inverse

eigenproblem for incomplete data can be formulated in alternative forms

KΦ = ΦΛ, Φ⊤K = ΛΦ⊤ (8)

which constitute a pair of so-called simultaneous linear matrix equations [9] in the

matrix unknown K. Under certain solvability conditions, the two equations can be

proved to have a common solution. Since the matrix Φ is composed of real-valued

linearly-independent column vectors, the solution assumes the simplified form

K = ΦΛ (Φ⊤Φ)−1Φ⊤ +
[

I − Φ (Φ⊤Φ)−1Φ⊤
]

Z
[

I − Φ (Φ⊤Φ)−1Φ⊤
]

(9)

where Z is a real-valued indeterminate N×N matrix, symmetric and semi-positive. The

first term reconstructs the essential part of the system stiffness, that is, the minimal

matrix still possessing the given incomplete modal properties, while the second term

adds a stiffness complement, which determines the unassigned modal data.
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4.1 Perturbation solution of the inverse eigenproblem

Before focusing on nearly-resonant systems, it may be interesting to tackle the inverse

problem in perturbation form, that is, to analyze how the general solution modifies for

small perturbations of the input modal information

Λ0 + εΛ1, Φ0 + εΦ1 (10)

Substituting, employing the algebraic rules for the perturbation of an inverse matrix,

and finally collecting the terms of the same ε-order, the perturbed solution reads

K0 + εK1 + O(ε2) (11)

where K0 is the stiffness matrix associated to the unperturbed modal data (Λ0,Φ0),

and K1 is the first-order stiffness modification, due to the data perturbation (Λ1,Φ1)

K0 = Ξ0 + Θ0 ZΘ0, K1 = Ξ1 − Θ0 ZΘ1 − Θ1ZΘ0 (12)

where the following auxiliary square matrices have been introduced

Ξ0 =Φ0Λ0Ψ0Φ
⊤
0 , Ξ1 =Φ0Λ0Ψ0Φ

⊤
1− Φ0Λ0Ψ1Φ

⊤
0+Φ0Λ1Ψ0Φ

⊤
0+Φ1Λ0Ψ0Φ

⊤
0 (13)

Θ0 =I − Φ0 Ψ0Φ
⊤
0 , Θ1 =Φ0 Ψ0Φ

⊤
1 − Φ0 Ψ1Φ

⊤
0 + Φ1Ψ0Φ

⊤
0 (14)

and the variables Ψ0 =
(

Φ⊤
0 Φ0

)−1
, Ψ1 =

(

Φ⊤
0 Φ0

)−1(

Φ⊤
0 Φ1+Φ⊤

1 Φ0

)(

Φ⊤
0 Φ0

)−1
.

It is worth noting that the data perturbations Λ1 and Φ1 cannot be assigned arbitrar-

ily, nor independently of each other. Otherwise, the inverse problem would reconstruct

a meaningless stiffness matrix, typically non-symmetric or non positively-defined.

4.1.1 Nearly-resonant systems

The inverse problem must be re-formulated according to the idea that nearly-resonant

systems arise from perturbations of a perfectly-resonant system. From this perspec-

tive, the nearly-resonant eigenproperties relinquish the usual role of known data (in-

put), and perform instead as known target (output), to be obtained as perturbed eigen-

properties of an unknown perfectly-resonant system undergoing an unknown stiffness

perturbation. The main difference is that, while the inverse problem solution typically

consists only of the stiffness sensitivity to perturbations of the assigned experimental

eigenproperties, for nearly-resonant systems the solution includes: (i) the initial stiff-

ness K0 of the perfectly-resonant system, and (ii) the stiffness perturbation K1 which

lets the perturbed eigenproperties exactly match the assigned experimental data.

According to the above considerations, the sought unknowns correspond to the in-

verse problem solution (12) only if the experimental modal matrices (Λ,Φ) satisfy

particular conditions, that is assume the first-order perturbation form predicted by the

direct problem for nearly-resonant systems. Therefore, the inverse problem does not

require a specific statement for nearly-resonant systems, provided that the experimen-

tal data fulfill these conditions and can consequently be decomposed and ordered.
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In virtue of the direct problem solution, it is known that the complete experimental

eigensolution (L=N ) for nearly-resonant systems can be partitioned

Λ =

[

Λr 0

0 Λs

]

, Φ =
[

Φr Φs
]

=

[

Φrn Φsn

Φrm Φsm

]

(15)

where the minimum sufficient set of experimental data for the inverse problem consists

of the resonant experimental eigensolution only (L = n). The experimental resonant

eigenvalues Λr and eigenvectors Φr must be liable to the decomposition and ordering

Λ = λr
0 I + εΛ1,

[

Φn

Φm

]

=

[

Φn
0

0

]

+ ε

[

Φn
1

Φm
1

]

(16)

where the superscript r has been omitted. Qualitatively, all the eigenvalues must be

small perturbations of the same multiple eigenvalue, whereas the eigenvectors must be

small perturbations of a dominant term, made of the essential (upper) part only. This

requirement can be regarded as a compatibility condition which must be fulfilled by

the data, confirming the physical expectation that a generic experimental data cannot

always be considered the eigensolution of an unknown nearly-resonant system.

