
Abstract

The bilateral or unilateral contact problem with Coulomb friction between two elas-

tic bodies is considered [1, 12]. An algorithm is introduced to solve the resulting

finite element system using a non-overlapping domain decomposition method. This

technique enables the transformation of the solution of the global problem to the solu-

tion of the elasticity equations for each body separately and the solution of a smaller

problem for the contact surface. The solution is obtained by using a successive ap-

proximation method, in each step of this algorithm two intermediate problems are

solved, the first with prescribed tangential pressure, and the second with prescribed

normal pressure[11].

Keywords: frictional contact problem, domain decomposition, Schur complement,

interface preconditioner.

1 Introduction

The purpose of this paper is to study, the quasistatic two-body contact problem for

small strains with friction. The mechanical interaction between the bodies is mod-

elled, under the assumption of small displacement, by the bilateral or unilateral contact

condition, and Coulomb´s friction law relating the contact force and the displacement.

The main difficulties of contact problems are: the non-penetration of the bodies, the

friction effect, and the contact surface are unknown in the problem. An algorithm is

introduced to solve the resulting finite element system by a non-overlapping domain

decomposition method, which consists of a suitable iterations based on the solutions

of the elasticity equations for each body separately and the solution of a smaller prob-

lem on the contact surface. The central aspect of this work is the adaptation of a

preconditioner construction developed in [2, 3, 4] for non-overlapping Dirichlet type
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domain decomposition method to the contact problem. The circulant matrix represen-

tations of the H
1
2 seminorm has been proved to be spectrally equivalent to the Schur

Complement in [8]. Using this equivalence, the interface problem is transformed to

an equivalent problem which is solved by a two-stage iterative technique consisting

of solving consecutively a problem with prescribed tangential force and a problem

with prescribed normal force. Each problem is solved with adequate mathematical

programming methods.

The paper is organized in the following way: in Section 2, the contact problem

with friction is discussed. In Section 3, the variational formulation of the problem is

presented. The Finite Element Method is used to construct approximation spaces and

an algorithm based on domain decomposition is presented in Section 4. In Section 5,

a preconditioning technique for the resulting interface problem based on the circulant

matrix representations of the H
1
2 seminorm is suggested. Some numerical examples

are presented in the last section.

2 Continuous problem

Let us suppose that an elastic body, subject to external forces, occupies a union Ω of

two bounded domains Ω1 and Ω2, in Rn, n = 2, 3, with Lipschitz boundaries ∂Ωi. Let

the boundary Γ = ∂Ω1 ∪ ∂Ω2 consist of three disjoint parts:

•Γd on which we impose displacements.

•Γf on which we impose stresses.

•Γc the potential contact surface between the two solids. On Γc, we impose on Γc

unilateral contact condition with Coulomb friction.

In the following, the summation convention is used. The general frictional contact

problem for small deformations in elastic media is governed by :

(i) equations of equilibrium:

σl
ij(u

l),j + f l
i = 0, in Ωl, l = 1, 2 (1)

(ii) material constitutive: For elastic materials, the stress-strain relation is given by

the generalized Hooke’s law, i.e.

σl
ij(u

l) = al
ijklεk,l(u

l), with ε(ul) =
1

2
(∇ul + (∇ul)T ). (2)

(iii) boundary conditions:

ul
i = ul◦

i on Γl
d, (3)

σl
ijnj = gl

i on Γl
f , (4)

where σl
ij is the Cauchy stress component, f l

i is the ith component of the body force

vector f , ti is the ith component of the surface traction t and aijkl are the components
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of the elasticity tensor, satisfying the symmetry and ellipticity conditions:

aijkl = ajikl = aklij = aijlk, 1 ≤ i, j, k, l ≤ n, (5)

aijklεklεij ≥ αεijεij, α > 0 const.,∀εij; (6)

(iv) the appropriate contact conditions and friction law: Contact conditions should

ensure that normal stress on the contact surface is always compressive, and that the

displacement on the contact surface satisfies a kinematic contact constraint to prevent

interpenetration.

