
Abstract

This paper presents the adjoint-based sensitivity equation and the adjoint buoyancy-
driven, steady-state Navier-Stokes-Fourier equations for a perfect gas. Related appli-
cations are of relevance for the optimisation of fluids-engineering devices where the
temperature distribution is crucial, e.g. in thermal comfort studies. Starting from the
weakly compressible, buoyancy-driven, Reynolds-averaged Navier-Stokes-Fourier
(RANS-F) equations, the coupled adjoint equations and the resulting sensitivity equa-
tion are derived. Attention is confined to shape design for temperature-wake optimi-
sation using a continuous adjoint approach. The example included refers to a laminar,
two-dimensional (2D) ducted flow around a heated ellipsoid, for which the predicted
sensitivity is verified against results obtained from a direct differentiation approach.
Results convey that the predicted sensitivity generally mimics the gradient of the cost
function.

Keywords: sensitivity analysis, heat transfer, adjoint Navier-Stokes-Fourier equa-
tions, shape optimisation, Boussinesq approximation, finite volume method.

1 Introduction

The adjoint sensitivity analysis has become an established technique for shape optimi-
sation when many degrees of freedom are present [1, 2, 3]. Using weakly compress-
ible, segregated computational procedures based upon pressure correction or pressure
projection techniques, which are widely employed in industrial computational fluid
dynamics (CFD), the continuous adjoint approach is of advantage [4, 5, 6]. The ap-
proach is based on an augmented cost function J̃ which inheres the primal governing
equations (here the RANS-F equations) as constraints which have to be satisfied in the
computational domain. Accordingly, the primal RANS-F equations are augmented
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with Lagrange multipliers and added to the thermo-fluid dynamic cost function. For
shape optimisation, the variational formulation of the augmented cost function indi-
cates the behaviour of the cost function with the variation of the shape. The ansatz is
restricted to small variations in surface-normal direction as the variation is linearised.
Permitting arbitrary variations of the flow field variables (pressure, temperature, ve-
locity), the adjoint RANS-F equations and the sensitivity equation, which displays the
gradient of the cost function, are derived. Subsequently, a simple, gradient-based,
steepest descent optimisation technique might guide the morphing process of the
shape in order to obtain an improved cost function. Contrary to other optimisation
strategies, the adjoint approach only needs one flow simulation for both, the primal
and the adjoint system, no matter how many design parameters are present.

The paper will focus upon coupled momentum-energy-transport systems in an vir-
tually incompressible fluid environment. The buoyancy term is approximated by a
Boussinesq ansatz [7], which supplies an additional source term to the primal mo-
mentum equation. Starting from the primal RANS-F equations [8], the adjoint (dual)
equations and the sensitivity equations are derived along a route described by other
recent publications [9, 10, 11]. The study is confined to the sensitivity of the tempera-
ture wake behind a heated, 2D ellipsoid that is centrally mounted in a channel. Steady-
state simulations are performed with the open source finite volume solver open field
operation and manipulation (OpenFOAM) [12]. The comparison between the gradi-
ent obtained from the direct differentiation and the adjoint approach reveals that the
sensitivity generally predicts the gradient of the cost function with fair accuracy.

2 Theory

2.1 Primal Momentum-Heat Transport System

We consider steady-state systems for virtually incompressible fluids where buoyancy
is a driving force in the momentum equation. Using the Boussinesq-ansatz [7] for
modeling the buoyancy influence, the momentum equation obtains a supplementary
temperature dependent term. The system is closed by the energy equation for perfect
gas, given by Equation (1)
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where p∗ =
p+ 2

3
kρ

ρ
is the modified pressure (enhanced by isotropic contributions of

the turbulence model), ρ is related to the density, νg = ν + νt is the effective kine-



matic viscosity as sum of kinematic turbulent and molecular viscosity, β is the volume
expansion coefficient, gi the gravity acceleration vector, cv the specific heat capacity,
κeff := κ

cvρ
+ κt

cvρ
is the sum of turbulent and laminar heat conductivity scaled with 1

cv ·ρ

and 2Sij :=
(
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is the symmetric rate-of-strain tensor. Mind that the gravity

vector acts in negative z/x3-direction.

