
Abstract

Fluidized bed units are found in many plant operations in chemical reactors, water or

air treatment, pharmaceutical, and mineral industries. These multi-physics problems

are still insufficiently controlled, leaving the moment a great place to macroscopic

and empirical approaches. The aim of the work is to simulate the behavior of flu-

idized bed, better understand to several characteristic phenomena (such as bubbling,

slugging...etc), and at the end, to optimize the process. Discrete Element Method

(DEM) on the basis of Newton’s laws of motion applied to individual particles and

Computational Fluid Dynamics (CFD) on based on the Navier-Stokes equations ap-

plied by Salome platform and code Saturne for calculation of fluid flow. A model

that combines the discrete element method (DEM) and computational fluid dynamics

(CFD) was developed. In first step calculate the drag force in three-dimension (3D)

fluid flow over one sphere with different diameters (0.5, 1 and 2 mm)which held fixe in

the passage of fluid stream, for two types of meshing (moderate and fine) numerically,

later The interaction between the fluid and each particle is performed through a drag

force, and the effect of local particles concentration on the drag force is modeled by

a porosity function f(ε) = ε−n. Numerical results are compared with those obtained

using an experimental fluidization device for two cylindrical column internal diame-

ters (97, 42.3 mm) respectively, in terms of heights of the fluidized bed for different

fluid velocities.The comparison of numerical simulations with experimental results,

(in two columns with different diameters) already presents a very good fit, while the

coupling model is relatively simple.

Keywords: fluidization, coupling (DEM-CFD), porosity function.
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1 Introduction

Fluidization is a process in which a gas or liquid is blown upward and evenly through

a bed of solid particles with sufficient force to cause the particles to rise up and move

around inside their container. The most common reason for fluidizing a bed is to

obtain vigorous agitation of the solid particles in contact with the fluid, leading to

excellent contact of the solid particles and the fluid and the solid and the wall.Good

mixing of the solid which avoids the presence of local hot or cold points in the re-

actors. For these reasons fluidized bed units are used in a variety of industries such

as oil, petrochemicals, minerals, pharmaceutical and food processing. Accurate mod-

els which provide detailed information on the key phenomena occurring in the bed

are necessary to properly design and operate fluidized beds at the desired conditions.

One parameter of particular interest when working with fluidized beds is the mini-

mum fluidization velocity,experiments show that the minimum fluidization velocity

of particles increases as the diameter of the fluidization column is reduced, or if the

height of the bed is increased. These trends are shown to be due to the influence

of the wall[1]. During the past 30 years, there have been continuous and vigorous

attempts in the direction of reducing empiricism. In particular, developments in Com-

putational Fluid Dynamics CFD have accelerated in the past two decades because

of the spectacular progress in the digital computing. CFD has now emerged as a

powerful tool for solving the governing equations of change for laminar and turbu-

lent flows for single as well as multiphase flows. A balanced combination of CFD

and experiments gives fairly good knowledge of flow pattern in the equipment under

consideration. The macroscopic behavior of particulate matter is controlled by the

interactions between individual particles as well as interactions with surrounding gas

or liquid and wall. Understanding the microscopic mechanism in terms of these inter-

actions is therefore the key leading to truly interdisciplinary research into particulate

matter and producing results that can be generally used. In recent years, such research

has been rapidly developed worldwide, mainly as a result of the rapid development

of discrete particle simulation technique and computer technology. Several discrete

modeling techniques have been developed, Discrete Element Method (DEM) simu-

lations can provide dynamic information[2], such as the trajectories of and transient

forces acting on individual particles, which is extremely difficult, if not impossible, to

obtain by physical experimentation at this stage of development. Consequently[3, 4],

it has been increasingly used in the past two decades or so. Computational models

that coupling DEM-CFD have proved effective in reproducing most of the features

on both microscopic and macroscopic scales of complex units involving multiphase

flows[5, 6], this is particularly true for first principles models, which typically are not

directly applicable to the real scale of the plant but can produce realistic data crucial

for fundamental studies. According to [7, 8], there are three schemes in the previous

DEM-CFD simulation of fluid (gas)-solid flow in fluidization:

Scheme 1: The force from the particles to the gas phase is calculated by a local-

average method as used in the Two Fluid Models (TFM), whereas the force from

the gas phase to each particle is calculated separately according to individual-particle
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velocity[9, 10].