Afterwards we adopt the following notation for any displacement field and for any

density of surface forces defined on Γc:(n = {ni} is the outward unit normal of Ω)

u = unn + ut, and σ(u)n = σn(u)n + σt(u),

where un = uini, uti = ui − unni, σn(u) = σij(u)ninj,

and σti(u) = σij(u)nj − σn(u)ni.

We define the relative normal, tangential displacement wn and wt such that:

wn = u1
n + u2

n, and wt = u1
t − u2

t ,

if wn < d then p = 0 (no contact) (7)

if wn = d then pn < 0 (contact) (8)

if | pt |< ν | pn | then wt = 0 : (sticking) (9)

if | pt |= ν | pn | then ∃λ such wt = −λpt : (sliding) (10)

pn and pt are the normal, and the tangential stress on Γc and d is the initial gap

between the two solids. The conditions (7)-(8) express unilateral contact between the

two bodies, finally conditions (9)-(10) define a form of Coulomb’s law of friction for

elastostactic problems and ν is the coefficient of friction.

3 Variational problem

Let us introduce the following functional spaces V (Ωl), (l = 1, 2) :

V (Ωl) = {v ∈ (H1(Ωl))n, v = 0 on Γl
d}

and a vector field v ∈ V = V (Ω1) × V (Ω2) is denoted v = (v1, v2). Supplying V

with the standard inner product and norm, respectively:

(u, v) = (u1, v1)(H1(Ω1))n + (u2, v2)(H1(Ω2))n , ‖ u ‖= (u, u)
1
2 ,∀u, v ∈ V

V is a Hilbert space. We further assume, that:

al
ijkl ∈ L∞(Ωl), ν ∈ L∞(Γc), f l ∈ (L2(Ωl))n, and gl ∈ (L2(Γl

f ))
n.
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We define the bilinear form:

a(u, v) =
2

∑

l=1

al(ul, vl) =
2

∑

l=1

∫

Ωl

al
ijklεkl(u

l)εij(v
l)dΩ,

for all u, v ∈ V. Next, we denote L(.) the linear form which corresponds to the external

loads:

L(v) =
2

∑

l=1

Ll(vl) =
2

∑

l=1

(

∫

Ωl

f l.vldΩ +

∫

Γl
f

gl.vldΓ).

For v = (v1, v2) ∈ V, we obtain from (1), through a formal application of the

Green-Gauss theorem, that:

2
∑

l=1

∫

Ωl

σl
ij(

∂vl
i

∂xj

)dΩ =
2

∑

l=1

(

∫

Ωl

f l
iv

l
idΩ +

∫

Γl
f

gl
iv

l
idΓ)+

∫

Γc

σ1
ijn

1
jv

1
i dΓ +

∫

Γc

σ2
ijn

2
jv

2
i dΓ, ∀v ∈ V,

a(u, v) = L(v) +

∫

Γc

σ1
ijn

1
jv

1
i dΓ +

∫

Γc

σ2
ijn

2
jv

2
i dΓ, ∀v ∈ V. (11)

We define normal and tangential contact stresses as

pn = σ1
ijn

1
i n

1
j = σ2

ijn
2
i n

2
j , pt = σ1

t
= −σ2

t
,

where pl
ti

= σl
ijnj − σnn

l
i. The above relations represent the action and reaction

principle. The variational formulation of problem (1)-(4) and (7)-(10) in its mixed

form consists of finding (u,p = (pn,pt)) ∈ K × W which satisfies:

(P )















a(u, v) −
∫

Γc
(pn(v1

n + v2
n) + pt.(v

1
t − v2

t ))dΓ = L(v),∀v ∈ V,

K = {v ∈ Vad, (v1
i n

1
i + v2

i n
2
i ) ≤ d on Γc},

W = {p ∈ H− 1
2 (Γc) × (H− 1

2 (Γc))
n, pn ≤ 0, | pt |≤ ν | pn |},

Vad = {v = (v1, v2) ∈ V, ul
i = ul◦

i on Γl
d},















(12)

where H− 1
2 (Γc) is the dual space of H

1
2 (Γc).

