
Abstract

The purpose of this study is to express the change of flow pattern in the intersect-

ing adiabatic flow using the difference of the flow channel and of the degrees using

the Semi-Lagragian Galerkin finite element method. The conservation of mass and

momentum are used as the basic equation. To calculate the governing equations, the

Semi-Lagragian method is applied as an analytical technique. A characteristic of this

method is based on the fact that the governing equations can be divided into two

phases which are advection and non-advection at an instanteneous time of calculation.

As the temporal discretization, the advection phase is calculated using the character-

istic method, and the non-advection phase is calculated using the implicit method. In

the spatial discretization the Galerkin method is adopted. To perform high accurate

computation, we use the third-order Hermitian type element. This element has ten

degrees of freedom, which consist of function values of nodes of the triangle and first

order derivatives on each nodes and a function value of centre of the triangle.

Keywords: semi-Lagrangian Galerkin method, conservation of mass, conservation of

momentum, characteristic method, implicit scheme, Hermitian type element.

1 Introduction

An incompressible viscous fluid is mostly used assumption in the field of computa-

tional fluid dynamics in recent years. However, actually, only a few phenomena which

can be assumed as the incompressible in natural phenomena. In fact, it is necessary

to consider compressibility if we deal with much broader phenomena. In order to

consider the compressibility, it is mainstream to use the full compressible equations

including energy conservation equation. However, since a lot of variables should be

treated and formulation is complicated, heavy computational load is necessary to solve
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the full compressible equation system.

In this study, we derived the equation system in which density is considered as a

variable assuming adiabatic state. In order to obtain the pressure, the Poisson’s law

which is an expression of relation of pressure and density is applied for the equation

of state. The governing equation is assumed to consist of both advection and non-

advection terms. In case of the calculation equation of advection term, sometimes, in-

stability of the comptation occurs. Thus, the characteristic method which is useful for

the calculation of advection term is applied. Unknown function at the upstream side

on a characteristic curve is approximated by the Hermitian type element in this study.

Also in calculation of non-advection terms, we apply the same-order interpolation for

velocity and density on the same element. We call this method as the Semi-Lagragian

Galerkin method. The Hermitian type element has 10-degrees of freedom which con-

sist of function values of node of the triangle and first order derivatives on each node

and a function value of center of gravity. The present interpolation is used in high

precision fluid flow analysis of the intersecting flow.

2 Basic Equation

In this study, the inditial notation and the summation convention are used to express

equation. The governing equations can be expressed using velocity ui and density ρ

as follows: the conservation of mass

Dρ

Dt
+ ρui,i = 0 in Ω (1)

and the conservation of momentum

ρ
Dui

Dt
− τij,j = 0 in Ω (2)

where τij means the total stress

τij = −pδij + λδijuk,k + µ(ui,j + uj,i) (3)

where δij is the Kronecker delta, and λ and µ are viscousity coefficients. Assuming

the adiabatic flow, the equation of state can be expressed as follows:

(
p

p0

) = (
ρ

ρ0

)
γ

in Ω (4)

where p is the pressure and γ is the gass constant. The reference values of pressure

and density are denoted by p0 and ρ0. The viscousity coefficients λ can be expressed

as:

λ = −

2

3
µ (5)

The material derivative is denoted by

D

Dt
=

∂

∂t
+ ui

∂

∂xi

(6)
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3 Characteristic Method

Let the position of a virtual fluid particle in time ϕ which is in a position x at time t be

X(x, t; ϕ), trajectory of a particle is expressed by the following ordinary differential

equation.
dXi

dϕ
= ui(Xi(xi, t; ϕ), ϕ), (7)

Xi(xi, t; t) = xi (8)

Let n denote time step, and the time increment be ∆t. The time differentiation term

in equations (1) and (2) can be approximated as follows.

Dui

Dt
=. .

un+1
i (x) − ũi(x)

∆t
(9)

Here, ũi is the velocity at the position of the upstream point X(x). In this study, to

find upstream point, the predictor-corrector method is applied.

Xn
i1(x) = xi − un

i (x)∆t (10)

Xn
i2(x) = xi −

∆t

2
(un

i (Xn
i1(x)) + un+1

i (x)) (11)

where Xn
2 (x) is the upstream point, and ũ(x) is calculated by the following advection

calculation.

ũi = ui(X
n
i2(x)) (12)

ũe = ui(X
n
e (x)) (13)

∂ũi

∂xj

= (δjk − ∆t
∂un+1

k

∂xj

)
∂un

i (Xn
i2)

∂xk

(14)

The implicit scheme is applied to the calculation method of the non-advection term.