Scheme 2: The force from the particles to the gas phase is calculated first at a local-

average scale as used in scheme 1. This value is then distributed to individual particles

according to a certain average rule [11, 12].

Scheme 3: At each time step, the particle fluid interaction forces on individual par-

ticles in a computational cell are calculated first, and the values are then summed to

produce the particle-fluid interaction force at the cell scale [13, 14, 15].

According to the Newton’s third law of motion, the force of the solid phase acting on

the gas phase should be equal to the force of the gas phase acting on the solid phase

but in the opposite direction. Scheme 1 does not guarantee that this condition can

always be satisfied. Consequently, it is not reasonable. Indeed, this scheme was used

only in the early stage of DEM-CFD development, although it can still be found occa-

sionally. Scheme 2 can satisfy Newton’s third law. However, it uniformly distributes

the interaction force among the particles in a computational cell irrespective of the

different behaviors of these particles in the cell. This scheme cannot fully represent

reality, as the particle-fluid interaction forces for the particles in the cell should differ

for non uniform particle-fluid flow. In addition, in the calculation of the particle-fluid

interaction force, a mean particle velocity has to be used. The appropriate method

for calculating this mean particle velocity is still an open question, particularly for

multisized particle systems. Scheme 3 can overcome the above problems associated

with schemes 1 and 2. Indeed, this scheme has been widely accepted since its first

introduction by[11]. In order to predict and study the trajectory of the particulate, it is

important to understand the flow structures and how they influence the hydrodynamic

forces on the particulate. Significant research effort has been made into studying the

flow past a stationary sphere over a wide range of Reynolds numbers both experimen-

tally [16, 17, 18] and numerically [19, 20], in this study the coupling of DEM-CFD is

follow Scheme 3 .

The motivations of this study are: 1) coupling DEM-CFD by using a simple model

for calculating the interactions between the fluid and particles is performed through a

drag force(FD) by using Salome-platform and Code Saturne for calculation of fluid

flow CFD and code SIGRAME which developed in lab for calculation of DEM on

the basis of Newton’s laws of motion applied to individual particles in two dimension

(2D); 2) calculate the drag force in 3D fluid flow over one stationary sphere fluid with

different sizes, using two types of meshing (moderate and fine) numerically, in order

to extend the understanding of a sphere’s trajectory due to rotation, the flow over a

stationary sphere is investigated in the turbulence regime at (Rep = 1000−10000) for

different diameter spheres(0.5, 1 and 2 mm) ; 3) calculate the drag force for fluidized

bed and the effect of local particles concentration on the drag force is modeled by

a porosity function f(ε) = ε−n numerically[21]; 4) comparing the numerical results

with experimental results obtained from fluidization device for two cylindrical column

with internal diameters (97, 42.3 mm) respectively, in terms of heights of the fluidized

bed for different fluid velocities.
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2 Numerical approach

2.1 Computational Fluid Dynamics (CFD) approach

The codes used in this research are Salome platform version (5.1.5) and Code Sat-

urne version (1.3.3) which produced by EDF of France are general purpose compu-

tational fluid dynamics software. Developed since 1997 by EDF R& D, it is based

on a co-located Finite Volume approach that accepts meshes with any type of cell

for calculations of the fluid flow. Salome platform is used for design and mesh the

geometry of the case, later using code Saturne which is based on the Navier-Stokes

equations. Code Saturne produces a file of results in 3D that include the coordinates

and velocities for each node , and pressure for each element for the mesh. The general

differential formulations of the Navier-Stokes equations for fluid flow are:

Continuity equation (equation or mass balance):

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (1)

Momentum equation of the quantity of motion:

∂(ρ~v)

∂t
+ ~∇ · (~v ⊗ ~v) = −~∇ · p + ~∇τ + ~f (2)

Where t is time, ρ is density of fluid, ~v is velocity of fluid, p is pressure, τ is the

viscous stress tensor and ~f refers to the resultant of the forces exerted mass in the fluid.

Code Saturne gave a file of results in 3D that include the coordinates and velocities

for each node in the mesh, and pressure for each element in the mesh.