To find the solution of the problem (P ), we use the method of successive approxi-

mations starting from an initial Γ0
cr ⊂ Γc real contact zone. The kth step of the iteration

is given by:

1. Solve the contact problem with given Γk
cr ⊂ Γc .

2. The solution is used to find the new contact zone Γk+1
cr ⊂ Γc.

The process is stopped if two successive contact zones are the same, Γk+1
cr = Γk

cr.
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4 Finite Element Discretization and Domain Decom-

position

4.1 Discretization

In order to obtain an approximation of (12), we will use the method of finite ele-

ments. To this end, we associate to each subomain Ωl a regular family of triangulation

{T l
h}(triangles or quadrilatere in R2, tetrahedra in R3). Moreover, we suppose that the

extreme points x1 and x2 of the real contact zone Γcr are common nodes of the meshes

on both bodies. The contact zone Γcr inherits two independent regular discretization

associated with {T 1
h} and {T 2

h} .

We associate each {Th} = {T 1
h} ∪ {T 2

h} with a finite-dimensional space Vh of

piecewise linear vector functions:

Vh = {vh = (v1
h, v

2
h) ∈ (C(Ω̄1) × C(Ω̄2))n, vl

h |T∈ (P1(T ))n∀T ∈ T l
h,

vl
h = 0 on Γl

d, l = 1, 2},

where C(Ω̄) stands for the space of continuous functions on Ω̄ and Pk(T ) represents

the space of polynomial functions of degree k on T .

Let Wn = (Wni)
T ∈ Rk and Wt = (Wti)

T ∈ R2k, 1 ≤ i ≤ k denote the vectors

of components of the nodal values on Γc of whn and wht respectively. Let R denote

the vector of the component of the nodal values on Γc of the contact force p and

decomposed on the normal forces Rn = (Rn1, Rn2, ..., Rnk)
T ∈ Rk and the tangential

forces Rt = (Rt1,Rt2, ...,Rtk)
T ∈ R2k.

Using the above notations, the pointwise formulation of the frictional contact con-

ditions are:

Rni ≤ 0,Wni − d ≤ 0, Rni(Wni − d) = 0, 1 ≤ i ≤ k.

| Rti |< ν | Rni |, Wt = 0, 1 ≤ i ≤ k

| Rti |= ν | Rni |, ∃λi > 0 Wti = −λiRti, 1 ≤ i ≤ k

This problem is discretized by finite element method and let Al, U l, Ll and Rl

denote the symmetric positive definite stiffness matrix, the vector of displacements,

the vector of prescribed forces and the unknown vector of contact forces on the contact

surface associated with the subdomains Ωl, (l = 1, 2), respectively. These quantities

can be partitioned as follows:

Al =

[

Al
ii Al

ic

Al
ci Al

cc

]

, U l =

[

U l
i

U l
c

]

, Ll =

[

Ll
i

Ll
c

]

, Rl =

[

0
Rl

c

]

,

where the subscripts c and i indicate the interface contact boundary and the remainder

of degrees of freedom in each subdomain. Using the above notations, the subdomain

equations of equilibrium can be written as:
[

Al
ii Al

ic

Al
ci Al

cc

] [

U l
i

U l
c

]

=

[

Ll
i

Ll
c

]

+

[

0
Rl

c

]

. (13)
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4.2 Domain Decomposition Method

As stated before, the presented method is an iterative procedure which is based on

a finite element analysis of the contact problem with friction. In each iteration, the

contact problem is solved by a domain decomposition method, the solution is used

to find the contact interfaces between the elastic bodies, and the modification of the

contact interface induce me to remesh each subomain Ωl. This process is repeated

until the stabilization of the contact zone. The re-meshing assure that the nodes of the

meshes on both bodies are identical. Each step of the iterative procedure is outlined

as follows:







































































































For a given(Γcr)
k we apply the DD-method which consists of computing

the solution as follows:

(U1, U2) = (UP1, UP2) + (UH1, UH2).