Decomposing and ordering the experimental modal data according to (16), and then

substituting into (12), the two terms of the inverse problem solution become

K0 =

[

λr
0 I 0

0 Zm

]

, K1 =

[

Knn
1 Knm

1

Kmn
1 0

]

(17)

where the submatrices of the stiffness perturbation K1 are

Knn
1 = Φn

0 Λ1(Φ
n
0)

−1 + 2 λr
0

(

Gn
1+Gn

1
⊤
)

(18)

Kmn
1 =

(

λr
0I − Zm

)

Gmn
1 − 2Zmn

(

Gn
1+Gn

1
⊤
)

(19)

where Gn
1 = Φn

1 (Φn
0)

−1 and Gmn
1 = Φm

1 (Φn
0)

−1. The real-valued m×m and m×n
matrices Zm and Zmn are indeterminate (with Zm symmetric and positive).
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Figure 5: Inverse problem: (a) inverse multi-parameter perturbation scheme to identify

the ideal system; (b) search for the ideal system in the parameter space.
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4.1.2 Existence and uniqueness of the solution

Since solution (17) has general validity, given compatible modal data, a physically-

acceptable (symmetric, positive definite) realization of the stiffness matrices govern-

ing the ideal and the experimental systems can be always reconstructed. Nonetheless,

the subsequent identification of the parameter set p0 and p1 realizing the stiffness

matrices, that is, the actual possibility of locating the ideal system in a physically-

meaningful region of the parameter space, depends instead on the particular struc-

tural system, since it involves the invertibility of the stiffness-to-parameter relations

(2). Moreover, accepting the first-order approximation of the backward perturbation

approach, the ideal system S̄0 solving the inverse problem is necessarily slightly dif-

ferent from the perfect system S0 (Figure 5a). Consequently, in the parameter space

the locus of ideal systems differ from that of perfect systems (Σ̄ and Σ in Figure 5b).

The solution non-uniqueness follows from the indeterminacy inherent to: (i) the

incompleteness of the experimental data, which allow only a partial reconstruction of

the stiffness matrix, while the remaining part is arbitrarily assessed by assigning the

Zm matrix, and (ii) the particular perturbation scheme formulated for nearly-resonant

systems, since the perfectly-resonant system is not univocally determined, depending

on the arbitrary choice of the multiple eigenvalue λr
0 in the preliminary decomposition

of the nearly-resonant experimental eigensolution (16).

The first source of indeterminacy can be reduced only gathering additional experi-

mental information. With respect to the second issue, instead, a convincing criterion

to eliminate the problem indeterminacy is to improve the asymptotic approximation

by reducing the perturbation amplitude. In the parameter space, this idea corresponds

to the search for an ideal system as close as possible to the experimental system. In

mathematical terms, adopting the euclidean norm || diag(Λ1) || as measure, the per-

turbation amplitude attains a minimum if the multiple eigenvalue is chosen as the

arithmetic mean of the experimental eigenvalues, that is, λr
0 = 1

n
tr(Λ).

An additional element of arbitrariness regards the decomposition of their essen-

tial part in equation (16), which appears to be not unique. However, requiring that

the unperturbed essential part of the eigenvector matrix Φn
0 commutes the eigenvalue

perturbation matrix Λ1, which is a necessary and sufficient condition to respect the

symmetry of the perturbation stiffness sub-matrix Knn
1 , the decomposition rule reads

Φn
0 = Φn

(

I + 1/2D−1R
)−1

, Φn
1 = 1/2D−1R (20)

where the n×n matrices D and R collect the (dominant) diagonal and the (small)

out-of-diagonal terms of the quasi-diagonal matrix N=Φn⊤Φn, respectively.

As final remark, since the ideal system S̄0 is definitely a mathematical abstraction,

which serves only to the particular perturbation strategy, no matter if it corresponds to

a parameter set p̄0 with a meaningless physical interpretation, or an unrealistic struc-

tural counterpart [8]. In this respect, inverse problem solutions may exist somewhere

outside of the M -dimensional space Π of the physical parameters, which – if neces-

sary or convenient – can be extended to include auxiliary non-physical parameters.
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Figure 6: Multibody sectional model of a suspended bridge: (a) geometric sketch; (b)

actual configuration and dynamic variables of motion; (c),(d) global and local modes.