2.2 Particle dynamics

2.2.1 Discrete element modeling of granular media

The most general method of discrete elements is used to model real deformable parti-

cles and complex forms (from the ellipsoid to the polygon). We consider here only if

”simple” of spherical non-deformable and non-penetrable. Element Method provides

discrete coordinates, speed and reactions of contact of each particle at each time step.

Modeling discrete element solver used as the contact bipotential initiated by De Saxc

[22]. In addition, it uses the concept NSCD (Non Smooth Contact Dynamics) devel-

oped by M. Jean and J.J. Moreau, allowing to correctly model the dynamic effects but

also to work with a step size large in comparison with explicit codes. The calcula-

tion algorithm is a ”step by step”. For each pair of candidate particles in contact, the

variables are put in duality the local relative velocity and the contact reaction. The in-

troduction of Coulomb friction leads to a nonlinear problem that cannot be solved by

linear programming method. Unlike the usual approach, the bipotential method leads

to a single variation principle and a single inequality. From Usawa algorithm, we

obtain an algorithm for solving the constitutive law based on the predictor-corrector
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scheme. Classically, at each time step, all the contact forces of the system is deter-

mined iteratively by the method of successive balances which is based on an algo-

rithm of Gauss-Seidel. Each contact force is calculated by taking provisional values

of forces on the other contacts. Convergence is achieved when each force inter-particle

satisfies the law of unilateral contact with dry friction. In a system composed of par-

ticles p is the maximum range of interactions that constitute the critical parameter for

modeling time. Over the range of interactions is important and should test for possible

interactions between the grains. SIGRAME uses the partitioning coupled with a table

of connectivity [23]. This technique reduces the calculation time considerably, the

number of operations no longer in 0(p2) but only in 0(p);Therefore the hard sphere

model is used to describe a binary, instantaneous, inelastic collision with friction. The

key parameters of the model are 1) the coefficient of restitution (0 < e < 1); 2) the

coefficient of friction (µ > 0) [24].

2.2.2 Treatment of collisions

The collision model used in this work follows mainly the methodology proposed by

[25], two parameters defining particle to particle and particle to wall interactions are

introduced, first parameter is the coefficient of normal restitution; (e = 0.9), which

characterizes the incomplete restitution of the normal component of the relative veloc-

ity at the contact point and the second parameter is the coefficient of dynamic friction;

(µ = 0.3), which arises in collisions involving sliding. In discrete particle models for

each individual particle, an equation of motion is solved during the free flight phase:

mi

d~vi

dt
= mi~g + ~FC,i + ~FD,i (3)

Where mi , ~vi represent the mass and the velocity of the ith particle, ~g is gravity

acceleration, ~FC,i is the sum of contact forces (normal force and tangential force)

between the particles which calculated by code SIGRAME, ~FD,i is the drag force is

quantified through the equation:

FD,i = CDπρfd
2

p |~vf − ~vi|
(~vf − ~vi)

8
= CD,iπρfd

2

p |~vf − ~vi|
(~vf − ~vi)

8
f(ε)m (4)

Where CD is the drag coefficient, dp is the particle diameter, ρf is fluid density, vf is

fluid velocity, ε is the porosity, and m is a parameter. Schiller and Naumann [26] give

the drag coefficient CD,i on a single sphere:

CD,i =

{

24

Rep
(1 + 0.15Re0.687

p ) if Rep < 1000

0.44 if Rep ≥ 1000

Rep =
ερfdp |~vf − ~vi|

µf

(5)

f(ε) is a porosity function correcting the terminal velocity or the slip velocity of a

particle due to the presence of other particles (hindered settling effect) as they affect
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the flow pattern in a uniform suspension [27]:

f(ε) = ε−n (6)

With

n =
log(

Remf

Ret
)

logεmf

(7)

Where Remf is the Reynolds number at minimum fluidization (drag equals the weight

of the particles in the settled bed at maximum concentration, ε = εmf , i.e., minimum

fluidization condition), and Ret, the Reynolds number at terminal velocity vt,0, (drag

equals the weight of an isolated particle ε = 1). The parameter m is equal to 1 for

laminar interstitial flow (Rep < 1), 2 for turbulent interstitial flow (Rep > 1000) and

an intermediate value in the transition regime (1 < Rep < 1000). Based on these

[28, 29, 30] proposed a general relation for the sedimentation and fluidization for

mono-dispersed spheres in laminar (m = 1 and n = 4.7), intermediate and turbulent

interstitial regimes (m = 2 and n = 2.35). The function of porosity in the expression

of the drag force equations (4)&(8) reduces to:

f(ε)m = ε−m.n (8)

