
Abstract

Recent decades have witnessed rapid development in numerical modelling of struc-

tures as well as materials and the complexity of models increases rapidly together with

their computational demands. Despite the growing performance of modern computers

and clusters, a suitable approximation of an exhaustive simulation has still many ap-

plications in engineering problems. For example, the field of parameters identification

may represent a large domain for very efficient applications. The layered neural net-

works are still considered as very general tools for approximation and they became

popular especially for their simple implementation. This contribution presents dif-

ferent strategies for application of neural networks in calibration of affinity hydration

model and discusses their possible advantages and drawbacks.

Keywords: artificial neural network, multi-layer perceptron, approximation, parame-

ter identification, affinity hydration model, cement paste.

1 Introduction

Development in numerical modelling provides the possibility to describe a lot of com-

plex phenomena in material or structural behaviour. The resulting models are, how-

ever, often highly nonlinear and defined by many parameters, which have to be esti-

mated so as to properly describe the investigated system and its behaviour. The aim

of the model calibration is thus to rediscover unknown parameters knowing the ex-

perimentally obtained response of a system to the given excitations. The principal

difficulty of model calibration is related to the fact that while the numerical model of

an experiment represents a well-defined mapping from input (model, material, struc-

tural, or other) parameters to output (structural response), there is no guarantee that

the inverse relation even exists.
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The most broadly used approach to parameter identification is usually done by

means of an error minimisation technique, where the distance between parameterised

model predictions and observed data is minimised [22]. Since the inverse relation

(mapping of model outputs to its inputs) is often ill-posed, the error minimisation

technique leads to a difficult optimisation problem, which is highly nonlinear and

multi-modal. Therefore, the choice of an appropriate identification strategy is not

trivial.

Another approach intensively developed during the last decade is based on Bayesian

updating of uncertainty in parameters’ description [15, 14]. The uncertainty in ob-

servations is expressed by corresponding probability distribution and employed for

estimation of the so-called posterior probabilistic description of identified parameters

together with the prior expert knowledge about the parameter values [11, 23]. The

unknown parameters are thus modelled as random variables originally endowed with

prior expert-based probability density functions which are then updated using the ob-

servations to the posterior density functions. While the error minimisation techniques

lead to a single point estimate of parameters’ value, the result of Bayesian inference is

a probability distribution that summarizes all available information about the parame-

ters. Another very important advantage of Bayesian inference consists in treating the

inverse problem as a well-posed problem in an expanded stochastic space.

Despite the progress in uncertainty quantification methods [16, 19], more infor-

mation provided by Bayesian inference is generally related to more time-consuming

computations. In many situations, the single point estimate approach remains the only

feasible one and development of efficient tools suitable for this strategy is still an ac-

tual topic. Within the several last decades, a lot of attention was paid to the so-called

intelligent methods of information processing and among them especially to soft com-

puting methods such as artificial neural networks (ANNs), evolutionary algorithms or

fuzzy systems [9]. A review of soft computing methods for parameter identification

can be found e.g. in [13]. In this paper, we focus on applications of ANNs in the

single point approach to parameter identification.

2 Aritificial neural network

Artificial neural networks (ANNs) [4, 5] are powerful computational systems con-

sisting of many simple processing elements - so-called neurons - connected together

to perform tasks analogously to biological brains. Their main feature is the ability

to change their behaviour based on external information that flows through the ANN

during the learning (training) phase.

A particular type of ANN is the so-called feedforward neural network, which con-

sists of neurons organized into layers where outputs from one layer are used as inputs

into the following layer, see Figure 1. There are no cycles or loops in the network,

no feed-back connections. Most frequently used example is the multi-layer percep-

tron (MLP) with a sigmoid transfer function and a gradient descent method of train-
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ing called the back-propagation learning algorithm. In practical usage, the MLPs are

known for their ability to approximate non-linear relations and therefore, when speak-

ing about an ANN, the MLP is considered in the following text.

Figure 1: Architecture of multi-layer perceptron

The input layer represents a vector of input parameters which are directly the out-

puts of the input layer. The outputs of one layer are multiplied by a vector of constants,

the so-called synaptic weights, summarized and used as inputs into the following layer.

Elements in the hidden and output layers - neurons - are defined by an activation func-

tion, which is applied on the input and produces the output value of the neuron. The

synaptic weights are parameters of an ANN to be determined during the training pro-

cess. The type of the activation function is usually chosen in accordance with the type

of a function to be approximated. In the case of continuous problems, the sigmoid

activation function is the most common choice.