3.1 Finite Element Equation

The discretized equation in time is expressed as follows,

ρ̄
un+1

i − ũi

∆t
+ κ̄ ρn+1

,i − λδiju
n+1

k,kj − µ(un+1
i,j + un+1

j,i ),j = 0 inΩ (15)

ρn+1
− ρ̃

∆t
+ ρ̄un+1

i,i = 0 inΩ (16)

where ρ̄ and κ̄ are as follows.

ρ̄ = ρn κ̄ =
γp0

ρ̄

(

ρ̄

ρ0

)γ

,

In equations (15) and (16), equations (9) is used.

3



4 Finite Element Interpolation

4.1 Interpolation Function

As an interpolation, the Hermitian type element as shown in Figure 1 is applied. The

Figure 1: Hermitian type element

Hermitian type element has 10 degrees of freedom which consist of function values

and first order derivatives on each node and a function value on the center of gravity.

The finite element approximation can be expressed as:

ui =
3

∑

j=1

(H0juj + Hxj

∂uj

∂x
+ Hyj

∂uj

∂y
) + H0eue (17)

where H0i, Hxi, Hyi, and H0e are interpolation functions, which are shown by the

area coordinate Li as:















H0i = L2
i (3 − 2Li) − 7L1L2L3

Hxi = L2
i (xjiLj − xikLk) − (xji − xik)L1L2L3

Hyi = L2
i (yjiLj − yikLk) − (yji − yik)L1L2L3

H0e = 27L1L2L3

(18)

xij = xi − xj, yij = yi − yj (19)

where (xi, yi) means coordinates at nodal point i, and (i, j, k) is even permutation of

(1, 2, 3). The interpolation of the first derivative by x is expressed as;

∂ui

∂x
=

3
∑

j=1

(
∂H0j

∂x
uj +

∂Hxj

∂x

∂uj

∂x
+

∂Hyj

∂x

∂uj

∂y
) +

∂H0e

∂x
ue (20)
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Each component of the first derivative by x can be expressed as follows.















∂H0i

∂x
= 2biLi(3 − 2Li) − 7(b1L2L3 + L1b2L3 + L1L2b3) − 2biL

2
i

∂Hxi

∂x
= 2biLi(ckLj − cjLk) − b1(ck − cj)L2L3 − b2(ck − cj)L1L3 − b3(ck − cj)L1L2 + (bjck − bkcj)

∂Hyi

∂x
= 2biLi(bjLk − bkLj) − b1(bj − bk)L2L3 − b2(bj − bk)L1L3 − b3(bj − bk)L1L2

∂H0e

∂x
= 27(b1L2L3 + L1b2L3 + L1L2b3)

In the same manner, each compornent of the first derivative by y can be obtained

as follows.



















∂H0i

∂y
= 2ciLi(3 − 2Li) − 7(c1L2L3 + L1c2L3 + L1L2c3) − 2ciL

2
i

∂Hxi

∂y
= 2ciLi(ckLj − cjLk) − c1(ck − cj)L2L3 − c2(ck − cj)L1L3 − c3(ck − cj)L1L2

∂Hyi

∂y
= 2ciLi(bjLk − bkLj) − c1(bj − bk)L2L3 − c2(bj − bk)L1L3 − c3(bj − bk)L1L2 + (bjck − bkcj)

∂H0e

∂y
= 27(c1L2L3 + L1c2L3 + L1L2c3)

In equations (21) and (22), bi and ci are;

bi =
1

2A
(yj − yk) (23)

ci =
1

2A
(xk − xj) (24)

where, A is the area of an element.

5 Finite Element Equation

The finite element equations of the governing equation are expressed as:

Mαβ

un+1

βi − ũβi

∆t
− Gαiβρn+1

β + Sαiβju
n+1

βj = Fαi in Ω (25)

Nαβ

ρn+1

β − ρ̃β

∆t
+ Bαβiu

n+1

βi = 0 in Ω (26)

Coefficient matrixes are as;

Mαβ = ρ̄

∫

Ωe

HαHβdΩ, Gαiβ = κ̄

∫

Ωe

Hα,iHβdΩ,

Sαiβj = λ

∫

Ωe

Hα,iHβ,jdΩ + µ

∫

Ωe

Hα,kHβ,kδijdΩ + µ

∫

Ωe

Hα,jHβ,idΩ,

Nαβ =

∫

Ωe

HαHβdΩ, Bαβi = ρ̄

∫

Ωe

HαHβ,idΩ, Fαi =

∫

Γ

HαtidΓ
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6 Numerical Study

As a numerical study, an intersecting flow is analyzed in three cases using the Semi-

Lagragian Galerkin Method. In case1 and 2 are the same comptational domain. The

Reynolds number is set to Re = 6000. Case3 is analyzed the complicated domain.