1. Compute UPl = (UPl
i , 0)T ,

UPl
i = (Al

ii)
−1Ll

i.

2. The remaining part is computed as:

a.) UHl
c = S−1

l Ll
c + S−1

l Rl
c − S−1

l Al
ciU

Pl
i ,

b.) UHl
i = −(Al

ii)
−1Al

icU
Hl
c .

where Sl = Al
cc − Al

ci(A
l
ii)

−1Al
ic is the Schur complement of the stiffness

matrix Al.

3. Assembling of the results :(U1, U2) = (UP1, UP2) + (UH1, UH2),

4. The determination of the new real contact surface(Γcr)
k+1.

The steps 1. and 2. b.) are equivalent to the solutions of an elasticity equations with

given boundary tractions on (Γc) and the computation of UPl and UHl
i can be carried

out on each subdomain concurrently. The computation of the displacement Uc and the

contact force Rc in (Γc) requires the solutions of a nonlinear problem posed in (Γc).
Using the following notations U l0

c = S−1
l Ll

c − S−1
l Al

ciU
l
i and R = R1

c = −R2
c , we

obtain the interface problem:

(S−1
1 + S−1

2 )R = (U1
c − U2

c ) − (U10
c − U20

c ), (14)

where R and U l
c must satisfy the contact conditions:

Rni ≤ 0, Wni = dni, 1 ≤ i ≤ k, (15)

| Rti |< ν | Rni |, Wt = 0, 1 ≤ i ≤ k, (16)

| Rti |= ν | Rni |, ∃λi > 0 Wti = −λiRti, 1 ≤ i ≤ k. (17)
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5 Solution of the interface problem

5.1 Algorithm

Let P be spectrally equivalent to S−1
1 + S−1

2 . Now, our problem take the following

form:

PR = W − W 0, + conditions (15)(16)(17). (18)

However, the interface (18) is not equivalent to a minimization problem because the

constraint set depends on the solution Rn. Then, we attempt to solve it with a two-

stage iterative technique which consists of solving a problem in the normal direction

and a problem in the tangential direction consecutively. This technique have been

proposed by Panagiotopoulos in [11]. The equation (18) can be written in partitioned

form:

QnnRn + QntRt = dn + W 0
n (19)

QtnRn + QttRt = Wt + W0
t (20)

where Qnn is a (k × k) matrix ,Qnt is a (k × 2k) matrix, Qtn is a (2k × k) matrix and

Qtt is a (2k × 2k) matrix.

Now two-stage iterative technique of (18) can be written as:

• step Initialization set Rt = 0

• step Normal problem : We fix Rt and to obtain Rn, we solve the following fric-

tionless problem which is equivalent to the following Quadratic Programming Prob-

lem (QPP):

Minimize : Jn(Rn) =
1

2
RT

nQnnRn + RT
nFn with Rn < 0. (21)

• step Tangential problem: We fix Rn and to obtain Rt, we solve a Coulomb friction

problem under given normals loads. Coulomb’s law connects the tangential forces

with the normal forces by the relation:

ϕi = ν | Rni | − ‖ Rti ‖, i = 1, .., k.

If ‖ Rti ‖< ν | Rni | (i.e., ϕi > 0) then we have Wt = 0,

if ‖ Rti ‖= ν | Rni | (i.e., ϕi = 0) then we have slipping in the opposite direction

of Rt:

Wti = −λiRti, λi ≥ 0, i = 1, .., k,

where λi is the ratio of the magnitude of the local displacement.