2.2 Derivation of Adjoint System

The subsection presents the derivation of the adjoint energy, momentum and conti-
nuity equations. The residual form of the RANS-F equations is denoted in Equation
(2)
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These primal equations are augmented with Lagrange multipliers (T̂ , û, p̂) and added
to the cost function J . This leads to an augmented cost function J̃ . The linearised
variation δlcJ̃ of the augmented cost function consists of convective and local varia-
tions. The local variation describes the variation of the flow on the original location.
The convective variation describes the variation of the (old) flow due to a change of
location by δn. As the primal residual equations are fulfilled everywhere, the convec-
tive variation of the RANS-F with respect to the operator δc ≡ ∂

∂n
δn vanishes. Typical

cost functions of the present study involve the definition of Γobj , the boundary where
the cost function is evaluated, along the inlet and outlet, whereas Γdsg, the surface
which is enabled for shape variations, is chosen to be a wall boundary of the heated
ellipsoid. Therefore Γdsg ∩ Γobj = ∅ and no convective variations of the cost function
exist. The variation of the augmented cost function is denoted by Equation (3)

δlcJ̃ = δlcJ +

∫ (
ûiδ

lRi + p̂δlQ + T̂ δlH
)

dΩ . (3)

Integration by parts leads to a formulation where variations of primal flow variables
can be factored out. Using the frozen-turbulence assumption [5] (δlcµg ≡ 0), we fi-
nally arrive at the adjoint volume equations for the adjoint momentum (ûi), continuity
(p̂) and temperature (T̂ ), given by Equation (4)
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where 2Ŝij =
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)
. The system is closed by appropriate boundary conditions,

given in Equation (5) and Equation (6).
Adjoint boundary conditions for inlet and wall
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Adjoint boundary conditions for outlet
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We assume prescribed velocity and fixed pressure gradient at wall and inlet, fixed ve-
locity gradient and prescribed pressure at the outlet. Note that the Boussinesq term
is now settled at the right-hand side of the temperature equation, whereas terms in-
volving the adjoint temperature have been transferred to the right-hand side of the
momentum equation.

2.3 Derivation of sensitivity equation

Having solved the adjoint RANS-F equations, the remaining non-zero part of the aug-
mented cost function variation, defined at a wall boundary is given in Equation (7)
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From this we compute the adjoint sensitivity, i.e. the gradient of the cost function with
respect to a normal variation of the boundary, along the design surface and obtain
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2.4 Optimisation with steepest descent

The steepest descent method is perhaps the most simple optimisation approach which
steps in the negative direction of the gradient. It can readily be coupled to the result of
a sensitivity analysis along Γdsg. Using mesh morphing tools like in the automatic net-
generation for structural analysis (ANSA) [13], the computational grid is optimised,
by moving each surface cell of Γdsg in the direction of the negative gradient multi-
plied by an arbitrary (unique) step size α. This paper will however only focus on the
comparison between the gradients obtained from an efficient adjoint technique and a
direct sensitivity analysis of design-surface perturbations.

3 Verification

The adjoint equations are similar to the primal equations. Therefore a great portion
of the primal solver can be re-used to solve the adjoint equations. In conjunction with
the present study, a semi-implicit pressure linked equation solver (SIMPLE) is used
within the open source CFD environment OpenFOAM.

The adjoint sensitivity displays the gradient of the cost function with respect to a
normal displacement of the design surface. For verification purposes we compare the
adjoint sensitivity to the gradient of the cost function obtained from a direct differen-
tiation method. The latter is based upon shifting each discrete boundary element of
Γdsg by a small distance in normal direction and evaluate the related change of cost
function. Note that the comparison deliberately ignores non-linear interactions and is
thus confined to small variations.

3.1 Heated Ellipsoid

For the verification study we simulate the laminar flow over a 2D heated ellipsoid
which is centrally mounted in a channel. The computational domain covers 10−2m
x 2 × 10−3m. The ellipsoid has a height of 2 × 10−4m. Only half of the symmetric
configuration is computed. The mesh consists of 24 000 hexahedral control volumes
and features hanging nodes. Figure 1 displays the computational grid.



Figure 1: Computational Grid

The inlet velocity is assigned to 1.5 × 10−1 m
s

. The Reynolds number based on
the height of the channel (h = 2 × 10−3m) is Reh = 20. The mean temperature is
set to T = 290K. The ellipsoid is heated with a temperature of T = 291K. The
related Grashof number is Gr = g·β·∆Th3

ν2 = 1, with acceleration force component
g = 9.81m2

s
and β = 3× 10−3/K.