The Reynolds number is set to Re = 9000. The intersecting flow is analyzed assuming

the adiabatic flow. In case1 and 2, we compare the difference of flow pattern by the

symmetric and asymmetric inflows.

6.1 Case1

Computational domain and boundary conditions are expressed in Figure 3. Each val-

ues given as boundary conditions are expressed as follows. Up and down inflow

boundaries are given symmetric inflow, and the velocity of face of walls are given

zero. The finite element mesh is shown in Figures 4 to 6. Each crossing angles are 30

and 60 and 90 degrees, respectively. In Figure 4, total numbers of nodes and elements

are 5145 and 9532, respectively. In Figure 5, total numbers of nodes and elements

are 5061 and 9328, respectively. In Figure 6, total numbers of nodes and elements are

5303 and 9804, respectively. The shapes of channel are treated pipelines in case 1 and

2.

Figure 3: Computational domain

Figure 4: Finite element mesh of 30 degree
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Figure 5: Finite element mesh of 60 degree

Figure 6: Finite element mesh of 90 degree

6.2 Case2

Computational domain and boundary conditions are expressed in Figure 7. Each val-

ues given as boundary conditions are expressed as follows. Up and down inflow

boundaries are given asymmetric inflow of 1:1.2, and the velocity of face of walls

are given zero. The crossing angles and the finite element mesh are same as case1.

We compare the difference of form of vortex and the asymmetry of flows.
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Figure 7: Computational domain

6.3 Case3

Computational domain and boundary conditions are expressed in Figure 8. As bound-

ary conditions, ΓU , the velocity in same direction along the rhombus lines. On ΓS , pe-

riodic boundary is assumed. On ΓB , the condition that the tangential velocity around

a body is zero is applied. The finite element mesh is shown in Figure 9. Total numbers

of nodes and elements are 13104 and 24976, respectively. The total number of nodes

around the body is 32. The shape of bodies sets the rhombus with smooth edge.

Figure 8: Computational domain

Figure 9: Finite element mesh

Figure 10: Finite element mesh around bodies

8



7 Numerical Results

7.1 Case1

As the numerical results, Figures 11 to 16 show stream lines in the flow in pipelines.

The streamlines comes off and adheres to pipelines. In Figures 11 and 12, the vortices

occur symmetry and disappear at end. The more expand the crossing angle, the more

not to disappear the vortices. Please look at Figure 15 and 16. We can’t confirm but

the vortices occur both Figures 15 and 16. One of the causes of this is centrifugal

force. The more expand the crossing angle, the more this affects.

Figure 11: Stream lines of degree of 30 Figure 12: Stream lines of degree of 30

Figure 13: Stream lines of degree of 60 Figure 14: Stream lines of degree of 60

Figure 15: Stream lines of degree of 90 Figure 16: Stream lines of degree of 90
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7.2 Case2

In Figures 17 to 22 show stream lines in the flow in pipelines. All figures show the

asymmetric flows. The streamlines comes off and adheres to pipelines. In Figures

17 and 18, the vortices occur asymmetry and disappear at end. In Figures 19 and 20,

the vortices occur asymmetry but not to disappear and exist asymmetry. The biggest

reason of this is the asymmetric inflows.

Figure 17: Stream lines of degree of 30 Figure 18: Stream lines of degree of 30

Figure 19: Stream lines of degree of 60 Figure 20: Stream lines of degree of 60

Figure 21: Stream lines of degree of 90 Figure 22: Stream lines of degree of 90
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7.3 Case3

In Figures 23 to 25 are velocity distribution in the deformed X-channel and expanded

figure of the velocity. In Figure 25, the stream line is shown. In this case, in spite

of the symmetric inflow is given but the velocity is shown asymmetry. The biggest

reason of this is given the periodic boundary. Therefore, there are no restriction in up

and down boundaries.

Figure 23: Velocity distribution of deformed X-channel

Figure 24: Velocity distribution of near deformed X-channel

Figure 25: Stream lines of deformed X-channel

8 Conclusion

In this paper, the intersecting flow is analyzed using the Semi-Lagrange Galerkin

method. The flows in different crossing angles are confirmed. We can confirm the

symmetric and asymmetric flow patterns that depend on the differences in the bound-

ary conditions and the finite element mesh.
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