Now for given normal contact force, the local friction contions are:

Wti = −λiRti, ϕi ≥ 0, λi ≥ 0, ϕiλi = 0, i = 1, .., k,

and the tangential problem is equivalent to the following convex nonlinear program-

ming problem:

Minimize : Jt(Rt) =
1

2
RT

t QttRt + RT
t Ft with ϕi ≥ 0, i = 1, .., k. (22)
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• Computational steps (1) and (2) are repeated until the non-dimensional norm of

tangential force is less than a prescribed tolerance. The non-dimensional norm is

defined as follows:
|| Rpresent

t − R
previous
t ||2

|| Rpresent
t ||2

< ǫ

and typically a value of ǫ is 10−5 used.

In this study, the normal problem is solved by the Penalty Method, while the tan-

gential problem is solved by the Lagrangian multiplier technique.

5.2 The preconditioner construction

In this section we present preconditioning techniques for the iterative solver. The in-

troduced S−1
1 +S−1

2 preconditioner constructions are based on the spectral equivalence

relations [13, 14, 15]

c11· | vc |H1/2
00 (Γc)

≤ (SlVc, Vc) ≤ c12 · log2
(

h−1
)

· | vc |H1/2
00 (Γc)

, (23)

and

c21· | vc |H1/2
00 (Γc)

≤ | ṽl
c |H1/2(∂Ωl) ≤ c22· | vc |H1/2

00 (Γc)
, (24)

∀v ∈ Vh (l = 1, 2), where Vh denotes the finite element approximation of V with

the parameter of the discretization h, vc is the restriction of v to Γc, Vc is the vector

representation of vc at the grid points of Γc, ṽl
c is the extension of vc from Γc to ∂Ωl

by zero, and cij (i, j = 1, 2) denote positive constants independent of h.

In the two-dimensional case we use the preconditioning matrices

P2,1 = ET
1 · Q1 · E1 + ET

2 · Q2 · E2, (25)

and

P2,2 =
(

ET
1 · L−1

1 · Q1 · E1 + ET
2 · L−1

2 · Q2 · E2

)−1
, (26)

where El denotes the matrix representation of the discrete extension from Γc to ∂Ωl

by zero, Ql, Ll are the sparse circulant matrix representations of the H1/2 seminorm

and H1 norm [5, 6] , respectively. Introducing the notation

C = C(c0, c1, . . . , cm−1, cm, cm−1, . . . , c1)

=













c0 c1 c2 . . . c1

c1 c0 c1 . . . c2

c2 c1 c0 . . . c3

. . . . . . . . . . . . . . .

c1 c2 c3 . . . c0













these matrices can be expressed as

Ql = C(q0, q1, . . . , qm−1, qm, qm−1, . . . , q1), (27)
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where

qj =



















2
∑2[log2(m)]−1

k=1
1
k2 if j = 0

−
∑2i−1

k=2i−1
1
k2 if 0 < j < m

and j = 2i − 1
0 otherwise

,

and

Ll = C(l0, l1, . . . , lm−1, lm, lm−1, . . . , l1), (28)

where

lj =







2
h

+ h if j = 0
− 1

h
if j = 1

0 otherwise

,

In the three-dimensional case we used the preconditioning matrix

P3,1 = h · ET
1 ·

∑

p∈{x,y,z}

Q1,p · E1 + h · ET
2 ·

∑

p∈{x,y,z}

Q2,p · E2, (29)

where the matrices Ql,p denote a sum of one-dimensional sparse circulant seminorm

representations Ql in the direction p. Here we applied the separability property of the

H1/2 seminorm [7, 9, 10].