One bias neuron is also added into the input and hidden layers. It does not contain

an activation function, but only a constant value. Its role is to enable to shift the value

of a sum over the outputs of his neighbouring neurons before this sum enters as the

input into the neurons in the following layer. The value of biases is determined by

training process together with the synaptic weights.

Despite of ANN’s popularity there are only few recommendations for the choice of

ANN’s architecture. The authors, e.g. in [8, 7], show that the ANN with any of a wide

variety of continuous nonlinear hidden-layer activation functions and one hidden layer

with an arbitrarily large number of units suffices for the “universal approximation”

property. Therefore, we limit our numerical experiments to such case. The number of

units in the input and the output layer is usually given by the studied problem itself,

but there is no theory yet specifying the number of units in the hidden layer.

To overcome this problem, we use two sets of data for ANN’s preparation: training

data are used for calibration of the synaptic weights of the ANN with a chosen num-

ber of hidden units and the resulting ANN is then evaluated on independent validation

data. Then, one hidden neuron is added to the existing ANN, which is again trained,

evaluated on validation data and the ratio between the obtained error to the error ob-

tained for the previous ANN is computed. We count the situations, where the ratio is
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higher than 0.99. When these situations occur three times, the addition of hidden neu-

rons is stopped. Then the ANN with the smallest error on validation data is employed

for model calibration.

3 Strategies for model calibration

In overall, there are two main philosophies for application of ANN in identification

problems. In a forward mode/direction, the ANN is applied to approximate the model

response. The error minimisation technique then becomes a minimisation of distance

between the ANN’s predictions and experimental data. The efficiency of this strategy

relies on the evaluation of the trained ANN to be significantly much faster than the full

model simulation. The advantage of this strategy is that the ANN is used to approxi-

mate a known mapping which certainly exists and is well-posed. Computational costs

of this strategy are separated in two parts of a similar size: (i) the ANN training - op-

timisation of synaptic weights and (ii) the minimisation of an error in ANN prediction

for experimental data - optimisation of ANN inputs (i.e. determination of investigated

model parameters). The latter part concerns optimisation of an error function which

is often multi-modal, non-differentiable and some robust optimisation method has to

be applied to solve this problem. An important shortcoming of this method is that this

ill-posed optimisation problem needs to be solved repeatedly for any new experimen-

tal measurement. This way of ANN application to the parameter identification was

presented e.g. in [1], where an ANN is used for predicting load-deflection curves and

the conjugate directions algorithm is then applied for optimisation of ductile damage

and fracture parameters. Authors in [18] train an ANN to approximate the results of

FE simulations of jet-grouted columns and optimise the column radius and a cement

content of the columns by a genetic algorithm. Principally same methods are used for

identification of elasto-plastic parameters in [2].

The second philosophy, an inverse mode, assumes the existence of an inverse rela-

tionship between the outputs and the inputs of the calibrated model. If such a relation-

ship exists at least on a specified domain of parameters’ value, it can be approximated

by an ANN. Then the retrieval of desired inputs is a matter of seconds and could

be easily executed repeatedly for any new experiment and no other optimisation pro-

cess is necessary. Here the ANN training represents the whole computational costs

and a solution of the ill-posed problem. This way of ANN application to parameter

identification was presented e.g. in [17] for identification of mechanical material pa-

rameters, in [25] for estimation of elastic modulus of the interface tissue on dental

implants surfaces, in [26] for identification of interfacial heat transfer coefficient or in

[12] for determination of geometrical parameters of circular arches.

Since the ANN training needs a preparation of a set of training data, it is also wor-

thy to use these data for a sampling-based sensitivity analysis [6, 20] and obtain some

information about importance of particular observations or significance of each pa-

rameter for a system behaviour. To achieve some reliable information from sensitivity

analysis as well as a good approximation by ANN, one has to choose the training data
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carefully according to a suitable design of experiments, see e.g. [10] for a competitive

comparison of several experimental designs.

4 Affinity hydration model

The affinity model provides a simple framework describing all stages of cement hy-

dration. The rate of hydration can be expressed by the temperature-independent nor-

malized chemical affinity Ã(α) [3]

dα

dt
= Ã(α) exp

(

−
Ea

RT

)

, (1)

where α stands for the degree of hydration, T is an arbitrary constant temperature of

hydration, R is the universal gas constant (8.314 Jmol−1K−1) and Eα is the apparent

activation energy.

For the hydration heat prediction, an analytical form presented in [24] is used:

Ã(α) = B1

(

B2

α∞

+ α

)

(α∞ − α) exp

(

+η̄
α

α∞

)

, (2)

where B1 and B2 are coefficients related to chemical composition, α∞ is the ultimate

hydration degree and η̄ represents microdiffusion of free water through formed hy-

drates. Then a curve of the degree of hydration development α can be obtained by the

numerical integration of equation (2).