The upper and lower domain boundaries were assigned to symmetry boundary con-
ditions. For inlet and outlet we employ typical boundary conditions, i.e. prescribed
velocity and temperature as well as zero pressure gradient at inlet and zero gradient
for temperature and velocity as well as prescribed pressure at the outlet. A no-slip
wall is applied along the ellipsoid (design surface). The temperatures are set to 290K
along the lower and upper boundaries and T = 291K along the design surface. For
the simulation we use the buoyant SIMPLE solver buoyantBoussinesqSimpleFoam.C
of OpenFOAM and its adjoint analogue. The verification study employs a uniformity
of temperature cost function at the outlet as an example for the adjoint sensitivity
analysis. The cost function J is defined as
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∫
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2
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2 dΓ , (9)

where Td denotes a desired temperature, which in this case refers to Td = 291K.
The cost function is associated to a contribution to the adjoint boundary condition (6)
defined in Equation (10)

∂jΓ

∂T
= (T − Td) . (10)

As the chosen cost function only depends on the temperature, all other boundary con-
tributions of the cost function vanish.

3.2 Results

All simulations were iterated over 25 000 iterations to guarantee a fair level of con-
vergence. In Figure 2, Figure 3 and Figure 4 the results for the primal velocity and
density are presented.



Figure 2: Predicted primal magnitude of the velocity

Figure 3: Predicted primal temperature field

Figure 4: Predicted primal density field

Due to the influence of heating, small density variations occur in the vicinity of the
ellipsoid (0.997 g

m
) which are convected downstream. The temperature has its max-

imum at the ellipsoid and also features a plume downstream of the heated obstacle.
Since the Re-number is fairly low, a significant amount of diffusion distributes the den-
sity and temperature plume along the complete outlet cross section. The displacement
of the velocity field towards the upper boundary induced by the obstacle is supported
by buoyancy terms downstream of the ellipsoid.

Figure 5 and 6 depict the results for the adjoint velocities, temperature and pres-
sure.



Figure 5: Adjoint x-velocity (left) and y-velocity (right)

Figure 6: Adjoint temperature (left) and pressure (right)

Note that the adjoint solution usually runs ”backward” but has no strict physical mean-
ing, therefore the plausibility of the results is usually hard to judge. The main criterion
on judging the quality of the results is the sensitivity. The sensitivity is computed from
the primal and adjoint flow field in a postprocessing step, according to Equation (8).
The normal gradients of the primal and adjoint velocity are computed with the Open-
FOAM function snGrad and projected into the tangential direction. Results of the
discrete adjoint sensitivity analysis are outlined in Figure 7 including a diagram for
the sensitivity plotted on the surface of the ellipsoid. The diagram shows the 410
discrete design surface elements along the abscissa and their sensitivity values on the
ordinate.
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Figure 7: Contour plot (left) and diagram (right) of adjoint sensitivity for test case
Heated Ellipsoid



Large improvements are obtained at the ends of the ellipsoid, smaller ones along the
crest. Note that the sensitivity displays the gradient of the cost function with respect to
an outward movement of the surface, i.e. with respect to increasing the fluid volume.

We will now compare the gradient of the cost function obtained from the adjoint
solution with the gradient of the cost function obtained from a direct differentiation
approach using (first-order) finite differences. We thus approximate the gradient of the
cost function for each node on the surface Γdsg from a first-order accurate differencing
scheme, according to Equation (11)

∂J

∂n
≈ Jnew − Jold

δn
. (11)

Note that this approximation is only valid for perturbations, which are small enough to
neglect non-linearities, but prone to numerical errors for very small perturbations. The
generation of the required 400 computational meshes has been scripted to minimise
mesh-quality influences on the approximated cost function gradient and a normal per-
turbation of δn = 2 × 10−7m has been used in the present study. Figure 8 shows
the sensitivities along the axis of the ellipsoid obtained from the direct differentiation
approach.
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Figure 8: Sensitivity obtained from a direct differentiation



Figure 9 shows the comparison of the adjoint sensitivity and the gradient of the
direct differentiation approach.
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Figure 9: Sensitivity from direct differentiation plotted on ellipsoid

The adjoint sensitivity displays a satisfactory agreement with the result of the direct
differentiation analysis. The agreement deteriorates at the respective ends of the obsta-
cle due to pronounced local non-linearities of the primal flow field (i.e. flow reversal).
The trend – or sign of the gradient – however always agrees between the two gradient
evaluation techniques.

4 Conclusion

The adjoint buoyancy-driven Navier-Stokes-Fourier equations have been derived from
the primal equations along the line of the continuous adjoint approach. A Boussinesq
approximation has been used to model buoyancy influences. The adjoint system has
been exemplified for the case of a temperature related objective function, located away
from the design surface at the outlet. A verification study at low Re-number reveals
a fair predictive agreement between the adjoint sensitivity and the gradient obtained
from the direct differentiation. Related deviations can primarily be attributed to non-
linearities. Inconsistencies between the discrete primal and dual approach might also
have a small influence, but are deemed negligible due to the dominance of the self-
adjoint diffusion mechanisms. Future work is devoted to more complex thermo-fluid
dynamic applications.
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