5 Example: sectional model of a suspended bridge

The multibody system in Figure 6a, made of a principal sub-system (the rectangular

rigid body SP) and two secondary sub-systems (the point bodies SS1 and SS2), repre-

sents a sectional model of a suspended bridge, in which the vertical/torsional motion

of the deck, represented by the principal sub-system, is coupled with the transversal

motion of many resonant stay cables, represented by the secondary sub-systems.

The motion of the principal system is described by the centroid vertical displace-

ment V and rotation ϑ (Figure 6b). Two springs, with constant Cp, connect the princi-

pal system to the lower ground and simulate the flexural and torsional stiffness of the

bridge deck. The motion of each secondary system is described by the vertical Vj and

horizontal displacement Uj (j =1, 2). Two springs connect each secondary system to

the principal system and the upper ground, simulating the anchorages to the deck and

the (quite rigid) tower. The spring constant Csj and prestress Hsj account for the axial

elastic and transversal geometric stiffness of the cable, respectively. Denoting Mp and

Jp the vertical and rotational inertia of the principal system, and Ms the point masses

of the secondary systems, nondimensional parameters can be introduced

α=
A

B
, β =

B

Ls

, ̺2 =
Ms

Mp

, χ2 =
Jp

Mp

, µkj =
Hkj

H
, γkj =

CkjLs

H
(21)

where the subscripts k=p,s, while H is a suitable reference force.

Moving from the exact formulation of the model kinematics, the nonlinear equa-

tions governing the free undamped oscillations can be linearized around the static

prestressed configuration. The initial static equilibrium can always be satisfied impos-

ing constant prestress in each of the two spring chains (µpj =µsj =µj). Then, applying

a static condensation to the vertical displacements of the secondary systems (under

the reasonable assumption that γsj ≫ µsj), a 4dofs linear system is obtained (N = 4).
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For generic parameter combinations, far from the resonance regions, the system ex-

hibits global modes, dominated by the vertical/torsional motion of the deck, and local

modes, dominated by the transversal motion of the cables (Figure 6c,d).

Considering that the deck usually possesses a flat cross-section with small torsional

inertia, while the cables are light and flexible, the parameters can be ordered as follows

β =εβ, ̺=ε̺, χ=εχ, µ1 =ε2µ, µ2 =ε2µ(1+εη), γs2 =γs1(1+εξ) (22)

and a triple internal resonance (n=3) among the two cable local modes and the deck

torsional mode can be enforced by imposing ̺=2χ, µ=2 α2β2, so that the only free

parameters are p = {η, β, ξ}⊤ (M = 3). The differences in the geometric and elastic

stiffness of the two cables (η and ξ) play the role of local disorder and global coupling,

respectively, while the geometric factor β performs as the cable-deck local coupling.

The multi-parameter perturbation method is applied following the lower scheme

in Figure 1. First, a minimal nearly-resonant eigensolution of a pseudo-experimental

system is generated and the data decomposition (16),(20) is applied; second, the in-

verse problem is solved to identify an ideal perfectly-resonant system, using the so-

lution (17)-(19); third, the ideal system is employed in the direct problem to perform

the sensitivity analysis of the resonant eigensolution, as described in Table 2. Figures

7a,d show the resonant eigenvalue surfaces in the whole (η-β) parameter space. The

disorder η and local coupling β are found to determine a triple frequency veering with

increasing amplitudes (Figure 7b,c,e,f), accompanied by a rapid hybridization process

of the global and local modes. The first and second-order asymptotic solutions (dot

and crosses) match the exact eigenvalue loci (black lines) with fine approximation.
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Figure 7: Eigenvalue sensitivity analysis: (a),(d) loci of the resonant eigenvalues in

the (η, β)-space; (b),(c),(e),(f) comparison between the exact and asymptotic solution.
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6 Conclusion

The eigensolution sensitivity analysis in linear dynamic models of internally-resonant

systems has been approached through multi-parameter perturbation methods. Hamil-

tonian N -dimensional systems with a generic number of close eigenvalues have been

considered. Following the leading idea that nearly-resonant systems can be consid-

ered as unknown perturbations of a perfectly-resonant – though unknown – reference

system, two complementary problems have been tackled. First, given only a single

nearly-resonant system (experimental system), an inverse problem has been solved to

identify, within the neighboring parameter region, a close perfectly-resonant system

(ideal system), suited to serve as starting point for sensitivity analyses. Second, a di-

rect problem has been solved to asymptotically approximate the eigensolution of all

the nearly-resonant systems (real systems) originated by a generic multiparameter per-

turbation of the ideal system, including the experimental one as a particular case. The

entire procedure allows uniformly-valid sensitivity analyses for the eigensolution of

internally-resonant structures in the critical parameter regions characterized by several

close frequencies, corresponding to resonant global and local modes.
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