5 Sensitivity analysis

Since the bounds for model parameters vary in orders, one can employ the expert

knowledge about the parameter meanings and before preparation of training data

transform them into standardised parameters pi ∈ [0; 1]. The bounds for affinity model

parameters together with relations to the standardised parameters pi are given in Ta-

ble 1.

Parameter Minimum Maximum Relation

B1 106 107 p1 = log B1 − 6
B2 10−6 10−3 p2 = (log B2 + 6)/3
η̄ -12 -2 p3 = (−η̄ − 2)/10

α∞ 0.7 1.0 p4 = (α∞ − 0.7)/0.3

Table 1: Bounds for affinity model parameters.

In the space of standardised parameters we prepare a design of experiments having

100 samples based on Latin Hypercube Sampling optimised with respect to modified
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L2 discrepancy. In [10] it is shown that such an experimental design has a good space-

filling property and is nearly orthogonal. For each design point we perform a model

simulation to obtain a bundle of 100 curves for the degree of hydration α(t), see

Figure 2.

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

t[h]

α
[-
]

Figure 2: Bundle of degree of hydration curves obtained for design points.

Since the model response is represented by the degree of hydration being a function

of the time, the time domain is discretised into 199 steps uniformly distributed with the

logarithm of the time. Hence, the model input vector consists of 4 parameters and the

output vector consists of 199 components. For each input-output pair with 100 simu-

lations we evaluate the Spearman’s rank correlation coefficient ρ in order to compute

the sensitivity of output to input parameters [6]. The results of such a sampling-based

sensitivity analysis are plotted in Figure 3.

10
0

10
2

10
4

10
6

10
8

−1

−0.5

0

0.5

1

t[h]

ρ
[-
]

 

 p1
p2
p3
p4

Figure 3: Sensitivity analysis for input-output pairs.
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6 Neural network training

Results of the described 100 simulations are also used as training data for ANNs.

Then, the last preparatory step concerns the generation of validation data for evalu-

ation of particular ANN’s architecture (i.e. the number of hidden nodes) and testing

data for final assessment of resulting ANNs. For each of these data sets we run 50
simulations for randomly generated sets of input parameters.

In forward mode, the aim was to approximate the curve of hydration degree dis-

cretised in 199 time steps. Instead of developing an ANN with 199 outputs we add

the value of the time as an additional input of ANN which then have only one output

corresponding to the degree of hydration at a given time step. With such a configu-

ration of ANN inputs, the set of 100 training curves discretised into 199 time steps

turns into 100 × 199 training samples. Evaluate so many samples at every iteration

of ANN training process is however time-consuming and hence the α values only in

every 10th time step (i.e. at t1, t11, . . . , t191) were included for ANN training. Simi-

lar selection was performed on validation and testing data, but for shifted time steps

t6, t16, . . . , t196.

Also in the inverse mode, only selected α values can be employed as ANN inputs

so as to keep the ANN complexity reasonable. A particular choice should take into ac-

count not only the results of sensitivity analysis, but also a possible measurement error

in experimental data as well as any other expert knowledge. Figure 3 shows that each

part of the α curve is strongly sensitive to one of the model parameters, which sug-

gests that the inputs should uniformly cover whole curve. However, Figure 2 reveals

extremely small dispersion of α at early stage, which is actually smaller than realistic

measurement error, as it is shown later in Section 7. Hence to reduce the impact of

experimental error, we choose the ANN inputs from regions with high dispersion of

training data. In particular, eight values of α are selected corresponding to time steps

t38+20i with i = 0, . . . , 7, where early stage is excluded. The particular choice of ANN

inputs, outputs and the number of hidden neurons achieving best results on validation

data are presented in Table 2.

ANN Input Hidden Output εtrain[%] εvalid[%] εtest[%]
Forward p1,p2,p3,p4,t 6 α 2.34 2.37 2.24

Inverse 8 values of α at t38, t58, . . . , t178 5 p1 0.87 1.40 1.26

8 values of α at t38, t58, . . . , t178 6 p2 1.47 1.09 2.63

8 values of α at t38, t58, . . . , t178 8 p3 2.02 2.90 2.72

8 values of α at t38, t58, . . . , t178 3 p4 0.12 0.10 0.16

Table 2: Architecture of particular ANNs and their errors on training, validation and

testing data.