The drag function is used in this study and can be expressed:

CD = CD,if(ε)m = CD,iε
−4.7 (9)

2.2.3 Coupling DEM-CFD

DEM- CFD simulations have to cover a huge variety of regimes. The physics must

be described correctly where the particle motion is controlled by the fluid flow. In

this paper the type of coupling between CFD and DEM is simple.The first step is the

calculation of fluid flow, done by CFD (code Saturne) without particles. After that,

apply the results of CFD on DEM (code SIGRAME) on to calculate the drag force

on each particle, and then the behavior of the fluidized bed. The long term goal is

to develop a DEM-CFD solver being robust and efficient enough to handle industrial

granular flow applications.

2.2.4 Numerical simulation for a single sphere

In order to extend the understanding of a sphere’s trajectory, the flow over a stationary

sphere is investigated in the turbulence regime at (Rep = 1000− 10000) for different

sphere diameters (0.5, 1 and 2 mm). The idea is to design a box with a sphere in the

center. The sides of numerical box are 24 times the diameter of sphere to prevent the

effect of the walls with fluid flow in z-direction, and then calculate the drag force in

3D fluid flow over one stationary sphere fluid with different sizes, using two types of

meshing (moderate and fine)in Salome and calculated by CFD (code Saturne) numer-

ically. The models that used in code Saturne for turbulence flow are standard(k − ǫ)
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Figure 1: Schematic showing the experimental facility for fluidized bed

and (k− ǫ)linear production(LP ) for verification of the results.The drag force (FD)
is calculated to be the sum of pressure force and the shear stress force of the fluid flow

effects on the surface of stationary sphere, therefore the drag force is increase with

increase the flow rate.

3 Experimental procedure for Fluidized Bed

In order to show the feasibility of the DEM-CFD solver a simple experimental test

is presented here.It has been found that the fluctuation and expansion ratios are the

function of static bed heights, particle sizes, densities and mass velocities[31].The

experimental facility for fluidized bed as shown in figure (1) presents two cylindrical

transparent columns with different internal diameters (42.3, 97 mm) respectively and

the height for both of them is (H=1m). The particles are spheres made of glass with

a diameter of (2 mm) and a density of (2442kg.m−3).Gravitational acceleration of

(9.81m.s−2) is acting on the particles in negative z-direction. The fluid which is used

is water with dynamic viscosity (0.001pa.s−1). The initial bed height is (h=100 mm),

packed on the lower side of the cylinder, and flow rate is measured at the entrance of

the column by a rotameter .
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4 Results and Discussion

4.1 Numerical results of single sphere

The numerical results are presented as function of Reynolds numbers, the results

shows that the values of drag force is increase with the increases of Reynolds number

of the single sphere presented in figures (2,3,4).

From the results it’s obvious that the value of drag force effect on the single sphere
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Figure 2: The Drag Force(FD)as function of Reynolds number for particle of

diameter(0.5mm); (Rep), using two type of meshing ; a) moderate mesh and b) fine

mesh
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Figure 3: The Drag Force(FD)as function of Reynolds number for particle of

diameter(1mm); (Rep), using two type of meshing ; a) moderate mesh and b) fine

mesh

with different diameters depends on the type of mesh (moderate and fine) for the same

values of variables and compared with the theoretical value of drag force (FDTh) that

calculated from equation 4, where the values of drag force numeric of standard(k−ǫ)
and (k − ǫ)linear production(LP ) models are greater than the theoretical values of

drag force for moderate mesh, but for fine mesh the numeric values of drag force
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Figure 4: The Drag Force(FD)as function of Reynolds number for particle of diameter