The separability property means that the H1/2 seminorm can be represented as the

sum
∑

p∈{x,y,z}

| ṽl
c |

2

H
1/2
p (∂Ωl)

, (30)

of ’partial’ seminorms. The ’partial’ seminorm in the direction x is defined by the

expression

| ṽl
c |

2

H
1/2
x (∂Ωl)

= (31)

∫ xmax

xmin

∫

∂Ωl
x

∫

∂Ωl
x

| ṽl
c(x, y1, z1) − ṽl

c(x, y2, z2) |
2

| (y1 − y2)2 + (z1 − z2)2 |
dsx(y2, z2)dsx(y1, z1)dx,

where

xmin = min
(x,y,z)∈∂Ωl

x, xmax = max
(x,y,z)∈∂Ωl

x,

∂Ωl
x =

{

(x̃, ỹ, z̃) ∈ ∂Ωl | x̃ = x
}

and sx(.) is the arclength on ∂Ωl
x. The seminorms | ṽl

c |
2

H
1/2
y (∂Ωl)

and | ṽl
c |

2

H
1/2
z (∂Ωl)

are

defined analogously.

The spectral equivalence relations ensure that the defined Pij ((i, j) = (2, 1), (2, 2),
(3, 2)) preconditioning matrices are almost optimals and the spectral condition number

of a Pi,j·(S
−1
1 +S−1

2 ) matrix is O(log2(N)), where N denotes the number of grid points

on Γ. The matrices P2,1 and P2,2 have very simple structures, and a multiplication by

these matrices requires only O(N log(N)) arithmetic operations. The cost of a matrix

multiplication by P2,2 is much more expensive. However P2,2 theoretically is better

preconditioning matrix than P2,1.
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6 Numerical Results

In this section, some examples and numerical results related to the proposed algo-

rithms are presented.

6.1 First examples

In this example, we consider the problem of a flat punch pressed on an elastic foun-

dation. The foundation is characterized by a Young modulus EF = 5MPa and Pois-

son ′s ratio vF = 0.3, while the elastic punch is constructed of a material with EP

= 5MPa and vP = 0.3. The problem is solved for two cases: two-dimensional and

three-dimensional formulations. Both cases we assume the coefficient of friction is

ν = 0.5, and the applied normal force at the top of the punch P = 100N . Fig 1.

shows the computed deformed configurations and the corresponding Von Mises stress

distribution. The contact pressures are plotted in Figure 3.(a).

a) b)

Figure 1: The deformed configurations (a)two-dimensional and (b)three-dimensional.

6.2 Sphere on an elastic foundation

We consider the contact between a half sphere and an elastic foundation. The foun-

dation is characterized by a Young modulus EF = 5MPa and Poisson′s ratio vF = 0.3,

while the elastic sphere is constructed of a material with EP = 5MPa and vP = 0.3.

Using the symmetry with respect to the vertical axis through the center of the sphere,

the study can be reduced to a half-plane with axisymmetrical co-ordinates. In this

case, we assume the coefficient of friction is ν = 0.5, and the applied normal force at

the top of the sphere P = 100N . Fig 2. shows the computed deformed configurations

and the corresponding Von Mises stress distribution. The contact pressure is plotted

in Figure 3.(b).

7 Conclusion

To simulate the non-linear frictional interaction between two-body, a non-overlapping

domain decomposition method based H
1
2 seminorm preconditioners is proposed. Nu-

merical examples are carried out and our results are in agreement with those obtained
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Figure 2: The deformed configuration.

in [1, 12]. This shows that the present scheme leads to an accurate numerical solution

to the frictional contact problem.
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Figure 3: Normalized contact pressures (a) two-dimensional and( b) axisymmetric.

The proposed preconditioning techniques for the iterative solver are based on the

spectral equivalence relations which ensure that the defined preconditioning matrices

are almost optimals and the condition numbers of the preconditioned matrices are uni-

formly bounded. It is important to note that the algorithm converges to the solution

with only a few iterations, which is especially important in non-linear problems, and

a significant reduction in the computational cost can be achieved. The greatest ad-

vantage of the proposed preconditioned matrices is its simplicity, stability and can be

easily integrated into the standard finite element codes.

The proposed approach can be extended to more contact problems with complex

geometry and practical engineering problems of the real world such as metal forming

and frictional contact problem in large deformation.
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