The conjugate gradient-based method [21] was employed as a training algorithm

for the ANNs. The synaptic weights optimisation process was stopped either when the

number of iterations achieved 5000 or if the ratio of the average error on training data
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during last 100 iterations to the error obtained for previous 100 iterations was higher

than 0.999.

In order to evaluate the quality of particular ANNs, the relative errors ε are com-

puted for training, validation and testing data according to

ε =

∑

I

i=1
|Oi − Ti|

I(Tmax − Tmin)
, (3)

where Oi are the ANN outputs, Ti are the target values (i.e. α in case of the forward

mode and pi in case of inverse mode), I is the number of samples in a given data set

(training, validation or testing) and Tmax, Tmin are the maximal and minimal target

values in training data set, respectively. The resulting errors on training, validation

and testing data for all the created ANNs are listed in Table 2.

6.1 Verification of model calibration

The errors in Table 2 represent the quality of constructed ANNs. Next we have to

compare the quality of identification procedures. While in the inverse mode the ANNs

predict directly the values of model parameters, in the forward mode we have to per-

form an optimisation of the parameters minimising the distance between the ANN

prediction and target model response:

M
∑

m=1

(O(tm) − α(tm))2 , (4)

where M = 199 is the number of model response components. The optimisation

process is governed by the GRADE evolutionary algorithm, see [13] for details about

this method1.

The optimisation process was performed for all training, validation and testing data

and the relative errors ε according to equation (3) for parameter predictions were then

computed for both the identification modes. The obtained results are listed in Table 3.

p1 p2 p3 p4 α

train valid test train valid test train valid test train valid test train valid test

Forward 8.93 7.70 7.39 15.81 11.56 14.83 3.92 4.52 3.61 1.79 1.88 1.86 0.56 0.60 0.52

Inverse 0.87 1.40 1.26 1.47 1.09 2.63 2.02 2.90 2.72 0.12 0.10 0.16 0.28 0.39 0.35

Table 3: Results of identification procedure in relative errors ε [%].

To assess the quality of identification procedure in terms of model response, the

model simulations were performed for all sets of identified parameters and the rel-

ative error ε was computed between the obtained responses and the original target

responses. These results are also written in Table 3.

1The parameters of GRADE algorithm were set to pool rate = 4, radioactivity = 0.33 and cross limit

= 0.1. The algorithm was stopped after 10000 cost function evaluations.
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One can see that while the parameter p2 is correlated mainly to early stage of hy-

dration which was excluded from training data for inverse mode of identification, the

errors in p2 predictions are quite small, especially in comparison with forward mode

of identification where all of the data were employed. In overall, the inverse mode of

identification resulted in better estimation in terms of parameters as well as the model

response, but results of both methods can be assumed as very good.

7 Validation of model calibration

The previous section was focused on mutual comparison of the presented identifica-

tion strategies on simulated data. However, a complete comparison has to include

their validation on experimental data. To that purpose we used the curve of hydration

degree obtained by isothermal calorimetry for cement “Mokra” CEM I 42.5 R taken

directly from Heidelberg cement group’s kiln in Mokrá, Czech Republic [24].

In general, validation does not allow for a comparison in terms of parameters value,

because these are not known a priori. Nevertheless, the simplicity and the fast simu-

lation of affinity hydration model permit a direct optimisation of model parameters

without any incorporated approximation and the resulting optimal parameter values

can be compared with the results obtained using the ANN approximations.

In direct optimisation, we have to formulate the cost function specifying how good

the model prediction is. In our numerical study, we decided to test two widely used

cost functions:

F1 =
M

∑

m=1

(α(tm) − αMokra(tm))2 , (5)

F2 =
M

∑

m=1

|α(tm) − αMokra(tm)| , (6)

where M = 199 stands again for the number of discretised values of hydration degree,

α(tm) is the model response and αMokra(tm) are the interpolated experimental data.

We applied again the GRADE algorithm with the same setting as in the previous

section to minimise the both cost functions (5) and (6). The obtained parameter and

cost functions values are written in Table 4 and the resulting degree of hydration curves

can be compared with experimental data in Figure 4a.

Subsequently, the forward and both inverse modes of identification were applied to

the experimental data using the prepared ANNs. The identified parameters are again

written in Table 4 and corresponding simulated degrees of hydration are plotted in

Figure 4b.