(2mm); (Rep) using two type of meshing ; a) moderate mesh and b) fine mesh

that produced by LP model are greater than theoretical and numerical values pro-

duced by standard(k − ǫ),thus for the three size of spheres (0.5, 1 and 2mm) the

values of drag force produced by standard(k − ǫ)model are approach from the the-

oretical value of drag force.The comparison between the two models of turbulence

(standard(k−ǫ)andLP ) is presents in figures (5,6), where the ratio between theoret-

ical drag force and numerical drag force (FDTh/FDNum) is show that for meshing

type moderate the force ratio is less than 1 for two models as shown in figure (5a,

b), it’s meaning that the numeric values are more than the theoretic values, and for

meshing type fine the (FDTh/FDNum)for the three size of sphere is approach and

little more than 1 for standard(k − ǫ)model as show in figure (6a)and approach to 1

for LPmodel as shown in figure(6b), from figure(6a) the numeric values produced by

standard(k − ǫ)model is the nearest to the theoretic values.

Fluid flow over a stationary sphere will generate forces in x, y and z directions
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Figure 5: The force ratio(FDTh/FDNum) as function of Reynolds number for parti-

cle; (Rep), using moderate mesh ; a) for standard (k − ǫ)model and b) for LP model

(Fx, Fy and Fz) where (Fz) represents the numerical drag force (FDNum) and

the two other forces are produced a cause of un symmetry flow on the surface of the

sphere.it’s obvious that the effect of the meshing on the forces creating ”parasites” that
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Figure 6: The force ratio(FDTh/FDNum) as function of Reynolds number for parti-

cle; (Rep), using fine mesh ; a) for standard (k − ǫ)model and b) for LP model

diminish with the fineness of the mesh.

4.2 Experimental and Numerical results for fluidized bed

The most important parameter of particular interest when working with fluidized beds

is the minimum fluidization velocity(vmf ). As fluidization proceeds the pressure drop

is traced as function of increasing superficial velocity of the fluid (vf ), and then the

defluidization is obtained by decreasing the superficial velocity. The intersection be-

tween the two curves (fluidization and defluidization) is the minimum fluidization

velocity(vmf ) as shown in figure (7a,b). The experiment shows that the (vmf ) for par-
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Figure 7: The Pressure Drop (kpa) as function of the Superficial velocity of the fluid;

(vf )(m.s−1), a) for column diameter(42.3mm) and b) for column diameter (97mm)

ticles increase as the diameter of the fluidization column is reduced. As comparing the

theoretical value of minimum fluidization velocity calculating from Kozeny-Carman

equation with the experimental value; the theoretical value approaches the experimen-

tal value where,(vmfTh = 0.02534(m.s−1)), (vmfExp = 0.02966(m.s−1))for col-

umn (d=42.3mm) and (vmfTh = 0.02635(m.s−1)),(vmfExp = 0.02256(m.s−1)) for
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column (d=97mm).The reasons for this little disparity between the theoretical value

and the experimental value are to be seek in the experimental measurements errors,

and in the fact that theoretical calculation does not take into account the column di-

ameter influence, the bed height, and the walls effect on the particles.

The experimental and numerical results are presented in figure(8) for the case m.n=2.8,
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Figure 8: The height of bed as function of superficial velocity of the fluid;;

(vf )(m.s−1), a) for column diameter(42.3mm) and b) for column diameter (97mm)

3.0 and 3.2, for both column (42.3, 97 mm).The numerical results are identical in some

points with the experimental results and with percentage of error in other points, the

best parameter of m.n is between 2.8 and 3.0 from the figure (8), Anyway, comparison

of experimental results with numerical values is already very promising.

5 Conclusion

The study presents a first step in modeling the hydrodynamic behavior of a fluidized

bed by means of a coupling between a discrete element code, and a CFD calcula-

tion.For CFD, two turbulence models are compared in terms of drag force on a static

sphere (standard(k−ǫ) and (k−ǫ)LinearProduction(LP )model).The action of the

fluid on the particles is expressed in terms of drag force requiring a good estimation

of the local porosity. The comparison of numerical simulations with experimental

results, (in two columns with different diameters) presents already a very good fit,

while the coupling model is relatively simple. The perspectives of this study concern

the influence of the porosity estimation on the numerical calculation, validation of

the method on different geometries, and the realization of a complete coupling CFD-

MED, leading to a satisfactory model for the fluidized bed and in particular of the fluid

phase behaviour.
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