The results show that the forward mode of identification leads to a significant error

on experimental data. The reason is probably that ANNs are good in approximation

and interpolation, but very bad in extrapolation. Due to this, the ANN-based approach

is very sensitive to the noise and measurement errors in experimental data. Measure-

ment errors can easily lead to ANN’s input values which are out of the convex hull
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Method p1 p2 p3 p4 F1 F2

Direct1 0.856 1.000 0.208 0.053 0.002 0.336

Direct2 0.858 1.000 0.208 0.050 0.002 0.271

Forward 0.922 0.911 0.339 0.051 0.135 2.333

Inverse 0.736 1.100 0.124 0.051 0.023 0.854

Table 4: Parameter values identified on experimental data obtained for “Mokra” ce-

ment together with the corresponding values of cost functions. The methods Direct1

and Direct2 correspond to the optimisation of cost functions F1 and F2, respectively.
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Figure 4: Comparison of experimentally obtained degree of hydration for “Mokra”

cement with simulations for directly optimised model parameters (a) and for identified

parameters using ANN approximations (b).

constructed on the training examples and the ANN is then forced to extrapolate. This

situation happened here, because the experimental curve is out of the bundle of train-

ing curves in the early stages, see Figure 5a. At the start of hydration, the measured

values of α are equal to zero and the curve is under the training bundle. After this start-

ing constant period, the experimental degree of hydration starts to grow very quickly

and very soon exceeds the values of all the training simulations. The direct optimisa-

tions also lead to a limit value of p2 parameter, which was not exceeded, because the

optimisation was constrained. The explanation of the phenomenon can be either the

imperfection of a model or measurement error not only in hydration values but also

in the estimation of the starting time of hydration. Therefore, we have tried to correct

the estimation of the hydration start so as to experimental curve does not exceed the

training data by moving whole curve by five time steps assuming that the hydration

started 2.7846 minutes later, see Figure 5b.

After the described correction of experimental data, the direct optimisations as well

as both identification procedures were performed again and the resulted parameter pre-

dictions and error estimates for the degree of hydration are given in Table 5. Finally,

the curves of the hydration degree obtained by direct optimisation are plotted in Figu-
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Figure 5: Detailed comparison of experimentally obtained degree of hydration for

“Mokra” cement with training simulations at early stages (a) and in whole time

span (b).

Method p1 p2 p3 p4 F1 F2

Direct1 0.647 1.000 0.208 0.053 0.002 0.332

Direct2 0.650 1.000 0.207 0.050 0.002 0.268

Forward 0.718 0.958 0.255 0.038 0.017 1.114

Inverse 0.571 1.098 0.186 0.050 0.005 0.423

Table 5: Parameter values identified on corrected experimental data obtained for

“Mokra” cement together with the corresponding values of cost functions. The me-

thods Direct1 and Direct2 correspond to the optimisation of cost functions F1 and F2,

respectively.

re 6a and curves obtained by ANN-based identification procedures are plotted in Fig-

ure 6b.

8 Conclusions

This paper reviews possible applications of artificial neural networks for the calibra-

tion of numerical models. The basic identification modes are described in detail: the

forward and the inverse. Their advantages and drawbacks are illustrated on the cali-

bration of the affinity hydration model. Verification of the procedures is performed

using 50 independent testing data obtained from numerical simulations and experi-

mental data obtained for cement “Mokra” CEM I 42.5 R are subsequently employed

for the validation of the presented methods. The main advantage of the inverse ap-

proach is an easy application to new measurements. The computationally consuming

and difficult part concerns the ANN development which has to be done only once.

An important shortcoming of this procedure is that this inverse relationship between
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Figure 6: Comparison of experimentally obtained degree of hydration for “Mokra”

cement with simulations for directly optimised model parameters (a) and for identified

parameters using ANN approximations (b).

model outputs and model inputs does not need to exist. Nevertheless, if it does exist

as in the case presented here, its application is very easy and simpler than application

of forward identification, which includes an optimisation process which may not be

trivial. Another weak point of ANN usage is related to its sensitivity to experimen-

tal noise, measurement error or data lying far from the training simulations. Then

some expert’s knowledge has to be involved to make the model calibration successful.

Hence, our future works will be aimed on development some techniques to make the

ANN implementation more robust.
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[24] Šmilauer, V. (2012). Multiscale Modeling of Hydrating Concrete. Stirling: Saxe-

Coburg Publications.

[25] Zaw, K., G. R. Liu, B. Deng, & K. B. C. Tan (2009). Rapid identification of

elastic modulus of the interface tissue on dental implants surfaces using reduced-

basis method and a neural network. Journal of Biomechanics 42, 634–641.

[26] Zhang, L., L. Li, H. Ju, & B. Zhu (2010). Inverse identification of interfacial heat

transfer coefficient between the casting and metal mold using neural network.

Energy Conversion and Management 51, 1898–1904.

14




